Development of European Ozonation Techniques PAUL FRISON
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch058
Trailigaz, Paris, France
The historical development of European ozonators and ozone production are reviewed. The Otto, van der M a d e , a n d Siemens processes for generating ozone are described. Recent improvements a n d innovations are indicated. Two distinct operations are considered: conditioning of the air to be submitted to the electric discharge, a n d contact between the ozone a n d the water.
U u r i n g t h e first 20 y e a r s of t h i s c e n t u r y — t h a t i s , f r o m t h e b i r t h of t h e first i n d u s t r i a l o z o n a t o r s — c o n s i d e r a b l e i n t e r e s t w a s f o c u s e d o n ozone u t i l i z a t i o n . N u m e r o u s a n d d i v e r s i f i e d a p p l i c a t i o n s a p p e a r e d . N e a r l y a l l of t h e m l e d t o f a i l u r e a n d d i s a p p o i n t m e n t , w h i c h is n o t s u r p r i s i n g , c o n s i d e r i n g t h a t i n d u s t r i a l ozone p r o d u c t i o n a p p e a r e d t o o early i n a w o r l d w h i c h at that time was underdeveloped technologically. I n E u r o p e ozone w a s , a n d s t i l l i s , u s e d m e r e l y f o r t h e s t e r i l i z a t i o n of d r i n k i n g w a t e r . C o n s i d e r e d f r o m t h i s aspect, o z o n i z a t i o n c o m p r i s e s t h r e e d i s t i n c t o p e r a t i o n s : (1) ozone p r o d u c t i o n i n i t s e l f , (2) c o n d i t i o n i n g of t h e a i r t o be s u b m i t t e d t o t h e e l e c t r i c d i s c h a r g e , a n d (3) c o n t a c t b e t w e e n ozone a n d w a t e r .
Ozone
Generators
A l l i n d u s t r i a l ozone generators a r e b a s e d u p o n t h e p r i n c i p l e of t h e e l e c t r i c d i s charge t h r o u g h d i e l e c t r i c s w h i c h a c t as s t a b i l i z i n g resistances, c o u n t e r a c t i n g a n y i n crease o r l o c a l i z a t i o n of t h e d e n s i t y of t h e h i g h t e n s i o n d i s c h a r g e . T h e essential p r e s ence of s u c h d i e l e c t r i c s establishes e l e c t r i c a l c o n d i t i o n s u n d e r w h i c h t h e d i s c h a r g e t a k e s p l a c e , a t t h e same t i m e i n t r o d u c i n g a n e l e c t r i c a l c a p a c i t y effect a n d a l e a d i n g p o w e r f a c t o r of 0.4 t o 0.6. F r o m t h e e l e c t r i c a l p o i n t of v i e w , t h e r e f o r e , t h e o z o n a t o r a p p e a r s as a c o n d e n s e r w h i c h a l l o w s a r a t h e r s i g n i f i c a n t a m o u n t of e n e r g y t o pass t h r o u g h . A c c o r d i n g l y , t h e a l t e r n a t i n g e l e c t r i c a l s t r a i n s a p p l i e d t o t h e m o l e c u l a r s t r u c t u r e s of t h e d i e l e c t r i c s p r o duce h e a t t h r o u g h a d i s s i p a t i o n of e n e r g y , a n d t h e d i e l e c t r i c s h a v e t o be c o o l e d b y c o n duction or convection. I n o t h e r respects, t h e electrodes t h e m s e l v e s a r e s u b j e c t t o h e a t i n g . T h i s r e s u l t s i n F o u c a u l t ' s c u r r e n t s , i n a n e l e c t r o n i c e m i s s i o n o n t h e a c t i v e s u r f a c e of t h e electrodes, a n d finally i n a s e c o n d a r y h e a t i n g t h r o u g h c o n v e c t i o n , c o n d u c t i o n , a n d r a d i a t i o n , d u e t o t h e i m m e d i a t e v i c i n i t y of t h e d i e l e c t r i c s a n d t h e d i s c h a r g e itself. T h e r e f o r e , t h e electrodes c a n n o t b e t h e r m a l l y i n s u l a t e d f r o m t h e s y s t e m , a n d c o o l i n g m u s t b e p r o v i d e d . F o r o z o n a t o r electrodes a n d d i e l e c t r i c s , one of t h e f o u r a r r a n g e m e n t s s h o w n i n F i g u r e 1 c a n be a d o p t e d , i n w h i c h t h e d i s c h a r g e t a k e s p l a c e e i t h e r b e t w e e n t w o d i e l e c 443
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
A D V A N C E S IN CHEMISTRY SERIES
444 ARRANGEMENT
A
ARRANGEMENT
Β
LA,
J Y Y Y Y m .
