23
Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on July 16, 2018 at 01:13:47 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Dietary Protein and the Carcinogenesis, Metabolism, and Toxicity of 1,2-Dimethylhydrazine WILLARD J. VISEK and STEVEN K. CLINTON University of Illinois College of Medicine at Urbana-Champaign, Urbana, IL 61801
The hydrazines are a diverse class of compounds used in the manufacture of therapeutic drugs, agricultural chemicals, rocket fuels and other industrial products. They show a variety of toxic effects and some are carcinogenic in laboratory animals (1). Naturally occurring hydrazines have also been identified in tobacco, mushrooms and other plants (1). Scientists studying colon cancer have frequently used 1,2-dimethylhydrazine (DMH) in rodents as an experimental carcinogen. This application followed studies by Lacqeur and associates who produced tumors in laboratory rats with extracts from nuts of the plant, Cycas circinalis (2). Subsequently, Druckery et al. discovered that DMH, a synthetic cycasin analog, caused a very high incidence of colon cancer in rodents (3). Since this discovery, DMH has been successfully used to induce colon tumors in rats (4,5), mice (6,7) and hamsters (8). The metabolites of DMH have also been employed to induce colon cancers in animals (9). Epidemiological studies show that dietary fat and protein are most frequently correlated with colon cancer incidence in man (10-14). A number of studies in laboratory animals suggest that dietary fat enhances colon tumor incidence (15) although others have failed to show such enhancement (16). Summarized in this communication are animal experiments conducted by our laboratory to examine the effects of dietary protein on DMH induced carcinogenesis, mutagenesis, and toxicity. Protein Concentration and DMH Carcinogenesis in Rats (17) One of our early studies examined colon carcinogenesis in male Sprague-Dawley rats, ad libitum fed one of three purified diets containing 7.5, 15.0, 22.5% protein as casein. Each animal was injected intraperitoneally, once weekly for 24 weeks, with 15 mg/kg body weight of DMH. The study was terminated at 32 weeks after the initial DMH injection when all survivors were killed and necropsied. The animals fed 7.5% protein gained less during the first six weeks of feeding than those that consumed 15 or 22.5% of total protein (Table I). The weight gain was greater between the 6th 0097-6156/85/0277-0293$06.00/0 © 1985 American Chemical Society
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
294
XENOBIOTIC METABOLISM: N U T R I T I O N A L E F F E C T S
and 2 6 t h weeks f o r the growth.
Table I.
p r o t e i n f e d r a t s because of
Weight g a i n f o r r a t s 22.5% protein
Treatment 7.5% p r o t e i n 15% p r o t e i n 22.5% protein Initial
7.5%
Wt. gain 0-6 wks 184 242 255
f e d 7.5%,
and
Weight 26 wks 418 453 468
Wt. gain 6-26 wks 178 156 158
average body w e i g h t 56
15%
catch-up
g.
The tumors i n the c o l o n and s m a l l i n t e s t i n e were p r i n c i p a l l y p o l y p o i d adenocarcinomas w i t h h i s t o l o g i c a l and o t h e r c h a r a c t e r i s t i c s of tumors i n d u c e d by a l k y l h y d r a z i n e s and t h e i r d e r i v a t i v e s (18). A l t h o u g h the p e r c e n t a g e of r a t s w i t h s m a l l i n t e s t i n a l o r c o l o n tumors was not i n f l u e n c e d by d i e t , the number of tumors per r a t i n the s m a l l i n t e s t i n e and c o l o n was s i g n i f i c a n t l y g r e a t e r w i t h 15.0 o r 22.5% p r o t e i n compared t o 7.5% p r o t e i n ( T a b l e I I ) . Ear tumors, o b s e r v e d f i r s t d u r i n g the 21st week of the experiment
Table I I .
I n c i d e n c e and t o t a l number of tumors i n the and l a r g e i n t e s t i n e and i n the i n n e r e a r of f e d d i f f e r e n t l e v e l s of p r o t e i n % of r a t s w i t h tumors Inner Small Large Ear Intestine Intestine 84 47 31 65 87 58 52 78 91
7.5% protein 15% p r o t e i n 22.5% protein 32,
31,
and
33
r a t s f o r 7.5,
15,
22.5%
small rats
Ave. no. t u m o r s / r a t Large Small Intestine Intestine 1.03 0.37 0.74 1.68 1.67 0.78
protein,
respectively.
appeared as s w e l l i n g s on the s i d e of the head w h i c h grew p r o g r e s s i v e l y and became u l c e r a t e d . These i n n e r e a r keratin-producing p a p i l l o m a s of the sebacceous g l a n d d e v e l o p e d e a r l i e r and w i t h a g r e a t e r i n c i d e n c e as the p e r c e n t of p r o t e i n i n the d i e t was i n c r e a s e d . Whether fewer tumors w i t h 7.5% p r o t e i n were due t o subo p t i m a l p r o t e i n i n t a k e d u r i n g the r a p i d body growth phase cannot be answered from t h i s s t u d y . S i n c e a l l d i e t s f o r p r a c t i c a l purposes were i s o e n e r g e t i c , and consumed i n a p p r o x i m a t e l y e q u a l amounts, the i n c i d e n c e or growth of tumors cannot be a s c r i b e d t o s i g n i f i c a n t d i f f e r e n c e s of energy, f a t , m i n e r a l s o r v i t a m i n consumption. A l l of the e v i d e n c e argues t h a t the number of tumors i n the s m a l l i n t e s t i n e , c o l o n , and e a r was i n c r e a s e d by the d i e t a r y p r o t e i n i n t a k e . The mechanism whereby d i e t a r y p r o t e i n i n f l u e n c e s DMH carcinog e n e s i s i s unknown. An a t t r a c t i v e h y p o t h e s i s c o n c e r n i n g the e f f e c t s of d i e t a r y p r o t e i n on DMH m e t a b o l i s m i s d i s c u s s e d l a t e r i n t h i s m a n u s c r i p t . A n o t h e r f a c t o r w h i c h may c o n t r i b u t e t o tumor growth p r o m o t i o n i n the i n t e s t i n e i s a d o u b l i n g of f e c a l crude l i p i d e x c r e t i o n w h i c h we o b s e r v e d i n mice as d i e t a r y p r o t e i n was i n c r e a s e d f r o m 10 t o 40% of the d i e t ( 1 9 ) . The a s s o c i a t i o n between
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
23.
