11 Differential Scanning Calorimetry of Flexible, Linear Macromolecules B E R N H A R D W U N D E R L I C H and U M E S H G A U R
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
Rensselaer Polytechnic Institute, Department of Chemistry, Troy, NY 12181
A summary of instrument and application news for dif ferential scanning calorimetry (DSC) and a study of low temperature DSC are presented. From 140 to 300 K, a reasonably critical application range, DSC is shown to be capable of up to 2% precision. This is less than clas sical calorimetry can provide, but many applications may be served by these measurements. Heat capacities of poly(acrylate) and poly(methacrylate) are presented for the temperature range 220—500 Κ (specifically, methyl, ethyl, n-butyl, isobutyl, and octadecyl acrylates, and methyl, ethyl, n - b u t y l , isobutyl, dodecyl, and octadecyl methacrylates). These heat capacities are an alyzed in terms of the side-chain heat capacity by comparison with the heat capacities of polyethylene, poly propylene, polybutene-1, polyisobutylene, and polypentene. The latter are taken from our data bank, which contains heat capacities on over 100 different mac romolecules and will be the basis of a general addition scheme on heat capacities.
D
IFFERENTIAL SCANNING CALORIMETRY (DSC)
has
become a
signifi
c a n t a n a l y t i c a l t e c h n i q u e o v e r t h e l a s t 10 y e a r s . B e c a u s e a l m o s t a n y p h y s i c a l or c h e m i c a l changes o c c u r w i t h a change i n e n t h a l p y , a l l c a n b e f o l l o w e d b y c a l o r i m e t r y . S i m i l a r l y , t h e r m a l p r o p e r t i e s t h a t are e x p r e s s e d t h r o u g h e n t h a l p y , e n t r o p y , a n d G i b b s e n e r g y (free e n t h a l p y ) can be evaluated b y calorimetry u s i n g heat capacity a n d heat of tran s i t i o n m e a s u r e m e n t f r o m 0 Κ to the t e m p e r a t u r e i n q u e s t i o n . A l t h o u g h c a l o r i m e t r y p l a y s a m a j o r r o l e a m o n g a n a l y t i c a l t e c h n i q u e s , i t has s t i l l not r e a c h e d its l i m i t . T h e i n i t i a l s e c t i o n o f t h i s c h a p t e r d i s c u s s e s t h e history of the d e v e l o p m e n t of calorimetry a n d includes a listing of m o d e r n D S C apparatus. 0065-2393/83/0203-0195$06.00/0 © 1983 A m e r i c a n C h e m i c a l Society
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
196
POLYMER CHARACTERIZATION
T h e m a i n portion of this chapter concentrates o n the a p p l i c a t i o n o f D S C to heat capacity m e a s u r e m e n t s o f flexible linear mac r o m o l e c u l e s , o u r m a i n r e s e a r c h i n t e r e s t . U l t i m a t e l y , w e h o p e to d e r i v e a n a d d i t i o n s c h e m e that permits the p r e d i c t i o n of heat capacities of m a c r o m o l e c u l e s w i t h the h e l p of a series of tables of group c o n t r i b u t i o n s . D i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y i n s t r u m e n t a t i o n is d e s c r i b e d b y u s i n g a c o m p a r i s o n o f d i f f e r e n t D S C e q u i p m e n t a p p l i e d to l o w temperature heat capacity measurements. I n a d d i t i o n , heat capacities of poly(acrylate)s a n d p o l y (methacrylate) s i n the t e m p e r a ture range 2 2 0 - 5 0 0 Κ ( m e t h y l , e t h y l , η-butyl, i s o b u t y l , a n d o c t a d e c y l acrylates a n d m e t h y l , e t h y l , η-butyl, i s o b u t y l , d o d e c y l , a n d o c t a d e c y l m e t h a c r y l a t e s ) a r e p r e s e n t e d . T h e s e d a t a are u s e d a l o n g w i t h l i t e r a ture data o n polyacrylates, polymethacrylates, a n d polyalkenes [poly ethylene (PE), polypropylene (PP), polybutene-1 (PBu), polypentene-1 (PPe), polyhexene-1 ( P H e ) , poly(4-methyl-l-pentene) ( P 4 M 1 P ) , a n d p o l y i s o b u t y l e n e (PIB)] to study the heat capacity c o n t r i b u t i o n s d u e to t h e s i d e g r o u p s . T h i s p r e s e n t s a n o v e r v i e w o f t h e u t i l i t y o f D S C u s i n g the e x a m p l e of heat capacity of l i n e a r m a c r o m o l e c u l e s cover i n g history, instrumentation, data, a n d data treatment.