H
v, ARRANGEMENT C
ARRANGEMENT D
LJ
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch058
JMUL,
Η 6R0UN
E V
Figure
2
1.
3
Γ V,
Arrangement for ozonator charge
dis
E. Electrode V. Glass dielectric T. Transformer
tries or between
a dielectric a n d a bare electrode.
W i t h a n y of these
arrangements,
one of h i g h t e n s i o n poles c a n be g r o u n d e d . Two
dielectrics (arrangement A or C) are seldom used i n a c t u a l practice.
For
e q u a l d i s c h a r g e d e n s i t y , a n a p p l i e d t e n s i o n h i g h e r t h a n t h a t c o r r e s p o n d i n g t o a single d i e l e c t r i c a s s e m b l y is n e c e s s a r y .
T h e r e f o r e , t h e e n e r g y of t h e d i s c h a r g e w i t h t w o d i
e l e c t r i c s c a n o n l y b e less t h a n t h a t of t h e single d i e l e c t r i c a s s e m b l y .
The
double
d i e l e c t r i c ( a r r a n g e m e n t A), t h e o n l y one a p p l i e d i n d u s t r i a l l y w i t h success, p r o v i d e d a n o b v i o u s i n t e r e s t f o r a n e r a w h e n stainless steels w e r e u n k n o w n , because these d i e l e c t r i c s p r o t e c t e d t h e electrodes f r o m c o r r o s i o n d u e t o h i g h t e n s i o n d i s c h a r g e i n t h e a i r . O f t h e t w o assemblies possible w i t h one d i e l e c t r i c , a r r a n g e m e n t D h a s b e e n i n d u s t r i a l l y because of t h e p r a c t i c a l i m p o s s i b i l i t y of c o o l i n g t h e d i e l e c t r i c .
rejected Arrange
m e n t Β is t h e basis of t h e m o s t i n t e r e s t i n g of t h e a c c o m p l i s h m e n t s i n t h e m a t t e r of ozone p r o d u c t i o n . I n E u r o p e f r o m 1907 t o 1930, t h r e e o z o n e g e n e r a t i n g processes w e r e
successfully
s u b m i t t e d t o t h e test of i n d u s t r i a l a p p l i c a t i o n s : t h e O t t o , t h e V a n d e r M a d e , a n d S i e m e n s processes.
S i n c e 1930, t h e r e h a s b e e n a t e n d e n c y t o w a r d i m p r o v i n g t h e p r o
d u c t i o n e q u i p m e n t of these processes w i t h a v i e w t o r e d u c i n g i t s size a n d e l i m i n a t i n g c e r t a i n p r o d u c t i o n d r a w b a c k s , s u c h as t h e t o o f r e q u e n t b r e a k a g e of d i e l e c t r i c s . Otto Ozonators.
B e f o r e 1930, O t t o o z o n a t o r s , b u i l t a n d p u t i n t o use i n n u m e r o u s
m u n i c i p a l w a t e r t r e a t m e n t p l a n t s , w e r e of t h e flat e l e c t r o d e t y p e w i t h t w o d i e l e c t r i c s , a s s e m b l e d as i n a r r a n g e m e n t A, F i g u r e 1, a n d s u p p l i e d w i t h 5 0 0 - c y c l e
current.