VISEK A N D CLINTON
Dietary Protein and 1,2-Dimethylhydrazine
295
f e c a l l i p i d s , f e c a l s t e r o i d e x c r e t i o n and c o l o n c a n c e r has been a t o p i c of e x t e n s i v e i n v e s t i g a t i o n (11,15). A n i m a l V e r s u s V e g e t a b l e P r o t e i n and DMH-Induced C o l o n C a r c i n o g e n e s i s i n R a t s (20) I n t a k e of a n i m a l p r o t e i n i s f r e q u e n t l y c i t e d as showing a s t r o n g c o r r e l a t i o n w i t h human c o l o n c a n c e r ( 1 1 ) . I t has a l s o been hypothes i z e d t h a t the p r o c e s s i n g o r c o o k i n g of meat may produce s u b s t a n c e s which i n f l u e n c e c a r c i n o g e n e s i s . F o r example, b e n z o ( a ) p y r e n e and o t h e r c a r c i n o g e n i c p o l y c y c l i c a r o m a t i c h y d r o c a r b o n s (PAH) a r e found i n meats b r o i l e d o v e r c h a r c o a l ( 2 1 ) . P o l y c y c l i c a r o m a t i c h y d r o c a r bons have been shown t o cause mutagenesis i n b a c t e r i a ( 2 2 ) , m a l i g nant t r a n s f o r m a t i o n i n mammalian c e l l c u l t u r e ( 2 3 ) , and c a n c e r i n e x p e r i m e n t a l a n i m a l s (24) and man ( 2 5 ) . P u r i f i e d PAH a d m i n i s t e r e d simultaneously with other carcinogens, both at l o w - e f f e c t l e v e l s , have been shown t o a c t s y n e r g i s t i c a l l y (26,27). An attempt t o t e s t some of t h e s e hypotheses i n our l a b o r a t o r y compared DMH-induced t u m o r i g e n e s i s i n r a t s f e d beef v e r s u s soybean p r o t e i n . Charcoalb r o i l e d beef was a l s o i n c l u d e d as a v a r i a b l e t o d e t e r m i n e i f PAH o r o t h e r f a c t o r s produced d u r i n g c o o k i n g would modify t h e c a r c i n o g e n i c response (20). Weanling male Sprague-Dawley r a t s were ad l i b i t u m f e d one of the t h r e e s e m i - p u r i f i e d d i e t s c o n t a i n i n g raw b e e f , c h a r c o a l - b r o i l e d beef o r soybean p r o t e i n . Lean beef and beef f a t were o b t a i n e d from the U n i v e r s i t y o f I l l i n o i s Meat S c i e n c e L a b o r a t o r y . U n i f o r m 100 g ground beef p a t t i e s were p r e p a r e d on an automated d e v i c e . H a l f of the beef was cooked by c h a r c o a l b r o i l i n g on an open-topped outdoor g r i l l using charcoal briquets. The temperature a t the s u r f a c e of the g r i l l was a p p r o x i m a t e l y 230 t o 290°C. P a t t i e s were t u r n e d and cooked t o a w e l l - d o n e s t a t e and an i n t e r n a l temperature of 75°C. The cooked p a t t i e s , raw beef and the beef t a l l o w were f r o z e n a t -20°C, l y o p h i l i z e d , ground t o a f i n e powder and a n a l y z e d f o r f a t and p r o t e i n . The beef i n c o r p o r a t e d i n t o t h e d i e t s p r o v i d e d 20% p r o t e i n and t h e f a t c o n t e n t was a d j u s t e d t o 20% w i t h beef t a l l o w . T a l l o w from the same c a r c a s s was a l s o used t o e q u a l i z e l i p i d cont e n t i n the soybean-based d i e t . Each r a t was g i v e n DMH i n t r a p e r i t o n e a l l y a t 12.5 mg/kg d u r i n g weeks 5 t h r o u g h 23 of f e e d i n g and the s t u d y was c o n c l u d e d a f t e r 32 weeks. There was no e v i d e n c e t h a t s o u r c e of p r o t e i n o r i t s p r e p a r a t i o n i n f l u e n c e d the i n c i d e n c e of s m a l l i n t e s t i n a l o r c o l o n tumors ( T a b l e I I I ) . The r e s u l t s of t h i s s t u d y and the p r e v i o u s experiment suggest t h a t the c o n c e n t r a t i o n r a t h e r t h a n t h e s o u r c e of p r o t e i n p l a y e d a dominant r o l e i n d e t e r m i n i n g the number of tumors. D i e t a r y P r o t e i n and DMH M e t a b o l i s m Mutagenesis i n M i c e (28)
and
The next s e r i e s of experiments were by K a r i e t a l . (28) who exami n e d the e f f e c t of d i e t a r y p r o t e i n upon t h e a c t i v a t i o n o f DMH t o i t s mutagenic and, presumably, c a r c i n o g e n i c m e t a b o l i t e s i n mice. A c o m b i n a t i o n of i n v i v o and i n v i t r o a s s a y s were employed t o a s s e s s the i n f l u e n c e of d i e t a r y p r o t e i n c o n c e n t r a t i o n on t h e p r o d u c t i o n of mutagenic p r o d u c t s from DMH, azoxymethane (AOM), and m e t h y l a z o x y methanol (MAM) (Figure 1).
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
XENOBIOTIC M E T A B O L I S M : N U T R I T I O N A L E F F E C T S
296
H I
CH3-N-N-CH3
Dimethylhydrazine IDMHI
H CH3-N-N-CH3
Azomethane [AM]
CH3-ISI-N-CH3
Azoxymethane (AOM)
Ο CHo-N=N * \ Ο CHo 3
/
Methylazoxymethanol (MAM)
Her
C0
2
HCHO^j Methyldiazohydroxide
CH -N=NOH 3
Methyldiazonium Ion
CH3N2 +
nù UM
3
4. κ ι -ι- N
2
Methyl Carbonium Ion e n Gas +
N J t r o g
F i g u r e 1. P o s t u l a t e d pathway from DMH t o i t s p r o x i m a l mutagen (carbonium i o n ) (Reproduced w i t h p e r m i s s i o n from R e f . 28. Copy r i g h t 1983, Cancer R e s e a r c h , I n c . ) .