History
and
List
of
Instruments
C a l o r i m e t r y has t w o h a n d i c a p s that h a v e i m p e d e d its a p p l i c a t i o n . T h e f i r s t is t h e l a c k o f p e r f e c t i n s u l a t o r s . T h e h e a t t o b e m e a s u r e d c a n n o t b e c o n t a i n e d ; i t i s a l w a y s i n flux, so t h a t l o s s c o n t a i n m e n t a n d l o s s c a l c u l a t i o n s a r e b a s i c t o c a l o r i m e t r y . T h e s e c o n d h a n d i c a p is t h e lack o f a d i r e c t heat m e t e r . A l l c a l o r i m e t r y is d o n e i n d i r e c t l y , e i t h e r b y c o m p e n s a t i o n (e.g., b y e l e c t r i c a l h e a t i n g o r c o o l i n g i n c a s e o f e n d o t h e r m s o r e x o t h e r m s ) , o r b y d e t e r m i n a t i o n o f s e c o n d a r y e f f e c t s (e.g., the m e a s u r e m e n t of temperature rise). D i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y has its roots i n t w i n c a l o r i m e t r y ( 1 , 2 ) w h i c h w a s d e v e l o p e d to m i n i m i z e the heat loss p r o b l e m . N e x t was the d e v e l o p m e n t of c o n s t a n t h e a t i n g r a t e c a l o r i m e t e r s (3) t h a t a l l o w e d r a p i d m e a s u r e m e n t over a large temperature range w i t h o u t the n e e d of frequent e q u i l i b r a t i o n a n d l o s s c a l i b r a t i o n . T h e f i r s t t w i n c a l o r i m e t e r o p e r a t i n g at c o n s t a n t h e a t i n g r a t e w a s d e s c r i b e d i n 1 9 6 0 (4). T h e n e x t s t e p i n t h e development i n v o l v e d invention and commercialization of a modern d i f f e r e n t i a l s c a n n i n g c a l o r i m e t e r for m i l l i g r a m - s i z e d s a m p l e s b a s e d on temperature sensing a n d electronically regulated heating of the r e f e r e n c e a n d s a m p l e ( P e r k i n - E l m e r ) (5). C u r r e n t l y a v a r i e t y o f a d d i t i o n a l D S C i n s t r u m e n t s are a v a i l a b l e c o m m e r c i a l l y . A n u m b e r o f D S C s i n v o l v e h e a t i n g b y flux t h r o u g h a c o n t r o l l e d l e a k . T h e t e m p e r ature m e a s u r e m e n t c a n be d o n e b y t h e r m o c o u p l e (du Pont) b y thermopile (temperature difference) (Mettler), a n d b y resistance
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
11.
wuNDERLiCH A N D G A U R
Differential
Scanning
Calorimetry
197
t h e r m o m e t e r (Heraeus*). A d d i t i o n a l variations i n v o l v e t h e c a p a b i l i t y to a d d e l e c t r i c a l c a l i b r a t i o n h e a t p u l s e s ( N e t z s c h ) . F i n a l l y , t h e r e i s a D S C based o n measurement o f heat flux u s i n g m u l t i p l e thermocouple arrangements (Setaram ). 2
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
A l l these i n s t r u m e n t s o f D S C are c a p a b l e o f m e a s u r e m e n t rates o f u p to 5 0 K / m i n a n d m a y r e a c h a p r e c i s i o n i n h e a t c a p a c i t y as h i g h as 0 . 5 % . B e c a u s e o f fast h e a t i n g r a t e s , i t i s n o t o n l y p o s s i b l e t o m e a s u r e e q u i l i b r i u m f u n c t i o n s o f state, b u t i t i s a l s o p o s s i b l e t o s t u d y m e t a s t a b l e a n d u n s t a b l e states. T h e l a t t e r i s o f k e y i m p o r t a n c e t o e s t a b l i s h information o n t h e r m a l , m e c h a n i c a l , a n d perhaps also electrical his t o r y (6).
Instrumentation W e have m e a s u r e d the heat capacity of m o l t e n s e l e n i u m from 500—700 Κ u s i n g the three c o m m e r c i a l , w i d e l y available D S C s ( M e t t l e r T A 2 0 0 0 , d u P o n t 9 9 0 , P e r k i n - E l m e r D S C - 2 ) (7). A l l t h r e e D S C s r e p r o d u c e d adiabatic calorimetry data to w i t h i n 3%. U s i n g a c o m p u t e r c o u p l e d D S C , t h e accuracy o f the heat capacity c o u l d b e i m p r o v e d f u r t h e r t o b e t t e r t h a n 1 % (8). Continuing our comparison of commercial instruments, the suba m b i e n t accessories for M e t t l e r T A 2000, d u P o n t 990, a n d P e r k i n E l m e r D S C - 2 w e r e u s e d for heat capacity measurements o f p o l y m e r s , extending the temperature range o f measurements d o w n to l i q u i d nitrogen temperatures. T h e d u P o n t 9 9 0 l i q u i d n i t r o g e n a c c e s s o r y i s l i m i t e d i n its d e s i g n . It c o n s i s t s o f a s m a l l c o o l e r (~ 1 5 0 m L ) t h a t i s p l a c e d o v e r t h e D S C c e l l assembly a n d f i l l e d w i t h l i q u i d nitrogen to cool the c e l l assembly. T h e cooling of t h e c e l l is slow a n d uncontrolled, p r e c l u d i n g p r e c i s i o n m e a s u r e m e n t s o n c o o l i n g . A l s o , t h e i s o t h e r m at l i q u i d n i t r o g e n t e m perature is not f u l l y stable. T h e P e r k i n - E l m e r l i q u i d nitrogen accessory consists o f a tank (—4.5 L ) t h a t i s f i l l e d w i t h l i q u i d n i t r o g e n . T h i s a l l o w s f o r fast, c o n t r o l l e d c o o l i n g o f t h e s a m p l e h o l d e r s . C o o l i n g rates o f as m u c h as 8 0 K / m i n are possible. T h e baseline is quite good. H o w e v e r , isotherms are u n s t a b l e a n d s h o w s i g n i f i c a n t drifts, c a u s e d b y t h e c o n t i n u o u s change of the l i q u i d nitrogen l e v e l . T h e M e t t l e r T A 2000 is e q u i p p e d w i t h a sophisticated c o o l i n g system for the c e l l . T h e furnace is fitted w i t h a heat exchanger for c o o l i n g . T h e l i q u i d n i t r o g e n coolant is stored i n a separate tank. A n e v a p o r a t o r ( h e a t i n g e l e m e n t ) i n t h e l i q u i d n i t r o g e n c o n t r o l s t h e flow Heraeus, W. C , G m b H , Postfach 169, 6450 Hanau 1, Federal Republic of Ger many. 1
2
Setaram, 101-103 rue de Sexe, 69451 Lyon, Cedex 3, France.