A n o z o n a t o r c o m p r i s e d a c e r t a i n n u m b e r of i n d i v i d u a l l y p r o d u c i n g u n i t s g r o u p e d i n a n insulated enclosure, glazed o n t h e front a n d rear surfaces. trodes them.
T h e t w o outer
were hollow plates at g r o u n d p o t e n t i a l , cooled b y c i r c u l a t i n g water T h e high tension plate was water-cooled
isolated the high tension from
ground.
elec
through
b y t h e use of t w o w a t e r f a l l s w h i c h
F i g u r e 2 shows s u c h a n o z o n a t o r
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
with
five
445
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch058
FRISON—EUROPEAN O Z O N A T I O N TECHNIQUES
Figure 2.
Otto ozonator,
flat-electrode
type, with five ozonator elements
High tension electrode cooled with water
o z o n a t o r elements. O n e of t h e w a t e r f a l l devices c a n b e seen a t t h e t o p of t h e p h o t o graph. I n 1930 c e r t a i n s t r u c t u r a l m o d i f i c a t i o n s a p p e a r e d , w h i c h h a d l i t t l e effect o n p r o d u c t i o n efficiency. I n g e n e r a l , t h e y r e n d e r e d t h e o z o n a t o r s less b u l k y a n d c h e a p e r t o c o n s t r u c t . T h e o z o n e - p r o d u c i n g elements were g r o u p e d i n t h e m a n n e r of a filter press a n d were c a l l e d o z o n a t o r b l o c k s . E a c h b l o c k c o n t a i n e d one t o s i x elements. T h e p l a t e s , o r i g i n a l l y of cast i r o n , were n o w of A l p a x , a n a l l o y of a l u m i n u m a n d s i l i c o n . B a t t e r i e s of f o u r b l o c k s a r r a n g e d as s h o w n i n F i g u r e 3 p r o v i d e d g r e a t e r p r o d u c t i o n c a p a c i t y i n less space. T h e c o o l i n g a r r a n g e m e n t s r e m a i n e d s u b s t a n t i a l l y t h e same. I n 1938, t o e l i m i n a t e t h e h a n d i c a p s of c o o l i n g t h e h i g h t e n s i o n electrode w i t h w a t e r , t r a n s f o r m e r o i l w a s u s e d f o r c o o l i n g . I t w a s c i r c u l a t e d i n a closed c i r c u i t , w h i c h i n c l u d e d a p u m p a n d a water-cooled heat exchanger, a n d was conducted to a n d f r o m t h e h i g h t e n s i o n electrodes b y m e a n s of l o n g b o r o s i l i c a t e glass t u b e s . A l t h o u g h t h i s a r r a n g e m e n t e l i m i n a t e d e l e c t r i c a l losses c a u s e d b y t h e w a t e r f a l l s , t h e i m p r o v e m e n t w a s p a r t i a l l y offset b y t h e e l e c t r i c a l c o n s u m p t i o n of t h e c i r c u l a t i n g p u m p . F i g u r e 4 shows a n o z o n a t o r of t h i s t y p e . A t t h e e n d of W o r l d W a r I I , t h e use of 5 0 0 - c y c l e
current for supplying Otto
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
A D V A N C E S IN CHEMISTRY SERIES
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch058
446
Figure 3 .