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
23.
VISEK A N D C L I N T O N
Table I I I .
Dietary Protein and 1,2-Dimethylhydrazine
297
D i m e t h y l h y d r a z i n e - i n d u c e d tumors i n r a t s f e d l y o p h i l i z e d c h a r c o a l b r o i l e d b e e f , raw beef o r soybean p r o t e i n
P r o t e i n Source (20% protein) Charcoal b r o i l e d beef Raw beef Soybean
S m a l l I n t e s t i n a l Tumors % with Tumors/tumortumors bearing r a t 28 40 32
1.1 1.3 1.1
C o l o n Tumors Tumors/tumor% with bearing r a t tumors 41 43 39
1.4 1.4 1.3
In V i t r o M u t a g e n i c i t y of DMH, AOM, and MAM. Over t h e y e a r s , a d d i t i o n s o f DMH t o c u l t u r e s of h i s t i d i n e r e q u i r i n g S a l m o n e l l a o r g a n isms have r e p e a t e d l y f a i l e d t o show s i g n i f i c a n t mutagenesis i n the a s s a y d e s c r i b e d by Ames ( 2 9 ) . Our i n i t i a l i n v i t r o s t u d i e s exami n e d t h e mutagenic potency o f DMH, AOM, and MAM, a s s a y e d w i t h and w i t h o u t a c t i v a t i o n by S-9 f r a c t i o n s from l i v e r s of male w e a n l i n g mice. B o t h DMH and AOM f a i l e d t o s i g n i f i c a n t l y i n c r e a s e b a c t e r i a l m u t a t i o n f r e q u e n c y i n v i t r o w i t h o r w i t h o u t the S-9 p r o t e i n f r a c tion. I n c o n t r a s t , t h e r e s p o n s e t o MAM was p o s i t i v e l y c o r r e l a t e d w i t h dosage (p < 0.01), and t h e s l o p e of the r e g r e s s i o n l i n e app e a r e d t o be s l i g h t l y g r e a t e r when t h e S-9 f r a c t i o n was added. H o s t - M e d i a t e d A s s a y of DMH, AOM, and MAM. We completed s e v e r a l e x p e r i m e n t s employing the h o s t - m e d i a t e d b a c t e r i a l a s s a y f o r d e t e c t i o n of mutagenic a c t i v i t y d e v e l o p e d by G a b r i d g e and L e g a t o r (30) and adapted by M o r i y a e t a l . (31) f o r DMH. The h o s t - m e d i a t e d a s s a y was conducted by i n j e c t i n g t e s t b a c t e r i a i n t o the p e r i t o n e a l c a v i t y of mice f o l l o w e d i m m e d i a t e l y by subcutaneous i n j e c t i o n of the t e s t c a r c i n o g e n . A t a p p r o p r i a t e times t h e r e a f t e r the mice were k i l l e d by c e r v i c a l d i s l o c a t i o n , s t e r i l e s a l i n e was i n j e c t e d i n t r a p e r i t o n e a l l y and the abdomens were v i g o r o u s l y massaged. Then t h e p e r i t o n e a l f l u i d was a s p i r a t e d and a p p l i e d t o a g a r p l a t e s f o r v i a b l e b a c t e r i a l counts and m u t a t i o n f r e q u e n c y ( r e v e r s i o n s ) . When DMH and some of i t s m e t a b o l i t e s were t e s t e d . AOM p r o duced 2 t o 3 times as many m u t a t i o n s as DMH, and MAM was 1.5 t o 10.5 as p o t e n t as AOM. D i e t a r y P r o t e i n and H o s t - M e d i a t e d M u t a g e n e s i s by DMH, AOM, and MAM. Two experiments were conducted t o compare the i n f l u e n c e of p r o t e i n d e f i c i e n c y and e x c e s s on DMH, AOM and MAM mutagenesis. D i e t a r y p r o t e i n i n t a k e produced changes i n m u t a t i o n f r e q u e n c y which were dependent upon the mutagen t e s t e d ( T a b l e I V ) . F o r AOM, d i e t a r y p r o t e i n c o n c e n t r a t i o n and b a c t e r i a l m u t a t i o n f r e q u e n c y were p o s i t i v e l y c o r r e l a t e d (p < 0.01). 14 D i s t r i b u t i o n of [ C]-DMH M e t a b o l i t e s I n V i v o as a F u n c t i o n of Dietary Protein. The d i s t r i b u t i o n of m e t a b o l i t e s was s t u d i e d i n mice g i v e n subcutaneous i n j e c t i o n s of [ C] DMH. Most of the r a d i o a c t i v i t y e x h a l e d as azomethane (AM) was c o l l e c t e d w i t h i n 1 h r , and p r o d u c t i o n of t h i s m e t a b o l i t e was^completed by 3 h r ( F i g u r e 2). I n c o n t r a s t , t h e e x p i r a t i o n of CO^ was n e g l i g i b l e d u r i n g t h e f i r s t hour and c e a s e d a f t e r t h e f i f t h hour. The d i e t a r y t r e a t m e n t s changed t h e q u a n t i t a t i v e r e l a t i o n s h i p s
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
XENOBIOTIC M E T A B O L I S M : N U T R I T I O N A L E F F E C T S
298
F i g u r e 2. E f f e c t o f d i e t a r y p r o t e i n c o n c e n t r a t i o n on c u m u l a t i v e e x p i r a t i o n o f [ C ] A M ( ο , · ) and C 0 2 ( , * ) · E i g h t male w e a n l i n g mice adapted f o r 3 days t o t h e c o n t r o l d i e t were r a n domly d i v i d e d i n t o 2 groups: Group 1, f e d 2.5% c a s e i n ( ); and Group 2, 40% c a s e i n ( ) . Food and water were s u p p l i e d ad l i b i t u m , and f e e d i n t a k e s and body w e i g h t s were d e t e r m i n e d f o r 14 days. A t 9:00 on Day 14, a n i m a l s were g i v e n s . c . i n j e c t i o n s o f [ C ] D M H (0.66 mmol/kg o f body w e i g h t ; 120 /jCi/mmol) and p l a c e d i n t o a i r - t i g h t m e t a b o l i c chambers. Solutions i n the t r a p p i n g v e s s e l s were c o l l e c t e d and r e p l a c e d by f r e s h s o l u t i o n s e v e r y h r f o r 7 h r , a p r o c e d u r e r e q u i r i n g about 5 min. A i r f l o w t h r o u g h each cage was i n d i v i d u a l l y r e g u l a t e d , and s a m p l i n g d i d not d i s r u p t o t h e r e x p e r i m e n t a l u n i t s . A t t h e end o f 7 h r , t h e a n i m a l s were k i l l e d , and a l i q u o t s o f s c r u b b e r s o l u t i o n s were a s s a y e d f o r r a d i o a c t i v i t y (Reproduced w i t h p e r m i s s i o n from R e f . 28. C o p y r i g h t 1983, Cancer R e s e a r c h , I n c . ) . 1 4
1 4
Δ
14
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
23.
