6 Diffusion through Hydrogel Membranes I.
Permeation of Water Through Poly(2-hydroxyethyl methacrylate) and Related Polymers
S. J. WISNIEWSKI, D. E. GREGONIS, S. W. KIM, and J. D. ANDRADE
Downloaded by UNIV OF MINNESOTA on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0031.ch006
Departments of Applied Pharmaceutical Sciences and Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112
H y d r o g e l s a r e known f o r t h e i r u n i q u e p h y s i c a l p r o p e r t i e s and potential biomedical a p p l i c a t i o n s . The t r a n s p o r t phenomena o f some p o l y ( 2 - h y d r o x y e t h y l m e t h a c r y l a t e ) ( p o l y HEMA) membranes have been p r e v i o u s l y i n v e s t i g a t e d (1-4). R a t n e r and M i l l e r {5) have shown t h a t p o l y HEMA membranes have a h i g h p e r m e a b i l i t y t o u r e a due t o i n t e r a c t i o n between t h e s o l u t e and membrane, a n d , i n a d d i t i o n , c o n s i d e r t h e e x i s t e n c e o f p o r e s i n t h e p o l y HEMA g e l s t r u c t u r e , w i t h t h e w a t e r r e g i o n s o f t h e g e l a c t i n g as " p o r e s " for solute transport. R e c e n t l y Chen f o u n d (6_) t h a t t h e a b s o r p t i o n o f w a t e r by d e h y d r a t e d p o l y HEMA was a f u n c t i o n o f c r o s s ! i n k e r c o n t e n t . In h i s s t u d y d i f f u s i o n c o e f f i c i e n t s were c a l c u l a t e d f r o m a b s o r p t i o n k i n e t i c data using F i c k ' s law. Several f a c t o r s i n f l u e n c e the s t r u c t u r e o f h y d r o g e l s and s u b s e q u e n t l y t h e i r d i f f u s i o n c h a r a c teristics. These f a c t o r s i n c l u d e i n i t i a t o r , c r o s s l i n k i n g a g e n t s , c r o s s l i n k e r c o n t e n t , e q u i l i b r i u m w a t e r c o n t e n t and i m p u r i t i e s . Yasuda e t a l . ( 1 , 1 1 ) have u t i l i z e d a t h e o r y , b a s e d on a f r e e - v o l u m e c o n c e p t o f d i f f u s i v e t r a n s p o r t , f o r h y d r a t e d homogeneous membranes. They c o n c l u d e d t h a t t h i s c o n c e p t e x c e l l e n t l y e x p l a i n s t h e d i f f u s i v e t r a n s p o r t p a r a m e t e r s as a f u n c t i o n o f water c o n t e n t over a wide h y d r a t i o n range. In t h i s s t u d y , we have been c o n c e r n e d w i t h v a r y i n g c r o s s l i n k e r c o n c e n t r a t i o n s and w a t e r c o n t e n t . I t i s hoped t h a t t h i s d a t a w i l l p r o v i d e a d d i t i o n a l i n f o r m a t i o n on t h e b a s i c t r a n s p o r t mechanisms f o r w a t e r i n d i f f e r e n t g e l s y s t e m s and on t h e r o l e o f water i n the transport of other s o l u t e s . Experimental H y d r o x y e t h y l m e t h a c r y l a t e was o b t a i n e d as a g i f t f r o m Hydron L a b o r a t o r i e s (New B r u n s w i c k , New J e r s e y ) and was used w i t h o u t a d d i t i o n a l p u r i f i c a t i o n . M e t h o x y e t h y l m e t h a c r y l a t e and m e t h o x y e t h o x y e t h y l m e t h a c r y l a t e were p r e p a r e d i n o u r l a b o r a t o r i e s by base c a t a l y z e d t r a n s e s t e r i f i c a t i o n o f m e t h y l m e t h a c r y l a t e w i t h
80
In Hydrogels for Medical and Related Applications; Andrade, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF MINNESOTA on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0031.ch006
6. wisNiEwsKi E T A L .