Otto ozonator with ozone-producing elements grouped in batteries of four blocks High tension electrode cooled with water
ozonators practically disappeared. Thenceforth they were designed to function at the normal distribution frequency of 50 cycles. About 1948, hollow plates of stamped and welded steel were introduced. While these reduced costs, it was difficult to achieve completely flat and parallel faces and plates which would not become deformed. These problems have not yet been solved satisfactorily, and this innovation cannot be considered successful because of more frequent dielectric breakage. In 1954, oil cooling was abandoned, largely because of the difficulty of keeping the circuits leak-tight. A block model ozonator was developed wherein the high tension
Figure 4 . High
tension
Otto ozonator
electrode cooled sulating oil
with
in-
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
FRISON—EUROPEAN O Z O N A T I O N TECHNIQUES
447
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch058
electrode w a s c o o l e d o n l y b y r a d i a t i o n a n d c o n v e c t i o n of a i r w i t h i n t h e o z o n a t o r cage. T h e l o w t e n s i o n electrodes r e m a i n e d w a t e r - c o o l e d . T h e f i n a l d e v e l o p m e n t h a s been t h e a d o p t i o n i n t h i s l a t e s t design of a r r a n g e m e n t Β ( F i g u r e 1 ) , w h e r e b y t h e r e is o n l y one d i e l e c t r i c p e r d i s c h a r g e . A l s o , t h e d i electrics a r e t h i n n e r (2.6 m m . i n s t e a d of 2.5 t o 3.5 m m . ) , a n d t o l e r a n c e s a r e closer. E n e r g y y i e l d s of 18 w a t t - h o u r s p e r g r a m of ozone a r e a t t a i n e d ( c o n c e n t r a t i o n n o t specified). E v e n t h i s design h a s weaknesses: T h e h i g h t e n s i o n p l a t e of A l p a x is c o r r o d e d b y t h e a c t i o n of t h e d i s c h a r g e ; t h e l o w t e n s i o n steel p l a t e s a r e p r o n e t o c o o l i n g w a t e r c o r r o s i o n , a n d t h e i r l a c k of flatness increases d i e l e c t r i c f a i l u r e . V a n der M a d e Ozonators. D e r i v e d f r o m the original Siemens ozonator, the v a n d e r M a d e differs o n l y i n t h e i n g e n i o u s m e t h o d of r i g i d l y c e n t e r i n g t h e h i g h t e n s i o n electrodes. T h e s e t u b u l a r o z o n a t o r s , designed as i n a r r a n g e m e n t B, F i g u r e 1, h a v e u n d e r g o n e o n l y m i n o r m o d i f i c a t i o n s since t h e i r i n t r o d u c t i o n . A h o r i z o n t a l glass d i e l e c t r i c is s u r r o u n d e d b y c o o l i n g w a t e r , w h i c h serves as t h e g r o u n d e d electrode. T h e h i g h t e n s i o n electrode is s p a c e d c o n c e n t r i c a l l y w i t h i n t h e glass t u b e , l e a v i n g a n a n n u l a r d i s c h a r g e space. T h e m o r e recent m o d e l s a r e d i s t i n g u i s h e d f r o m t h e o l d e r m o d e l s ( p r i o r t o 1930) b y a c e n t r a l electrode of stainless steel i n s t e a d of a l u m i n u m , d i e l e c t r i c s of b o r o s i l i c a t e glass i n s t e a d of o r d i n a r y glass, a n i m p r o v e d m e t h o d of f i x i n g t h e d i e l e c t r i c t u b e s i n t o t h e e n d p l a t e s , a n d a change i n t h e e x t e r i o r shape of t h e h o u s i n g s f o r t h e u n i t s . Siemens Ozonators. T h e S i e m e n s o z o n a t o r , one of t h e f i r s t ozone g e n e r a t o r s c a p a b l e of successful i n d u s t r i a l a p p l i c a t i o n , h a s u n d e r g o n e n o t e c h n i c a l m o d i f i c a t i o n s since a b o u t 1933. I t i s s u p p l i e d b y a 10,000-cycle c u r r e n t . C u r i o u s l y , t h e g e n e r a t o r is v e r y s i m i l a r t o