VISEK A N D CLINTON
T a b l e IV.
299
Dietary Protein and 1,2-Dimethylhydrazine
E f f e c t of d i e t a r y p r o t e i n c o n c e n t r a t i o n on h o s t medi a t e d m u t a g e n i c i t y of d i m e t h y l h y d r a z i n e (DMH), azoxymethane (AOM) and methylazoxymethanol (MAM) i n C57BL/6 χ C3HF1 male mice
Dietary protein, % Experiment 1 2.5 5 10 20 40 Experiment 2. 2.5 5 10 20 40
Mean r e v e r t a n t s / 1 0 DMH AOM ± 7 ± 9 ± 17 ± 7 ± 5
36 62 64 60 50 — — — — —
101 126 146 180 193
± + + + +
10 28 18 22 18
92 102 140 170 272
± + + + ±
66 14 85 35 49
b
survivors MAM — — — — —
814 767 898 831 866
± ± ± ± ±
196 204 117 132 172
of the gaseous m e t a b o l i t e s but not t h e i r time of appearance. Over a 7 h r p e r i o d a f t e r l a b e l e d DMH a d m i n i s t r a t i o n , t h e combined r e c o v e r y of r a d i o a c t i v i t y i n the e x p i r e d g a s e s , e x c r e t a and c a r c a s s e s averaged about 98%. Under t h e s e c o n d i t i o n s t h e a n i m a l s f e d 2.5% D j o t e i n e x h a l e d 60% of the r a d i o a c t i v i t y i n AM and l e s s t h a n 3% i n C0« compared t o 40 and 6.5% f o r a n i m a l s f e d 10% p r o t e i n , r e s p e c t i v e l y ( T a b l e V ) . The body burden of r e t a i n e d m e t a b o l i t e s was 26% f o r a n i m a l s on the 2.5% p r o t e i n d i e t compared t o about 40% f o r t h e a n i m a l s f e d 10 o r 40% p r o t e i n . I n summary, DMH and AOM f a i l e d t o i n c r e a s e i n v i t r o mutagenic frequency with or without l i v e r e x t r a c t s . However, MAM caused a dose-dependent i n c r e a s e i n r e v e r s i o n f r e q u e n c y w i t h o u t h e p a t i c en zymes as e x p e c t e d s i n c e MAM decomposes h e t e r o l y t i c a l l y t o m e t h y l d i a z o n i u m and formaldehyde ( 3 2 ) . M e t h y l d i a z o n i u m i o n s y i e l d n i t r o gen and methylcarbonium, a p o w e r f u l a l k y l a t i n g agent. Formaldehyde i s o x i d i z e d t o (Χ^· I n c o n t r a s t t o i n v i t r o c o n d i t i o n s , the h o s t mediated assay showed t h a t i n t a c t a n i m a l s c o n v e r t e d DMH and AOM t o mutagenic p r o d u c t s . I t i s of i n t e r e s t t h a t t h e i n v i v o mutagenesis was a b o l i s h e d by hepatectomy. P r e c u r s o r p r o d u c t r e l a t i o n s h i p s o f DMH and AOM and MAM ( F i g u r e 1) suggest t h a t the mutagenic a c t i v i t y of t h e i r metabo l i t e s s h o u l d be g r e a t e r as t h e i r m e t a b o l i s m approaches methylcarbonium i o n f o r m a t i o n . T h i s i s c o n f i r m e d by our r e s u l t s . Since the y i e l d o f mutagens was not t h e same from t h e a d m i n i s t e r e d compounds as they were c o n v e r t e d t o methylcarbonium i o n and the number of r e v e r t a n t s from AOM was 30% g r e a t e r a f t e r an e q u a l molar dose of DMH, t h e d i f f e r e n c e had t o be due t o t h e e x p i r a t i o n of AM, the m e t a b o l i t e between DMH and AOM. The e x p i r a t i o n o f AM, t h e r e f o r e , r e p r e s e n t s a l o s s of p o t e n t i a l l y b i o l o g i c a l l y a c t i v e m a t e r i a l and s h o u l d e x p l a i n the d i s c r e p a n c i e s between the mutagenic potency of DMH and AOM on a molar b a s i s . ^ The p r o t e i n r e s t r i c t e d mice a l s o e x p i r e d l e s s CO^ from l a b e l e d DMH t h a n t h e i r c o u n t e r p a r t s f e d 40% p r o t e i n . Using expired (X>2 as an i n d e x of p o t e n t i a l g e n e t i c t o x i c i t y , the burden of
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
300
XENOBIOTIC METABOLISM: NUTRITIONAL EFFECTS T a b l e V.