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
198
POLYMER CHARACTERIZATION
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
o f c o o l a n t to t h e heat e x c h a n g e r . T h e e l e c t r i c h e a t i n g a n d t h e c o o l i n g w i t h l i q u i d n i t r o g e n are separately c o n t r o l l e d . T h e r e f e r e n c e a n d the s a m p l e pans are p l a c e d o n the t h i n - f i l m sensors. S o m e d i f f i c u l t i e s w e r e e n c o u n t e r e d d u e to p o o r c o n t a c t s b e t w e e n t h e p a n s a n d t h e s e n s o r s . A g i v e n s c a n w a s f o u n d to b e r e p r o d u c i b l e t o w i t h i n ± 1 / x V i f the p a n was kept i n place. H o w e v e r , i f the pans w e r e r e m o v e d a n d r e p l a c e d r a n d o m l y on the sensor, the signal r e p r o d u c i b i l i t y was m u c h p o o r e r ( ± 1 2 μ,ν). T h i s p r o b l e m w a s a v o i d e d b y u s i n g g o l d p a n s t h a t are m a d e u p o f h e a v i e r m e t a l sheet, w h i c h r e s u l t e d i n m o r e u n i f o r m contact b e t w e e n the pans a n d the sensor. T h e e r r o r i n h e a t c a p a c i t y m e a s u r e m e n t s at l i q u i d n i t r o g e n t e m peratures u s i n g the P e r k i n - E l m e r a n d the M e t t l e r instruments on A 1 0 a n d P M M A ( u s i n g b e n z o i c a c i d as s t a n d a r d a r e s u m m a r i z e d below: 2
3
Perkin-Elmer Temp (K) 150 200 250
A1 0 2
±7
PMMA (%) ±5
±3 ±1
±2 ±2
3
(%)
Mettler Al O 2
(%)
s
PMMA
(%)
+3
±2
±2 ±2
±2 ±2
T h e s e data a n d the general d e s c r i p t i o n indicate that l o w temperature heat c a p a c i t y m e a s u r e m e n t s are p o s s i b l e w i t h a l l t h r e e i n s t r u m e n t s w i t h o n l y s l i g h t l y r e d u c e d a c c u r a c y , b u t i t i s n e c e s s a r y to u s e c o n s i d erably more care i n a v o i d i n g spurious temperature gradients. Heat capacity measurements were made w i t h a computer c o u p l e d P e r k i n - E l m e r D S C - 2 , fitted w i t h t h e m o r e r e p r o d u c i b l e i n t r a c o o l e r at a p p r o x i m a t e l y 2 0 0 Κ t o r e a c h t h e p r e c i s i o n n e e d e d f o r o u r data bank. T h i s use of m e c h a n i c a l refrigeration limits the l o w temper ature. D e t a i l s of the instrumentation, calibration, a n d computations a r e g i v e n i n R e f e r e n c e 8.
Results T h e acrylic polymers u s e d i n this study were secondary standards obtained from Scientific Polymer Products, Inc. T h e molecular w e i g h t s p r o v i d e d b y t h e m a n u f a c t u r e r s are l i s t e d i n T a b l e I . T h e manufacturers provided P M - 1 , P M - 2 , P M - 4 i , and P M - 1 8 i n granular form. A l l the other acrylic polymers have T values b e l o w room t e m p e r a t u r e . F o r e a s e o f h a n d l i n g t h e s e s a m p l e s w e r e p r o v i d e d as 4 0 % s o l u t i o n i n t o l u e n e a n d w e r e l a t e r d r i e d i n v a c u u m at 3 3 0 — 3 5 0 Κ f o r 24—48 h . E a c h s a m p l e (10—25 mg) was transferred i n t o a h e r m e t i c a l l y s e a l e d p a n for heat c a p a c i t y m e a s u r e m e n t s . A l l t h e m e a s u r e m e n t s w e r e d o n e o n h e a t i n g at 1 0 - 2 0 K / m i n a n d A 1 0 w a s u s e d as r e f e r e n c e g
2
3
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
11.
Differential
WUNDERLICH AND GAUR
Scanning
199
Calorimetry
T a b l e I, Characterization of P o l y m e r s
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
Polymer
Abbreviation
P o l y ( m e t h y l acrylate) P o l y ( e t h y l acrylate) P o l y ( n - b u t y l acrylate) P o l y ( i s o b u t y l acrylate) Poly(octadecyl acrylate) Poly(methyl methacrylate) Poly(ethyl methacrylate) Poly(n-butyl methacrylate) Poly(isobutyl methacrylate) Poly(dodecyl methacrylate) Poly(octadecyl methacrylate)
PA-1 PA-2 PA-4 PA-4i PA-18 PM-1 PM-2 PM-4 PM-4i PM-12 PM-18
M
w
M /M w
n
3.2 3.2 3.6 3.7 1.8 1.82 2.7 4.4 2.14 1.5 6.9
200,000 125,000 119,000 116,000 23,300 60,000 340,000 320,000 300,000 113,000 671,000
m a t e r i a l . T h e a v e r a g e d a t a o f t w o to f i v e m e a s u r e m e n t s ( w i t h i n ± 1 % ) are l i s t e d i n T a b l e s I I a n d I I I .