t h e v e n e r a b l e B e r t h e l o t o z o n a t o r . T h e basic g e n e r a t i n g c e l l i s of s e m i c r y s t a l glass of s p e c i a l c o m p o s i t i o n . I t is of t u b u l a r design w i t h t w o c o n c e n t r i c glass d i e l e c t r i c s a s s e m b l e d a c c o r d i n g t o a r r a n g e m e n t A, F i g u r e 1. T h e o u t e r glass t u b e is s u p p o r t e d v e r t i c a l l y i n a t a n k t h r o u g h w h i c h w a t e r c i r c u l a t e s . T h e w a t e r p l a y s a t t h e same t i m e t h e p a r t of a g r o u n d e d electrode a n d a m e a n s of c o o l i n g . T h e h i g h t e n sion electrode is l i k e w i s e of w a t e r , w h i c h is c i r c u l a t e d t h r o u g h t h e i n n e r glass t u b e . A n u m b e r of s u c h cells a r e a r r a n g e d i n p a r a l l e l . T h e c o o l i n g of t h e h i g h t e n s i o n electrodes is b y a m e a n s s i m i l a r t o t h a t of t h e first O t t o o z o n a t o r s , e x c e p t t h a t t h e b r e a k i n t h e h i g h t e n s i o n c i r c u i t is a c c o m p l i s h e d b y a r a i n of d r o p l e t s i n t o i n s u l a t i n g o i l i n s t e a d of a f a l l t h r o u g h a i r . T h i s o z o n a t o r , despite t h e q u a l i t i e s i t d i s p l a y e d a t t h e t i m e of i t s i n t r o d u c t i o n , h a s n o t b e e n v e r y successful. E x p e n s i v e because of t h e use of t h e 5 0 - t o 10,000-cycle c o n v e r t e r set, i t seems f r a g i l e a n d difficult t o o p e r a t e . O z o n o Ozonators. T h e s e g e n e r a t o r s , d e v e l o p e d b y t h e engineer N i c c o l i a b o u t 1936 f o r t h e O z o n o C o . of M i l a n , a r e d e r i v e d f r o m t h e O t t o p l a t e b l o c k - o z o n a t o r . T h e y differ i n details as w e l l as t h e f o l l o w i n g p o i n t s : T h e c o o l i n g p l a t e s a r e c i r c u l a r a n d m a d e of t h i n steel (0.5 m m . ) b y s t a m p i n g t w o h a l f - s h e l l s , u n i t e d b y c r i m p i n g , a n d m a d e t i g h t b y s o l d e r i n g . T h e d i e l e c t r i c s a r e of m i c a n i t e a n d a r e s p a c e d b y r a d i a l s t r i p s . T h e r e a r e s p e c i a l c h e c k - p l a t e s , e n s u r i n g a reasonable t i g h t e n i n g of t h e elements c o n s t i t u t i n g a b l o c k , a n d t h e m e t h o d of s u s p e n d i n g t h e p l a t e s a u t o m a t i c a l l y ensures t h e i r c e n t e r i n g . T h e o z o n a t o r is i n t h e f o r m of a desk. A c i r c u l a t i o n of i n s u l a t i n g o i l o p e r a t i n g b y m e a n s of a t h e r m o s i p h o n ensures t h e c o o l i n g of t h e electrodes w i t h o i l , w h i c h i n t u r n is c o o l e d b y w a t e r . T h e o z o n a t o r s operate o n 50-cycle current. T h e units are well constructed. I t is regrettable t h a t t h e y h a v e been s u p p l i e d w i t h a i r d r i e d b y c a l c i u m c h l o r i d e , w h i c h r e d u c e d t h e i r p r o d u c t i o n efficiency. T h e specific e n e r g y y i e l d s f o r these o z o n a t o r s h a v e n e v e r been made public. Conditioning
of A i r b e f o r e
Discharge
In G e r m a n y . P r i o r t o 1933, a l l i n d u s t r i a l o z o n a t o r s were s u p p l i e d w i t h a i r d r i e d b y c a l c i u m c h l o r i d e . I t w a s t h e S i e m e n s C o . w h i c h first used s i l i c a g e l . T h e d r y e r d e -
American Chemical Society
OZONE CHEMISTRY AND TECHNOLOGY LibrarySociety: Washington, DC, 1959. Advances in Chemistry; American Chemical
A D V A N C E S IN CHEMISTRY SERIES
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch058
448