E f f e c t of d i e t a r y p r o t e i n c o n c e n t r a t i o n d i s t r i b u t i o n of [ C ] DMH m e t a b o l i t e s o f mice f e d d i f f e r e n t i n t a k e s of p r o t e i n . Measurements a t 7 hours a f t e r i n j e c t i o n 1 4
Protein
Expired AM
Expired CO
60.8 39.4 45.0
2.9 6.6 9.1
1
% 2.5 10 40
Other Expired Metabolites 6.6 6.8 3.4
Urine, feces cage rinse 2.6 3.4 1.9
Carcass
Total
26.1 43.4 38.0
99.0 99.6 97.4
Azoxymethane r e t a i n e d m e t a b o l i t e s by the 10 and 40% p r o t e i n groups was 2 and 3 times t h a t f o r t h e 2.5% p r o t e i n f e d a n i m a l s , r e s p e c t i v e l y . The r e l a t i o n s h i p between d i e t a r y p r o t e i n c o n c e n t r a t i o n and DMH-induced h o s t - m e d i a t e d mutagenesis tended t o p a r a l l e l t h e s e f i n d i n g s . The l o s s of AM by e x p i r a t i o n b e i n g g r e a t e r on a low p r o t e i n d i e t v e r s u s a h i g h p r o t e i n d i e t a l s o r e p r e s e n t s a p o s s i b l e mechanism f o r exp l a i n i n g q u a n t i t a t i v e d i f f e r e n c e s i n the c a r c i n o g e n i c e f f e c t s of DMH showing t h a t 7.5% p r o t e i n f e d r a t s d e v e l o p e d 40% fewer c o l o n tumors t h a n t h o s e f e d 15 o r 22.5%. D e s p i t e the d i f f e r e n c e s i n s p e c i e s and e x p e r i m e n t a l p r o t o c o l the d a t a agree r e m a r k a b l y w i t h o n e - t h i r d more AM and t w o - t h i r d s l e s s CO^ e x p i r e d by p r o t e i n d e f i c i e n t mice compared t o c o n t r o l s . T h i s c o r r o b o r a t e s a d i e t a r y p r o t e i n i n f l u e n c e on DMH c a r c i n o g e n e s i s and a lower body burden of p r o x i m a l mutagen-carcinogen i n p r o t e i n r e s t r i c t e d a n i m a l s because of g r e a t e r e x p i r a t i o n of AM. The E f f e c t s o f D i e t a r y P r o t e i n C o n c e n t r a t i o n on D i e t a r y DMH T o x i c i t y i n M i c e Our most r e c e n t s t u d i e s examined the e f f e c t s of d i e t a r y p r o t e i n on the c h r o n i c t o x i c i t y r e s u l t i n g from f e e d i n g DMH i n the d i e t . After a s e r i e s of p r e l i m i n a r y s t u d i e s , B.C«F^ male mice were f e d DMH f o r 5 months a t the f o l l o w i n g d i e t a r y c o n c e n t r a t i o n s : .015, .030, and .045 mg/kg o f d i e t . The d i e t s were based upon the AIN-76 recommendations and c o n t a i n e d soybean p r o t e i n a t 10 o r 40% by weight. F i v e t o 8 week o l d males were u s e d . T h e r e were 25 mice per group. The d a t a p r e s e n t e d a r e p r e l i m i n a r y and a complete d e s c r i p t i o n of t h e s e s t u d i e s w i l l appear e l s e w h e r e ( V i s e k e t a l . , t o be p u b l i s h e d ) . T a b l e VI summarizes the f e e d i n t a k e , o r g a n w e i g h t s and o r g a n t o body weight r a t i o s f o r a l l of the d i e t a r y t r e a t m e n t s . These showed a h i g h l y s i g n i f i c a n t DMH dose r e s p o n s e w i t h s e v e r a l dose by p r o t e i n i n t e r a c t i o n s . W i t h 0.015 g DMH/kg d i e t , s m a l l o r moderate r e d u c t i o n s i n f o o d consumption, body w e i g h t s , h e a r t w e i g h t s and h e a r t / b o d y w e i g h t r a t i o s were seen o n l y i n 10% p r o t e i n f e d a n i m a l s . A m i l d d e c r e a s e i n l i v e r w e i g h t , and i n c r e a s e s i n l u n g and t e s t e s w e i g h t s r e l a t i v e t o body w e i g h t s were seen a t b o t h p r o t e i n l e v e l s . However, a t 0.03 g/kg r e d u c t i o n s i n f o o d consumption and body w e i g h t were t w i c e as g r e a t w i t h 10% p r o t e i n v e r s u s 40% p r o t e i n f e d animals. The a b s o l u t e w e i g h t s of k i d n e y s f o r 10% p r o t e i n f e d
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
0.41 5 0.47 4
25.22 605 38.92
Controls
984 279 634 179 138 39 174 49 232 65
24.76 571 35.49
763 278 324 117 116 43 156 57 179 66
24.24 505 27.81
10% P r o t e i n DMH g/kg d i e t .030 .015
655 284 233 103 106 47 140 61 98 43
25.03 454 22.68
.045
1132 372 625 205 146 48 162 53 214 70
24.64 517 30.75
Controls
1021 344 615 207 138 47 170 57 230 78
24.13 515 30.17
847 328 494 191 105 41 154 60 206 80
24.42 485 26.07
40% P r o t e i n DMH g/kg d i e t .030 .015
684 309 371 168 100 45 139 63 120 55
25.30 436 21.73
.045
i n c l u d e s a l l mice.
O t h e r v a r i a b l e s omit two mice d y i n g e a r l y , and r a r e
outliers.
Organ w e i g h t and i n i t i a l body w e i g h t d a t a r e p o r t e d as o b s e r v e d means o f each group, w i t h s t a n d a r d e r r o r o f group mean o b t a i n e d by p o o l i n g v a r i a t i o n i n t h e e i g h t g r o u p s . Organ/body w e i g h t d a t a r e p o r t e d as a d j u s t e d means f r o m an a n a l y s i s o f v a r i a n c e o f t h e e n t i r e f o u r c a r c i n o g e n f i v e - m o n t h s t u d y , u s i n g a model i n c o r p o r a t i n g adjustment f o r h o u s i n g p o s i t i o n s o f mice and a l l o w i n g f o r p r o t e i n l e v e l by c a r c i n o g e n i n t e r a c t i o n s . The s t a n d a r d e r r o r o f a group mean i s d e r i v e d from t h i s a n a l y s i s . T o t a l f o o d consumption and f i n a l body w e i g h t were t r e a t e d s i m i l a r l y t o t h e s e , w i t h a d d i t i o n a l c o v a r i a n c e adjustment f o r i n i t i a l body w e i g h t .