Discussion T h e n e w l y measured heat capacities of acrylic polymers s h o w n i n T a b l e s II a n d III have b e e n c o m b i n e d w i t h the literature data ( m a i n l y at l o w t e m p e r a t u r e s ) o n t h e s a m e a c r y l i c p o l y m e r s to d e r i v e a set o f r e c o m m e n d e d d a t a f o r e a c h a c r y l i c p o l y m e r (9). T h e s e r e c o m m e n d e d data, w h i c h n o w c o v e r a w i d e r range t h a n the data r e p o r t e d here, have b e e n u s e d to d e r i v e t h e h e a t c a p a c i t y c o n t r i b u t i o n o f t h e C H g r o u p o n the C - C backbone a n d the contribution of a C H group i n the side c h a i n [ ( C H ) C H to ( C H ) C H ] b e l o w a n d a b o v e t h e g l a s s t r a n s i t i o n . D a t a are g i v e n i n T a b l e s I V — V I I . T h e s e c o n t r i b u t i o n s h a v e a l s o b e e n d e r i v e d for p o l y p r o p y l e n e (10), p o l y b u t e n e (11), p o l y p e n t e n e (11), p o l y h e x e n e (11), a n d p o l y i s o b u t y l e n e ( I I ) . A l s o l i s t e d i n t h e s e t a b l e s a r e t h e c o r r e s p o n d i n g d a t a o n p o l y e t h y l e n e (12). H e a t c a p a c i t y c o n t r i butions of the C O O - group i n polyacrylates a n d polymethacrylates have also b e e n d e r i v e d b y t a k i n g the difference i n heat capacity c o n tribution b e t w e e n the acrylic p o l y m e r a n d the corresponding p o l y a l k e n e . T h e s e d a t a b e l o w a n d a b o v e t h e g l a s s t r a n s i t i o n are l i s t e d i n Tables VIII and IX. 3
2
2
3
2
1 7
3
T h e d i s c u s s i o n o f these g r o u p c o n t r i b u t i o n s is d o n e i n stages. F i r s t , w e l o o k at t h e t h e o r e t i c a l f e a s i b i l i t y o f a n a d d i t i o n s c h e m e f o r l i n e a r m a c r o m o l e c u l e s a n d t h e n , the p o s s i b l e e m p i r i c a l extensions are analyzed. A detailed d i s c u s s i o n of the heat capacities of l i n e a r macr o m o l e c u l e s has r e v e a l e d t h a t , b e c a u s e o f t h e c h e m i c a l n a t u r e o f t h e molecules, the vibrational spectrum c a n be separated into group a n d s k e l e t a l v i b r a t i o n s (13). F u r t h e r m o r e , t h e s k e l e t a l v i b r a t i o n s are largely intramolecular i n nature because of the strong b o n d i n g along
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
200
POLYMER CHARACTERIZATION
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
T a b l e I I . H e a t Capacity of Poly(acrylate)s T(K)
PA-1
PA-2
PA-4
PA-4i
PA-18
220 230 240 250 260 270
90.4 93.3 96.0 98.9 102.1 105.5
114.3 119.0 123.6 130.2 153.7 173.9
174.7 217.6 221.5 221.1 223.5 224.9
156.0 163.0 171.5 197.2 223.9 223.2
449.6 476.7 505.0 535.6 570.0
280 290 300 310 320 330
110.5 124.2 153.6 153.6 155.1 156.3
175.2 177.1 178.9 180.7 182.4 184.5
227.5 230.2 232.7 235.5 238.3 241.7
226.0 229.0 232.1 235.1 238.1 241.5
579.7
340 350 360 370 380 390
158.3 160.2 161.3 162.7 163.9 165.1
187.7 190.2 191.9 193.9 195.8 197.7
246.0 249.3 252.1 255.6 258.4 261.8
245.0 248.3 251.6 255.2 258.5 261.2
694.3 703.5 708.5 718.3 728.4 738.4
400
168.3
200.1
265.4
410 420 430 440 450
170.4 172.6 174.8 175.3 175.6
202.3 204.5 206.2 208.6 211.6
270.1 273.4 275.7 277.3
265.8 273.1 275.1 276.2 277.4 284.4
758.9 769.8 771.9 792.8 802.4
460 470 480 490 500
178.5 179.8 181.1 182.9 183.8
213.5 215.9 219.1 220.8 222.5
278.6 287.0 293.0 295.8 300.3
804.5 814.7 824.4 830.9 843.2
— — — — —
747.1
Note: Heat capacity measurements are given in J m o l K . - 1
_ 1
t h e b a c k b o n e c h a i n o f t h e m o l e c u l e . O n l y at t e m p e r a t u r e s b e l o w about 40 Κ is the i n f l u e n c e of the i n t e r m o l e c u l a r skeletal v i b r a t i o n s o n the heat capacity dominant. T h u s , a m o d e l of l i n e a r m a c r o m o l e c u l e s b a s e d o n this analysis is that of a string o f b e a d s . E a c h b e a d has the mass o f the r e p e a t i n g u n i t (or s i n g l e b a c k b o n e c h a i n a t o m u n i t ) a n d i s c o u p l e d s t r o n g l y i n t h e chain direction. E a c h string of beads is, however, only w e a k l y c o u p l e d w i t h its n e i g h b o r s t r i n g s . S u b t r a c t i n g t h e c o n t r i b u t i o n o f t h e group vibrations leaves the heat capacity of an assembly of structure l e s s b e a d s . B e c a u s e at l e a s t a l l c a r b o n b a c k b o n e m a c r o m o l e c u l e s h a v e
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
11.