s i g n e d b y t h i s c o m p a n y w a s a c o n t i n u o u s - o p e r a t i o n t y p e w i t h t w o a d s o r p t i o n cells r e a c t i v a t e d i n closed c i r c u i t . T h e c h a n g i n g o v e r of t h e a i r s t r e a m s a t t h e t i m e of reactivation was ensured b y a solenoid valve, itself regulated b y a t i m e r w i t h a d justable electrical contacts. I n F r a n c e . I n 1938, t h e first s i l i c a g e l d r y e r a p p l i e d t o t h e O t t o process w a s p u t i n o p e r a t i o n . S i n c e t h e n , t h i s m e t h o d of d r y i n g h a s n o r m a l l y been u s e d i n a l l O t t o o z o n a t i o n p l a n t s , e x c e p t t h e S a i n t - M a u r p l a n t , w h i c h alone uses c o o l i n g . A f t e r 1952, O t t o o z o n a t i o n e q u i p m e n t u s e d t w o stages o f d r y i n g t o c o n d i t i o n t h e a i r : T h e first stage ensures t h e c o o l i n g of t h e a i r d o w n t o + 5 ° C . b y m e a n s of a h e a t e x c h a n g e r i m m e r s e d i n a b r i n e b a t h c o n t a i n i n g also t h e e v a p o r a t o r of t h e r e f r i g e r a t o r ; t h e second stage ensures t h e final d r y i n g b y p a s s i n g t h e a i r t h r o u g h s i l i c a g e l . O z o n e p l a n t s e s t a b l i s h e d a c c o r d i n g t o t h e v a n d e r M a d e processes use c a l c i u m c h l o r i d e as a d e h y d r a t i o n a g e n t . O n l y recently has silica gel d r y i n g been adopted. I n Switzerland. T h e v e r y fine ozone s t e r i l i z a t i o n p l a n t b u i l t a t B e r n e i n c l u d e s a n o v e l a i r - d r y i n g i n s t a l l a t i o n designed b y t h e C a r b a C o . , B e r n e . A f t e r p a s s i n g t h r o u g h a d u s t f i l t e r , t h e a i r i s c o m p r e s s e d t o 5 k g . p e r s q . c m . (71 p.s.i.), cooled i n a c i r c u l a t i n g water heat exchanger, t h e n cooled d o w n t o —30° to —40° C . i n a n e x c h a n g e r s e r v e d b y a r e f r i g e r a t o r b e f o r e e x p a n d i n g t o o p e r a t i n g p r e s s u r e . U n d e r these c o n d i t i o n s , t h e d r y n e s s a t t a i n e d i s a b o u t 3 0 m g . of w a t e r p e r k g . of d r y a i r ( d e w p o i n t , —60° F . ) . T h i s c o m p l e t e l y a u t o m a t i c i n s t a l l a t i o n operates w e l l , b u t seems m u c h t o o e x p e n s i v e t o r u n . T h e specific e l e c t r i c a l c o n s u m p t i o n i s 210 w a t t - h o u r s p e r c u b i c m e t e r of a i r , w h i c h b r i n g s t h e c o n s u m p t i o n f o r t h e o z o n a t e d a i r a t a c o n c e n t r a t i o n of 10 g r a m s p e r c u b i c m e t e r , t o 21 w a t t - h o u r s p e r g r a m of ozone. T h i s e l e c t r i c a l c o n s u m p t i o n i s m u c h h i g h e r t h a n t h a t necessary f o r t h e p r o d u c t i o n of ozone i t s e l f , a n d five t o s i x t i m e s higher t h a n that required for a d r y i n g system using activated a l u m i n a or silica gel. In Italy. T h e a i r - d r y i n g m e t h o d u s e d i n m o s t i n s t a l l a t i o n s of t h e O z o n o - N i c c o l i t y p e w a s a b s o r p t i o n b y c a l c i u m c h l o r i d e . T h e use of p o r o u s a d s o r b e n t s d i d n o t a p p e a r u n t i l a r o u n d 1938. Bringing
Ozone and Water
into
Contact
A f t e r t h e ozone i s p r o d u c e d , i t m u s t b e m a d e t o a c t u p o n t h e w a t e r . T h i s p r o b l e m , w h i c h i s a m a t t e r of b r i n g i n g l a r g e v o l u m e s of gases a n d l i q u i d s i n t o a d e q u a t e a n d c o n t i n u o u s c o n t a c t , h a s b e e n a p p r o a c h e d i n a v a r i e t y of w a y s . T w o m e t h o d s w e r e i n t r o d u c e d a b o u t 1930. O n e w a s d e v e l o p e d b y O t t o , t h e o t h e r b y V a n d e r M a d e .