Organ Weights (mg) and Organ/Body Weight s ( x l O ) 1335 22 L i v e r weight 338 6 L i v e r weight/body weight 680 13 Kidney weight 173 2 K i d n e y weight/body w e i g h t 160 3 Heart weight 41 1 H e a r t weight/body weight 169 4 Lungs w e i g h t 43 1 Lung weight/body weight 238 5 Testes weight 61 1 T e s t e s weight/body w e i g h t
1
SE o f Each Group Mean
Mean body w e i g h t , t o t a l f o o d consumption, o r g a n w e i g h t s and organ/body w e i g h t s o f mice i n f i v e month s t u d y , by d i e t a r y p r o t e i n and DMH c o n c e n t r a t i o n s , w i t h s t a n d a r d e r r o r s o f group means (25 male mice p e r group)
Weight and Food Consumption ( g ) I n i t i a l body w e i g h t T o t a l f o o d consumption F i n a l body weight
Table VI.
302
XENOBIOTIC METABOLISM: NUTRITIONAL EFFECTS
a n i m a l s dropped 50% as DMH was i n c r e a s e d from 0.015 t o 0.03 g/kg. The drop i n k i d n e y w e i g h t s was l e s s w i t h 40% p r o t e i n . W i t h DMH r a i s e d t o 0.045 g/kg o f d i e t f u r t h e r s u b s t a n t i a l d e c l i n e s i n f e e d consumption, o r g a n and body weight o c c u r r e d a t b o t h p r o t e i n l e v e l s . L i v e r and k i d n e y weight d e c l i n e d f u r t h e r , commensurate w i t h dec l i n e s i n body w e i g h t s . The l i v e r seemed t o be t h e organ most s e n s i t i v e t o DMH. A t the l o w e s t DMH dosage a s u b t l e but d e f i n i t e l e s i o n which was d e s i g n a t e d " p r e - r e a c t i v e h e p a t i t i s " was seen i n v i r t u a l l y a l l mice. The l e s i o n c o n s i s t e d of f o c a l c e n t r i l o b u l a r h e p a t o c e l l u l a r n e c r o s i s , o f t e n t a k i n g t h e f o r m o f e o s i n o p h i l i c body f o r m a t i o n and i n t r a c e l l u l a r and e x t r a c e l l u l a r h e m o s i d e r i n d e p o s i t i o n . Only o c c a s i o n a l c o n t r o l mice had s i m i l a r l e s i o n s . M i c e consuming h i g h e r i n t a k e s o f DMH d i s p l a y e d a more s e v e r e " r e a c t i v e h e p a t i t i s . " L o b u l a r d i s o r g a n i z a t i o n and h y p e r t r o p h i c h e p a t o c y t e s w i t h b i z z a r e n u c l e i and e o s i n o p h i l i c i n c l u s i o n s were s e e n . C e n t r i l o b u l a r n e c r o s i s sometimes became c o n f l u e n t . M i c e r e c e i v i n g 0.045 and some r e c e i v i n g 0.03 g DMH/kg d i e t a l s o d e v e l o p e d p o r t a l f i b r o s i s and b i l e duct h y p e r p l a s i a which i n some a n i m a l s was so e x t e n s i v e t h a t i t approached an adenomatous appearance. T h i s l e s i o n was d e s i g n a t e d "reactive h e p a t i t i s with t r i a d i t i s " . T a b l e V I I summarizes t h e r e s u l t s i n r e l a t i o n t o dosage which were h i g h l y s t a t i s t i c a l l y s i g n i f i cant (P < .001). M i c e f e d 10% p r o t e i n d i e t had more s e v e r e l e s i o n s (p < .001) which i s most e v i d e n t a t t h e .030 and .045 DMH dose.
Table VII.
L i v e r Status Normal Pre-reactive hepatitis Reactive hepatitis Reactive hepatitis with triaditis
P e r c e n t mice w i t h l i v e r l e s i o n s by d i e t a r y p r o t e i n and DMH dose
10% P r o t e i n DMH g/kg d i e t Control .015 .030 96 4 —
.045 —
4
96
4
—
—
84
4
12
96
40% P r o t e i n DMH g/kg d i e t Control .015 .030 96 — 4 4
.045
100
24
—
—
68
72
—
—
4
28
T w e n t y - f i v e mice i n each group but 10% p r o t e i n and 0.045 g/kg DMH w i t h 24. The low p r o t e i n d i e t was a l s o m i l d l y l i p o g e n i c w i t h moderate f a t t y change p r e s e n t i n b o t h c o n t r o l s and DMH-treated mice. The k i d n e y s ( T a b l e V I I I ) appeared l e s s s e n s i t i v e t o DMH t o x i c i t y than l i v e r . Renal l e s i o n s c o n s i s t e d of f o c a l , u s u a l l y s u b s c a p u l a r f i b r o s i s w i t h a t r o p h y and h y p e r p l a s i a o f t u b u l a r e p i t h e l i u m and v a r i a b l e i n f l a m m a t o r y i n f i l t r a t e s . T h i s l e s i o n was d e s i g n a t e d " i n t e r s t i t i a l n e p h r i t i s " o r " p y e l o n e p h r i t i s " when t h e r e n a l p e l v i s was i n v o l v e d . T h e r e was no s t a t i s t i c a l b a s i s f o r d i f f e r e n t i a t i n g t h e l e s i o n w i t h i n v o l v e m e n t o f t h e p e l v i c from t h a t w i t h o u t , and t h e r e f o r e t h e two d e s i g n a t i o n s have been p o o l e d f o r
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
23.
VISEK A N D CLINTON
303
Dietary Protein and 1,2-Dimethylhydrazine
evaluating s t a t i s t i c a l significance. As w i t h t h e l i v e r t h e k i d n e y l e s i o n s were s t r o n g l y p o s i t i v e l y a s s o c i a t e d w i t h DMH dose (p < 0.001) and were more s e v e r e w i t h low d i e t a r y p r o t e i n (p < 0.001).
Table VIII.