wuNDERLiCH A N D G A U R
Calorimetry
201
the same b o n d i n g b e t w e e n beads a n d have also similar
geometry,
Differential
Scanning
their intramolecular heat capacities must be related. T h i s relationship was established (13) u s i n g a one-dimensional D e b y e function D
x
with
a ^ - t e m p e r a t u r e p r o p o r t i o n a l to t h e i n v e r s e o f t h e mass o f t h e o n e carbon backbone b e a d ( M ) . B y taking the ratio of M
c
c
to the p o l y e t h y l
ene mass ( 1 4 g/mol) the u n i v e r s a l e q u a t i o n is w r i t t e n b y u s i n g the polyethylene ^-temperature 5 4 0 Κ C
= D
x
[540 (14/Me) ' } 1
(1)
2
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
for t h e i n t r a m o l e c u l a r s k e l e t a l h e a t c a p a c i t y . Table I I I . H e a t Capacity of Poly(methacrylate)s T(K)
PM-1
PM-2
PM-4
PM-12
PM-4i
220
PM-18
398.1
455.2
230
108.9
132.5
182.7
173.6
467.5
482.9
240
112.8
137.5
192.5
181.5
574.4
514.0
250
116.5
142.3
200.5
188.6
740.0
554.0
260
120.2
147.0
208.8
195.0
525.8
608.2
270
124.5
151.5
218.1
201.6
498.0
280
128.3
157.7
231.7
207.6
499.3
290
132.2
162.0
246.3
217.8
504.5
300
135.9
167.5
259.1
228.5
509.9
310
140.1
172.9
267.5
240.0
516.2
320
143.8
179.9
273.6
255.1
523.2
330
147.7
189.1
277.5
267.4
532.5
340
151.1
201.8
282.8
278.2
541.7
730.5
350
156.3
215.2
288.1
286.9
549.4
741.1
360
161.4
226.1
294.2
290.4
556.7
749.1
370
167.8
230.0
300.5
293.5
565.2
759.0
233.5
720.1
380
180.4
306.1
293.8
572.6
766.8
390
204.3
304.9
295.4
578.1
775.5
400
207.5
311.4
302.5
582.5
410
209.2
313.7
801.9 813.3
789.7
420
212.2
318.5
430
214.8
323.2
825.4
440
217.9
329.1
831.2
450
220.9
337.7
839.5
460
223.6
470
226.2
873.3
480
228.9
890.1
490
231.4
903.0
500
234.4
857.0
913.7
Note: Heat capacity measurements are in J m o l K . - 1
- 1
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
202
POLYMER CHARACTERIZATION
Table IV. Heat Capacity Contribution of C H Group on C - C Backbone Polymers B e l o w the Glass Transition Polyacrylates Polyalkenes 3
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
T(K)
I
II»
a
40 80 120 160 200 240 280 320 360 400 440
2.0 3.2 5.7 8.6 13.0 18.2
7.1 10.6 14.6 18.8
III
e
6.1 8.9 11.9 15.2
IV
d
9.7
V
VI
e
VII
f
s
0.6 2.8 7.1 12.2 16.7
3.8 5.3 9.2 12.7 16.5 19.4 22.0 27.9 32.8 30.6 27.1
2.2 4.0 8.2 12.5 16.6
CH
2
3.2 7.8 10.2 13.5 15.6 17.9 20.6 23.0 26.5 34.1 42.7
Note: Heat capacity measurements are in J m o l K . C (PM-1) - C (PA-1); error ± 0.4-2.6 J m o ^ K " . C (PM-2) - C (PA-3); error ± 1.2-2.8 I m o ^ K " . C (PM-4) - C (PA-4); error ± 0.6-3.8 I m o l " ^ . C (PM-4i) - C (PA-4i) error ± 3.6 J m o l ^ K " . C (PP) - 2C (PE); error ± 0.2-2.2 I m o ^ K " . ' C (PIB) - C (PE); error ± 0.2-1.2 I m o ^ K " . [C (PIB) - 2C (ΡΕ)] - 2; error ± 0.2-0.6 I m o ^ K " . - 1
a b
c
p
p
p
p
p
d e
9
1
1
1
1
p
p
p
p
P
p
p
p
;
1
1
1
1
P
1
T h e intermolecular skeletal contribution is not additive, b u t has to b e d e t e r m i n e d b y m e a s u r e m e n t at l o w t e m p e r a t u r e ( t h r e e - d i m e n sional D e b y e function). T h e development of a reliable technique of l o w t e m p e r a t u r e h e a t c a p a c i t y m e a s u r e m e n t , p r e f e r a b l y t o at l e a s t 10 Κ as d i s c u s s e d p r e v i o u s l y , is thus o f k e y importance. A u s e f u l c o m b i n a t i o n of the i n t r a m o l e c u l a r a n d i n t e r m o l e c u l a r skeletal heat capacities is p o s s i b l e u s i n g t h e T a r a s o v e q u a t i o n (13). B a s e d o n this analysis i t s h o u l d b e p o s s i b l e to d e v e l o p a n a d d i t i o n s c h e m e o f heat capacities that covers t h e i n t r a m o l e c u l a r skeletal v i brations a n d the group vibrations based o n a single atom backbone chain bead. A n initial attempt of such a n addition scheme s h o w e d p r o m i s i n g r e s u l t s (14). T h e t e m p e r a t u r e r a n g e o f s u c h s i m p l e a n a l y s i s is e s t i m a t e d to r e a c h f r o m 4 0 Κ to t h e glass t r a n s i t i o n o r t h e m e l t i n g transition. Strict correlation b e t w e e n vibrational frequencies a n d heat c a p a c i t i e s e x i s t s o n l y f o r t h e h e a t c a p a c i t i e s at c o n s t a n t v o l u m e . H e a t c a p a c i t i e s at c o n s t a n t p r e s s u r e d e v i a t e a b o v e 1 5 0 - 2 0 0 Κ i n c r e a s i n g l y f r o m t h e h e a t c a p a c i t y at c o n s t a n t v o l u m e . W i t h i n a r e a s o n a b l e t e m perature range the d e v i a t i o n is, however, proportional to the square o f t h e h e a t c a p a c i t y i t s e l f w i t h a n a l m o s t u n i v e r s a l c o n s t a n t (15). T h e r e fore, t h e a d d i t i o n s c h e m e s h o u l d also a p p l y t o heat capacities at c o n stant p r e s s u r e u p t o a p p r o x i m a t e l y 4 0 0 — 5 0 0 K . T h e e a r l y a d d i t i o n
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
11.