Figure 5.
W a t e r pump a n d deep tower
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
449
FRISON—EUROPEAN O Z O N A T I O N TECHNIQUES
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch058
A c c o r d i n g to t h e O t t o m e t h o d ( F i g u r e 5 ) , t h e ozonated a i r is aspirated b y a sort of w a t e r p u m p c a l l e d a n émulseur. T h e resulting emulsion is carried along a t i n c r e a s i n g p r e s s u r e t h r o u g h a v e r t i c a l t u b e , l'appendice de dissolution, t o t h e b o t t o m of a deep t o w e r , t h e colonne de self-contact, w h e r e i t rises a g a i n , f r e e i n g m y r i a d s o f fine b u b b l e s w h i c h p r o l o n g a n d i m p r o v e t h e c o n t a c t b e t w e e n w a t e r a n d gas. T h e d i s s o l v i n g a p p e n d i x , i m m e r s e d f o r i t s e n t i r e l e n g t h , releases t h e e m u l s i o n a t t h e base of t h e s e l f c o n t a c t c o l u m n b y m e a n s of a d i f f u s i n g b e l l , w h i c h i m p a r t s a c i r c u l a r m o v e m e n t t o the water entering t h e c o l u m n . T h e c o l u m n is c y l i n d r i c a l or prismatic, made of r e i n f o r c e d c o n c r e t e , w i t h a d e p t h of 5 m e t e r s ( 1 6 f e e t ) . T h e w a t e r leaves t h e c o l u m n o v e r a f w e i r a t t h e t o p a n d passes t h r o u g h a series of cascades c a l l e d a d e s a t u r a t o r , w h i c h r e m o v e s a n y d i s s o l v e d ozone. T h i s d e s a t u r a t i o n h a s been i n c o r p o r a t e d t o c o n f o r m t o t h e " R e c o m m a n d a t i o n s d u C o n s e i l Supérieur d ' H y g i è n e P u b l i q u e de F r a n c e de 1924," w h i c h s t i p u l a t e t h a t a f t e r treatment t h e water m u s t contain n o substance foreign t o i t s original composition. H o w e v e r , t o d a y t h e r e i s a t e n d e n c y t o w a r d e l i m i n a t i o n of f i n a l d e s a t u r a t i o n i n o r d e r t o m a i n t a i n t h e ozone i n c o n t a c t w i t h t h e w a t e r as l o n g as p o s s i b l e . T h e a p p a r a t u s u t i l i z e d i n t h e V a n d e r M a d e s y s t e m i s a c o l u m n of s u i t a b l y p r o t e c t e d steel i n s m a l l i n s t a l l a t i o n s , r e i n f o r c e d c o n c r e t e i n l a r g e ones. T h e c o l u m n i s d i v i d e d i n t o sections of h o r i z o n t a l p e r f o r a t e d c e l l u l o i d p l a t e s w i t h 0 . 