10% P r o t e i n DMH g/kg d i e t Control .015 .030 96 92 0
Kidney Status Normal Interstitial Nephritis Diagnosis A Pyelone phritis Diagnosis Β Twenty-five
P e r c e n t mice w i t h k i d n e y p r o t e i n and DMH dose
4
—
.045 8
l e s i o n s by d i e t a r y
40% P r o t e i n DMH §/k$ d i e t Control .030 .015 100 60 100
.045 4
4
64
46
—
—
24
48
4
36
46
—
—
16
48
mice i n each group but 10% - .015 and .045, w i t h 24.
The l e s i o n s of t h e a d r e n a l g l a n d c o n s i s t e d o f h y p e r p l a s i a o f c o r t i c a l c e l l s w i t h a t y p i c a l n u c l e i and f o c a l pigment d e p o s i t i o n f r e q u e n t l y seen a t 0.03 and 0.045 g/kg of d i e t ( T a b l e I X ) . T h i s l e s i o n showed a s t r o n g dose response c o r r e l a t i o n (P < 0.001) and a n e g a t i v e a s s o c i a t i o n w i t h d i e t a r y p r o t e i n l e v e l (P < 0.001).
T a b l e IX.
Adrenal Status Normal Hyperplasia 0 (trace) 1 (mild) 2 (moderate) 3 (severe)
P e r c e n t mice w i t h and w i t h o u t a d r e n a l h y p e r p l a s i a by d i e t a r y p r o t e i n , DMH dose and s e v e r i t y grade 10% P r o t e i n DMH g/kg d i e t Con trol 90
40% P r o t e i n DMH g/kg d i e t
.015
.030
.045
95
22
9
5
48 26 4
10 —
—
—
—
Twenty-one t o 24 mice i n adrenals i n s e c t i o n i n g .
Con trol 92
9 59 23
each treatment
.030
95
58
—
5
25 17
—
— —
—
—
—
4
— —
4 —
.045
.015
41 50 9
group, due t o m i s s i n g
Heart l e s i o n s c o n s i s t i n g of f o c a l myocytolysis with or w i t h out f i b r o s i s and/or c a l c i f i c a t i o n were c o n s i s t e n t l y o b s e r v e d i n mice r e c e i v i n g t h e h i g h e s t dosage o f DMH and a l s o i n o n e - t h i r d o f those r e c e i v i n g t h e i n t e r m e d i a t e dose ( T a b l e X ) . The dose response r e l a t i o n i s r e l a t i v e l y s t r o n g (P < .001) b u t no e v i d e n c e was found t h a t p a t h o l o g y i n t h e h e a r t was a f f e c t e d by d i e t a r y p r o t e i n . A h i e r a r c h y of p a t h o l o g i c l e s i o n s o b s e r v e d i n mice f e d DMH i s summarized i n F i g u r e 3. R e n a l damage v i r t u a l l y n e v e r o c c u r r e d w i t h o u t accompanying l i v e r p a t h o l o g y , and a d r e n a l s v i r t u a l l y n e v e r showed changes u n l e s s t h e r e was accompanying l i v e r and k i d n e y p a t h ology. F o c a l m y o c y t o l y s i s d i d n o t f i t w i t h i n t h e same o r g a n h i e r a r c h y as t h e l i v e r , k i d n e y and a d r e n a l f i n d i n g s .
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
304
XENOBIOTIC M E T A B O L I S M : NUTRITIONAL E F F E C T S
F i g u r e 3. Sequence of d e v e l o p i n g p a t h o l o g i c l e s i o n s i n 176 B,C„F mice f e d DMH. 6 3 1
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
23.
VISEK A N D CLINTON
T a b l e X.
P e r c e n t mice w i t h and w i t h o u t myochytolysis
Normal F o c a l myocytolysis 0 (trace) 1 (mild) 2 (moderate) or 3 ( s e v e r e )
Control 96
mice i n
40% P r o t e i n DMH g/kg d i e t
.030
.045
96
68
21
4
.015
305
cardiac focal
10% P r o t e i n DMH g/kg d i e t
Myocardial Status
Twenty-five
Dietary Protein and 1,2-Dimethylhydrazine
Control 92
.015
.030
.045
88
64
24
12
—
—
8 20
12 46
—
—
28 4
24 48
—
—
4
21
—
—
4
4
4
each group but
10%
8
- .015
and
.045,
with
24.
General Discussion The amount of d i e t a r y p r o t e i n i n f l u e n c e d t h e c a r c i n o g e n i c i t y of DMH i n r a t s and i t s c o n v e r s i o n t o mutagenic m e t a b o l i t e s and t o x i c i t y i n mice. R a i s i n g p r o t e i n i n t a k e i n r a t s r a i s e d the i n c i d e n c e of tumors of the i n n e r e a r and i n the s m a l l and l a r g e i n t e s t i n e s ( 1 7 ) . The s o u r c e of p r o t e i n ( v e g e t a b l e o r a n i m a l ) had no e f f e c t on DMH i n t e s t i n a l carcinogenesis (20). I n c r e a s i n g d i e t a r y p r o t e i n i n t a k e i n c r e a s e d the q u a n t i t i e s of DMH m e t a b o l i t e s r e t a i n e d by mice f e d h i g h compared t o low p r o t e i n d i e t s and t h i s i s c o n s i s t e n t w i t h t h e g r e a t e r y i e l d of tumors i n r a t s as t h e i r p r o t e i n i n t a k e was i n c r e a s e d ( 2 8 ) . The d a t a argue t h a t l o w e r i n g d i e t a r y p r o t e i n reduced t h e c a p a c i t y of l i v e r t o m e t a b o l i z e DMH and i n c r e a s e d t h e e x p i r a t i o n of i t s v o l a t i l e metabol i t e AM. C o n s e q u e n t l y , l e s s DMH was c o n v e r t e d t o promutagens and carcinogenic products. By u s i n g the h o s t - m e d i a t e d a s s a y i t was p o s s i b l e t o show t h a t DMH produced m u t a t i o n s i n h i s t i d i n e dependent s a l m o n e l l a organisms. The e s s e n t i a l r o l e of the l i v e r i n making t h e s e c o n v e r s i o n s was shown w i t h hepatectomy s t u d i e s . The f a c t t h a t mutagenesis had not been demonstrated e a r l i e r w i t h t h e convent i o n a l Ames assay i n which the S9 f r a c t i o n was a p p l i e d t o an agar p l a t e shows t h a t the m e t a b o l i t e s t h a t were n e c e s s a r y t o cause mutagenesis were undoubtedly l o s t by v o l a t i l i z a t i o n from the i n v i t r o system. In complete c o n t r a s t w i t h t u m o r i g e n e s i s i n r a t s , h i g h e r p r o t e i n i n t a k e s appear t o d e c r e a s e t o x i c e f f e c t s of c h r o n i c , low dose f e e d i n g of DMH. The 5 month t o x i c i t y s t u d y i n d i c a t e s t h a t c a r c i n o g e n e s i s o b s e r v e d a f t e r i n j e c t i o n o f DMH i n v o l v e s a d i f f e r e n t s e t o f m e t a b o l i c p r o c e s s e s compared t o exposure a f t e r o r a l i n t a k e , w h i c h i s a common r o u t e of exposure t o c a r c i n o g e n s by humans. T h i s a l s o s u g g e s t s t h a t t h e t a r g e t t i s s u e s may d i f f e r when c a r c i n o g e n s a r e consumed i n the f o o d compared t o p a r e n t e r a l i n j e c t i o n w h i c h i s o f t e n used i n s t u d i e s w i t h a n i m a l s . Acknowledgments The r e s e a r c h on DMH mutagenesis and t o x i c i t y was s u p p o r t e d i n p a r t by T o x i c o l o g y T r a i n i n g Grant USPHS-ES-070001-17 and C o n t r a c t US NIH
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
306
XENOBIOTIC METABOLISM: NUTRITIONAL EFFECTS
NCI CP75899. The authors acknowledge the contributions of J. Alster, P. B. Imrey, N. S. Nandkumar, D. R. Thursh and C. R. Truex in the studies on DMH toxicity. Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.