wuNDERLicH A N D G A U R
S Ο
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
•a
Differential
Scanning
Calorimetry
d d © q ^ d i > d ' - H c o oqcocococococo^^
S
0 ( M CO l p
^
oq oq oq co
^
ο oo i n oq
*
ce
OCOCCOŒ>iO'-jl> ^ d d «-H d d ci oqoqoqcocococo^^
© i n σ> co oo co d t> i n oq CO ^ ΙΟ CD
00 0 5 οο ιή CO CO ."o S
1
1ι
Η Ι Ο QO Η d d oq d CO CO ^
•Ξ I I I Φ ^ ^ ς ο
Ο ft* cS+l+l+lggS^g oq
^
^
η
λ
η
H tî I f
®
CO CO
oq oq oq oq co
^
Î
Y'' ^
M ft ^oo" I g^cq^^rn I
~
te S S S S ^ prS E
>
o o o o o o o o o c o o ^ o o o q c D O ^ o o o q c o c o c o ^ ^ i o i o m
^
a
&
&
a, a
a
a
Η
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
203
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
p
19.4
23.2
240
280
p
23.3
18.7
14.1
10.6
IP
21.6
16.7
12.4
9.2
IIP
- 1
1
1
1
31.6
27.8
24.0
20.2
16.1
12.0
11.6
IV
1
of - C H
1
2
h
9
f
e
d
c
b
1
1
1
1
Note: Heat capacity measurements are in J m o l ^ K . « C (PM-1) - Cp (PM Acid); error ± 0.4-3,2 J m o l ^ K " . Cp (PA-2) - Cp (PA-1); error ± 1.4-1.8 J πιοΗΚ" . [Cp (PA-4) - C (PA-1)] - 3; error ± 1.4-3.0 J m o l ^ K ' . Cp (PM-2) - Cp (PM-1); error ± 1.2-3.6 J m o l ^ K r . [Cp (PM-4) - Cp (PM-1)] Η- 3; error ± 1.6-4.4 J m o l ^ K . Cp (PBu) - Cp (PP); error ± 0.2-1.6 J m o l ^ K " . [Cp (PPe) - Cp (PP)] - 2; error + 1.0 J m o ^ K " . [Cp (PHe) - Cp (PP)] - 3; error ± 0.2-0.8 J m o l " * ^ .
320
13.8
16.1
160
200
10.8
13.0
80
120
5.0
P
Polyacrylates
Heat Capacity Contribution
40
Τ (Κ)
Table VI.
31.0
26.6
17.9 22.3
13.4
10.2
e
V
26.4
20.8
16.6
13.3
9.8
4.7
VP
20.1
VIP
21.5
16.7
12.9
9.1
4.6
VHP
Polyalkenes
G r o u p i n the S i d e C h a i n B e l o w the G l a s s
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
2
23.0
20.6
17.9
15.6
13.5
10.9
7.8
3.2
CH
Transition
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
/
a
p
p
35.5
37.7
460
500
p
p
p
p
p
p
33.8
31.6
29.3
27.1
IP
38.8
36.9
35.1
33.2
31.4
IIP
30.4
IV
_ 1
1
_ 1
1
1
36.4
33.1
e
V
1
1
1
1
1
1
1
33.7
31.8
k
j
1
h
9
e
d
c
b
p
p
p
p
p
p
p
p
p
p
p
p
p
p
1
1
1
1
33.5
VIP
39.7
37.6
35.5
33.8
VHP 1
2
41.3 43.0
37.9
37.8
36.1
34.5
32.6
30.9
20.2
CH
36.6
27.2
XP
39.5
39.4
36.6
33.7
30.9
28.0
25.1
s
X
35.3
33.9
32.6
31.3
30.0
28.7
27.3
ÎX
Polyalkenes
G r o u p i n the Side C h a i n A b o v e the Glass Transition
VP
2
Note: Heat capacity measurements are in J m o l K . C (PA-2) - C (PA-1); error ± 3.6-4.4 J m o l ^ K " . [C (PA-4) - C (PA-1)] + 3; error ± 1.6-1.8 J m o ^ K " . [C (PA-18) - C (PA-1)] -f- 17; error ± 0.4-1.0 J m o l ^ K r . C (PM-2) - C (PM-1); error ± 4.5 J m o ^ K " . [C (PM-4) - C (PM-1)] + 3; error ± 2.0-2.2 J m o l " ^ . [C (PM-6) - C (PM-1)] - 5; error ± 1.4-1.6 J m o l " ^ . [C (PM-12) - C (PM-1)] - 11; error ± 1.0 J m o ^ K " . [C (PM-18) - C (PM-1)] 17; error ± 1.0 J m o l ^ K r . C (PBu) - C (PP); error ± 2.2-2.4 J m o ^ K " . [C (PPe) - C (PP)] 4- 2; error ± 1.4-2.0 J m o ^ K " . [C (PHe) - C (PP)] -h 3; error ± 1.0 J m o l " ^ .