7 - m m . holes. Both t h e w a t e r a n d a i r e n t e r a t t h e b o t t o m a n d pass u p w a r d t h r o u g h s e v e r a l o f these plates. T h i s m e t h o d provides good m i x i n g a n d allows utilization of l o w concentrations of ozone. A n o t h e r n o v e l c h a r a c t e r i s t i c of t h i s process is t h e r e c o v e r y of excess ozone at t h e t o p of t h e c o l u m n a n d i t s recycle t h r o u g h drier, ozonator, a n d piston-type compressor. B y use o f a v a r i a b l e speed c o m p r e s s o r , t h e q u a n t i t y o f ozone i n j e c t e d c a n be v a r i e d i n a c c o r d a n c e w i t h t h e q u a l i t y of t h e w a t e r . B e c a u s e of a n u m b e r of p r o b l e m s — e . g . , w e a k n e s s of t h e p e r f o r a t e d p l a t e s , t o o l o w a n ozone c o n c e n t r a t i o n , t o o l a r g e a v o l u m e of a i r , a n d c o s t l y m a i n t e n a n c e o f t h e c o m p r e s s o r a n d o t h e r e q u i p m e n t because of c o r r o s i v e a c t i o n of o z o n e — t h i s m e t h o d h a s been m o d i f i e d i n l a t e r i n s t a l l a t i o n s . T h e p e r f o r a t e d p l a t e s h a v e been e l i m i n a t e d , a n d t h e a i r is diffused t h r o u g h p l a s t i c diffusers. S t a i n l e s s steel r o t a r y , l i q u i d r i n g c o m p r e s s o r s a r e u s e d . I n s o m e cases, e v e n t h e O t t o m e t h o d of émulseur s a n d selfcontact columns is employed. C o n t a c t Processes Since 1 9 3 0 Chlorator Process. T h i s process uses a s m a l l c o n t a c t c o l u m n a n d i n j e c t o r , w h e r e b y a p o r t i o n of t h e w a t e r i s t r e a t e d t o dissolve a r e l a t i v e l y l a r g e a m o u n t of ozone. T h i s p o r t i o n is t h e n a d d e d t o t h e m a i n w a t e r s t r e a m . T h e success o f t h e m e t h o d r e q u i r e s a h i g h c o n c e n t r a t i o n of ozone ( 1 0 t o 2 0 g r a m s p e r c u b i c m e t e r ) a n d a s t a t i c p r e s s u r e of 0.6 t o 2.0 k g . p e r s q . c m . A n y w h e r e f r o m o n e h a l f t o one s i x t h o f t h e t o t a l w a t e r m a y be required i n t h e ozonized stream. T o r r i c e l l i Process. T h i s m i x i n g m e t h o d w a s d e v e l o p e d b y A l f r e d T o r r i c e l l i of B e r n e . I t s a d v a n t a g e s a r e t h e a b i l i t y t o d i s s o l v e m o r e ozone i n t h e w a t e r t h r o u g h h i g h e r pressures a n d i m p r o v e d c o n t a c t , a n d t o a t t a i n v i r t u a l l y c o m p l e t e a b s o r p t i o n of t h e ozone i n t h e w a t e r . T h e K e r a g Process. T h i s s y s t e m uses a h i g h - s p e e d a g i t a t o r of stainless steel, w h i c h r a p i d l y mixes the ozonized a i r a n d water i n t i m a t e l y . A f t e r m i x i n g , the waterozone passes i n t o a c o n t a c t b a s i n . T h e s e t h r e e s y s t e m s h a v e been i n t r o d u c e d o n l y r e c e n t l y , a n d t h e y a r e c o m p a r e d i n a p a p e r b y T o r r i c e l l i (1). Literature (1)
Cited
Torricelli, Alfred,
RECEIVED
ADVANCES
IN
CHEM.
for review June 19, 1957.
SER.
21, 453 ( 1 9 5 8 ) .
Accepted June 19, 1957.
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.