Toth, B. Cancer Res. 1975, 35, 3696-7. Laqueur, G. L.; Michaelsen, O.; Whiting, M. G.; Kurland, L. T. J. Nat. Cancer Inst. 1963, 31, 919-33. Druckrey, H.; Preussman, R.; Matzkies, F.; Ivankovic, S. Naturwissenchaften 1967, 54, 285-6. Rogers, A. E.; Herndon, B. J.; Newberne, P. M. Cancer Res. 1973, 33, 1003-9. Reddy, B. S.; Narisawa, T.; Wright, P.; Vukusich, D.; Weis burger, J. H.; Wynder, E. L. Cancer Res. 1975, 35, 287-90. Wiebecke, B; Lohrs, U.; Gimmy, J.; Eder, M. Z. Ges. Exp. Med. 1969, 149, 277-86. Thurnherr, N.; Deschner, E. E.; Stonehill, E.; Lipkin, M. Cancer Res. 1973, 33, 940-5. Osswald, H.; Kruger, F. W. Arzneimittelforschung 1969, 19, 1891-6. Pozharisski, K. M.; Likhachev, A. J.; Klimashevski, V. F.; Shaposhnikor, J. D. Cancer Res. 1979, 30, 165-237. Doll, R. Br. J. Cancer 1969, 23, 1-8. Hill, M. J. In "Dietary Fats and Health"; Perkins, E. G.; Visek, W. J., Eds.; American Oil Chemist's Society: Champaign, IL, 1983; pp. 868-80. Armstrong, B.; Doll, R. Int. J. Cancer 1975, 15, 617. Drasar, B. S.; Irving, D. Br. J. Cancer 1973, 27, 167. Gregor, O; Toman, R.; Prusova, F. Gut 1969, 10, 1031. Reddy, B. S. In "Dietary Fats and Health"; Perkins, E. G.; Visek, W. J., Eds.; American Oil Chemist's Society: Champaign, IL, 1983; pp. Nauss, K.; Locniskar, M.; Newberne, P. Cancer Res. , 43, 4083-90. Topping, D. C.; Visek, W. J. J. Nutr. 1976, 106, 1583-90. Ward, J. M. Lab. Invest. 1974, 30, 505-13. Hevia, P.; Truex, C. R.; Imrey, P. B.; Clinton, S. K.; Mangian, H. J.: Visek, W. J. J. Nutr. 1984, 114, 555-564. Clinton, S. K.; Destree, R. J.; Anderson, D. B.; Truex, C. R.; Imrey, P. B.; Visek. Nutr. Repts. Inter. 1979, 10, 335-42. Lijinsky, W.; Shubik, P. Science 1964, 145, 53-5. McCann, J.; Spingarm, N.; Kobori, J.; Ames, B. Proc. Soc. Natl. Acad. Sci. (USA) 1975, 72, 979. Diamond, L.; Sardet, C.; Rothblat, G. Int. J. Cancer 1968, 3, 838-49. Haddow, A. Perspect. Biol. Med. 1974, 17, 543-89. "Evaluation of Carcinogenic Risk of Chemicals to Man, Vol. 3"; International Agency for Research on Cancer, World Health Organization, Lyon, France, 1973. Montesano, R.; Saffiotti, U.; Ferrero, Α.; Kaufman, D. J. Natl. Cancer Inst. 1974, 53, 1395-7. Nieman, J. Eur. J. Cancer 1968, 4, 537-43. Kari, F. W.; Johnston, J. B.; Truex, C. R.; Visek, W. J. Cancer Res. 1983, 43, 3674-9.
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
23. VISEK AND CLINTON
307 Dietary Protein and 1,2-Dimethylhydrazine
29.
Ames, B. N.; Lee, F. D.; Durston, W. E. Proc. Natl. Acad. Sci. U.S.A. 1973, 70, 782-6. 30. Gabridge, M. G.; Legator, M. S. Proc. Soc. Exp. Biol. Med. 1969, 130, 831-4. 31. Moriya, M.; Ohta, T.; Watanabe, K; Shirasu, Y. J. Natl. Cancer Inst. 1978, 61, 457-60. 32. Nagasawa, H. T.; Shirota, N. Nature (Lond.) 1972, 236, 234-5. RECEIVED
August 28, 1984
Finley and Schwass; Xenobiotic Metabolism: Nutritional Effects ACS Symposium Series; American Chemical Society: Washington, DC, 1985.