580
540
31.2
33.4
380
29.1
340
420
26.9
300
260
T(K)
ja
Table V I I . Heat Capacity Contribution of - C H Polyacrylates
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
206
POLYMER CHARACTERIZATION
Table VIII. Heat Capacity Contribution of C O O - i n the Side C h a i n B e l o w the Glass Transition VIP VP V T(K) Ρ IV IIP IP e
40 80 120 160 200 240 280
6.2 15.6 22.2 28.3 33.8 39.0 44.3
23.2 29.5 33.6 36.9 40.2
17.6 25.1 31.8 38.9
23.4 28.0 33.7 37.1
26.7 31.1 34.7 37.2
54.2
Note: Heat capacity measurements are in J mol *K *. C (PM-Acid) - C (PP); error ± 0.2-2.2 J m o ^ K " . C (PM-1) - C (PIB); error ± 0.4-2.0 J m o l " ^ . C (PA-1) - C (PP); error ± 0.8-2.0 J m o ^ K " . C (PA-2) - C (PBu); error ± 1.4-2.4 J m o ^ K " . C (PA-4) - C (PHe); error ± 1.4-3.0 J m o ^ K " . ' C (PA-4Ï) - C (P4M1P); error ± 3.4 J m o l " ^ . Heat capacity of main chain C O O — from Reference 21. a
p
6
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
10.6 23.6 28.0 29.9 33.2
c
d e
1
p
p
1
p
1
p
p
p
p
p
p
p
1
1
1
1
p
1
9
s c h e m e has b o r n e o u t t h i s a n a l y s i s (14). A s t h e a n a l y s i s o f t h e c u r r e n t l y d e v e l o p e d s e t o f r e c o m m e n d e d d a t a i s c o m p l e t e d (9-12), a n exp a n d e d a n d i m p r o v e d set o f tables w i l l b e presented. I n the meantime, two e m p i r i c a l extensions of the addition scheme are a t t e m p t e d . T h e f i r s t d e a l s w i t h l i q u i d s (16) i n s t e a d o f s o l i d s . I n t h e l i q u i d state, h e a t c a p a c i t i e s a r e n o t o n l y c a u s e d b y v i b r a t i o n s , b u t h a v e considerable potential energy contributions. Reasonable additivity c a n b e e s t a b l i s h e d as l o n g as t h e i n c r e a s e i n h e a t c a p a c i t y at t h e g l a s s transition temperature was normal. T h e data o f Tables V , V I I , a n d I X reaffirm this finding. T h e second extension o f the addition scheme is tested i n Tables I V — I X . H e r e w e try e m p i r i c a l l y to establish t h e heat capacity c o n t r i butions of side-chain groups (disregarding the changes i n the nonadditive contributions to the i n t r a m o l e c u l a r skeletal heat capacity). S u c h Table IX. Heat Capacity Contribution of C O O - i n the Side C h a i n Above the Glass Transition IIP T(K) Ρ IP 260 300 340 380 420 460 500
73.5
Note: Heat capacity C (PM-1) - C C (PA-1) - C C (PA-2) - C C (PA-4) - C α b
c
d
p
p
p
p
p
p
p
p
60.6 61.9 63.2 64.4 65.7 67.0 68.3
64.6 65.0 65.4 65.9
measurements are in J mol *K . (PIB); error ± 4.0 J m o l ^ K " . (PP) error ± 3.2-3.6 J m o H K " . (PBu); error ± 3.4-4.4 J m o l ^ K " . (PHe); error ± 4.4 J m o l ^ K " . 1
1
1
;
1
1
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
11.
wuNDERLicH A N D G A U R
Differential
Scanning
Calorimetry
207
a n a p p r o a c h s h o u l d b e s u c c e s s f u l for l o n g s i d e c h a i n s , w h i c h a g a i n a p p r o a c h the case o f i s o l a t e d c h a i n s , b u t is less s u c c e s s f u l for short side chains w h e r e the b a c k b o n e b e a d change i n mass on substitution o f a s i d e c h a i n is i m p r o p e r l y a c c o u n t e d for. Before d i s c u s s i n g T a b l e s I V - I X it m u s t be r e m a r k e d that the e r r o r l i m i t s o f t h e v a r i o u s t a b l e e n t r i e s v a r y as g i v e n i n t h e f o o t n o t e s to the tables. T h e error l i m i t s are e s t i m a t e d u s i n g a 2 % error i n the heat capacities of the parent data. T h u s , the error b e c o m e s m u c h larger i f the d i f f e r e n c e i n heat c a p a c i t y n e e d e d for t h e g i v e n g r o u p is m u c h smaller than the m e a s u r e d heat capacities of the parent polymers. T a k i n g these error l i m i t s into account, one finds that the C H g r o u p c o n n e c t e d to the c a r b o n b a c k b o n e s u b s t i t u t e d for a h y d r o g e n (i.e., i n s e r t i n g a C H b e t w e e n a C - H b o n d ) s h o w s c o n t r i b u t i o n s t o t h e h e a t c a p a c i t y t h a t a r e n o t far f r o m t h o s e o f C H g r o u p s , i n c l u d i n g s k e l e t a l v i b r a t i o n s . T h e c a u s e o f t h e v a r i o u s d e v i a t i o n s is n o t o b v i o u s at p r e s e n t a n d n e e d s m o r e s t u d y i n l i g h t o f t h e f u l l y d e v e l o p e d a d d i t i o n s c h e m e . T h e l i q u i d C H g r o u p data fit a g e n e r a l a d d i t i o n s c h e m e better t h a n the data for the glass. I n t h i s case a l l s k e l e t a l v i b r a t i o n s c a n b e a s s u m e d to b e e x c i t e d g i v i n g t h e r e a s o n for the b e t t e r a g r e e m e n t . T h e change i n heat capacity, u p o n introduction of additional C H groups into the side c h a i n , is l i s t e d i n T a b l e s V I a n d V I I a n d s h o w s e v e n c l o s e r a d h e r e n c e to a d d i t i v i t y w i t h t h e l i q u i d d a t a a p p r o a c h i n g e x p e r i m e n t a l a c c u r a c y . A g a i n , a g r e e m e n t i n t h e l i q u i d state i s b e t t e r t h a n i n t h e g l a s s y state. T h e h e a t c a p a c i t y c o n t r i b u t i o n s d u e to C O O l i s t e d i n T a b l e s V I I I a n d I X also s h o w that the data are a d d i t i v e w i t h i n the e x p e r i m e n t a l error limits. T h e i r d e v i a t i o n from the heat capacity c o n t r i b u t i n g ester groups i n the m a i n c h a i n also seems small.
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
3
2
2
3
2
Conclusions D i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y is one of the b a s i c a n a l y s i s t e c h n i q u e s . W i t h m o d e r n i n s t r u m e n t a t i o n , a c c u r a c i e s c l o s e to c l a s s i c a l c a l o r i m e t r y c a n b e r e a c h e d . L o w t e m p e r a t u r e o p e r a t i o n to a b o u t 150 Κ i s p o s s i b l e w i t h o n l y s l i g h t l y r e d u c e d p r e c i s i o n . T h e n e w d a t a o n polyacrylate a n d p o l y m e t h a c r y l a t e heat capacities s h o w that the prior established heat capacity a d d i t i o n scheme of m a c r o m o l e c u l a r s o l i d s , w h i c h is b a s e d o n a n a n a l y s i s o f the v i b r a t i o n a l s p e c t r u m , c a n p r o b a b l y b e e m p i r i c a l l y e x t e n d e d to s i d e g r o u p c o n t r i b u t i o n s a n d a l s o to t h e l i q u i d state. O n t h e b a s i c e x a m p l e o f h e a t c a p a c i t i e s , t h e u s e f u l ness a n d i m p o r t a n c e of D S C is thus i l l u s t r a t e d . Acknowledgments T h i s is a p u b l i c a t i o n f r o m o u r A d v a n c e d T h e r m a l A n a l y s i s L a b o ratory. M a j o r f i n a n c i a l s u p p o r t for t h i s w o r k w a s g i v e n b y t h e N a t i o n a l Science F o u n d a t i o n , P o l y m e r s P r o g r a m D M R 78-15279. T h e l o w
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.
208
POLYMER CHARACTERIZATION
temperature data w e r e d e r i v e d w i t h the h e l p of a n instrument loan b y the M e t t l e r Instrument C o r p o r a t i o n (Princeton, N J ) .
Downloaded by UNIV OF CINCINNATI on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1983 | doi: 10.1021/ba-1983-0203.ch011
Literature Cited 1. Joule, J. P. Mem. ManchesterLit.Phil. Soc. 1845, 2, 559. 2. Pfaundler, L. Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 1 1896, 59, 145. 3. Sykes, C. Proc. R. Soc. London, Ser. A 1935, 148, 422. 4. Mueller, F. H.; Martin, H. Kolloid Z. 1960, 172, 97. 5. Watson, E. S.; O'Neill, M. J.; Justin, J.; Brenner, N. Anal. Chem. 1964, 36, 1233. 6. Wunderlich, B. In "Thermal Analysis in Polymer Characterization"; Turi, E., Ed.; Heyden: New York, 1981. 7. Mehta, Α.; Bopp, R. C.; Gaur, U.; Wunderlich,Β.J.Therm. Anal. 1978, 13, 197. 8. Gaur, U.; Mehta, Α.; Wunderlich, B. J. Therm. Anal. 1978, 13, 71. 9. Gaur, U.; Wunderlich, Β. B.; Wunderlich, B. J. Phys. Chem. Ref. Data, to be published. 10. Gaur, U.; Wunderlich, B. J. Phys. Chem. Ref. Data, to be published. 11. Gaur, U.; Wunderlich, Β. B.; Wunderlich, B. J. Phys. Chem. Ref. Data, to be published. 12. Gaur, U.; Wunderlich, B. J. Phys. Chem. Ref. Data 1981, 10. 13. Wunderlich, B.; Baur, H. Adv. Polym. Sci. 1970, 7, 151. 14. Wunderlich, B.; Jones, L. J. Macromol. Sci., Phys. 1969, 3, 67. 15. Nernst, W.; Lindemann, F. A. Z. Electrochem. 1911, 17, 817. 16. Gaur, U.; Wunderlich, B. Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 1979, 20, 429. RECEIVED for review October 14, 1981. ACCEPTED July 28, 1982.
In Polymer Characterization; Craver, C.; Advances in Chemistry; American Chemical Society: Washington, DC, 1983.