81
Diffusion through Hydrogel Membranes
t h e c o r r e s p o n d i n g a l c o h o l . E t h y l e n e g l y c o l d i m e t h a c r y l a t e (Monomer P o l y m e r L a b o r a t o r i e s , P h i l a d e l p h i a , P e n n s y l v a n i a ) and tetraethylene glycol dimethacrylate (Polysciences, Warrington, P e n n s y l v a n i a ) were p u r i f i e d by base e x t r a c t i o n t o remove i n h i b i t o r f o l l o w e d by d i s t i l l a t i o n . A z o b i s m e t h y l i s o b u t y r a t e , p r e p a r e d by t h e method o f M o r t i m e r Ç 7 ) , was used t o i n i t i a t e p o l y m e r i z a t i o n a t a c o n c e n t r a t i o n o f 7.84 m m o l e s / l i t e r monomer. Crosslinker c o n c e n t r a t i o n was c a l c u l a t e d on a m o l e - t o - m o l e b a s i s w i t h HEMA. The d e s i r e d monomer s o l u t i o n was m i x e d w i t h 45% v/v d i s t i l l e d w a t e r and p o l y m e r i z e d between g l a s s p l a t e s a t 60°C f o r 24 h o u r s . A g l a s s d i f f u s i o n c e l l , w h i c h c o n t a i n s two compartments o f e q u a l volume (175 m l ) , was d e s i g n e d . Each chamber was s t i r r e d a t a c o n s t a n t r a t e t o reduce boundary l a y e r e f f e c t s . A t t h e b e g i n n i n g o f each e x p e r i m e n t , one compartment was f i l l e d w i t h t r i t i a t e d w a t e r , t h e o t h e r was f i l l e d w i t h d i s t i l l e d w a t e r . The i n c r e a s e i n t r i t i a t e d w a t e r was m o n i t o r e d by r e m o v i n g 50μ£ a l i q u o t s a t v a r i o u s times. These a l i q u o t s were p l a c e d i n 10 ml o f l i q u i d s c i n t i l l a t i o n " c o c k t a i l " ( A q u a s o l , New E n g l a n d N u c l e a r Company) and counted i n a Packard S c i n t i l l a t i o n c o u n t e r . The t h i c k n e s s o f t h e w e t membrane was measured u s i n g a l i g h t m i c r o m e t e r (Van Kauren Company). Membrane d e n s i t i e s were measured by w e i g h i n g s e c t i o n s o f w e t membrane o f known v o l u m e . Water c o n t e n t was o b t a i n e d f r o m t h e d i f f e r e n c e i n w e i g h t o f w e t and d r y membrane ( d r i e d t o c o n s t a n t w e i g h t u n d e r vacuum a t a b o u t 6 0 ° C ) . A l l e x p e r i m e n t s were r u n a t 23°C ± 1 ° C . Results
(8)
and D i s c u s s i o n
The e q u a t i o n used t o t r e a t o u r d a t a was d e r i v e d e l s e w h e r e and i s g i v e n as f o l l o w s : In
(1 - 2 C / C ) = T
Q
(J
+ \)
AUt,
where C t = H 0 c o u n t a t t i m e t ; C = H 0 c o u n t a t t i m e 0 ; V i = V = compartment volume = 175 m l ; A = membrane c o n t a c t a r e a = 14.9 c m ; U = p e r m e a b i l i t y ( c m / s e c ) ; and t = t i m e ( s e c o n d s ) . A p l o t o f In (1 - 2 C t / C ) v s . t i m e w i l l y i e l d a s t r a i g h t l i n e w i t h slope = -(1/V + 1/V )AU. S u b s t i t u t i n g our values of A , V and V g i v e s U = - 5 . 8 7 χ s l o p e (cm/sec). The d i f f u s i o n c o e f f i c i e n t s a r e g i v e n by D = Ud/Kp, where d = w e t membrane t h i c k n e s s and Kp i s t h e p a r t i t i o n c o e f f i c i e n t . By d e f i n i t i o n Kp = w a t e r c o n c e n t r a t i o n i n membrane/water c o n c e n t r a t i o n i n b u l k , w h i c h f o r o u r c a s e r e d u c e s t o Kp = ( j v | / y ) f · * 3
3
2
0
2
2
2
0
X
x
2
2
p
p
W
a n c
P^ a r e t h e w e t membrane d e n s i t y and t h e d e n s i t y o f w a t e r a t 23°C, r e s p e c t i v e l y . wet membrane and
W i s the weight f r a c t i o n of water i n the f
i s e q u a l t o W /W , where W i s t h e w e i g h t o f W
M
w
w a t e r and W i s t h e w e i g h t o f t h e w e t membrane. M
In Hydrogels for Medical and Related Applications; Andrade, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
82
HYDROGELS
FOR MEDICAL
AND RELATED APPLICATIONS
Table 1 l i s t s the o b t a i n e d parameters f o r the v a r i o u s g e l s used. The d a t a f o r t h e ^ 0.2 m o l e - % d i e s t e r c r o s s ! i n k e r p o l y HEMA g e l s and u n r e p o r t e d d a t a on g e l s a p p r o x i m a t e l y 3-4 t i m e s t h i c k e r i n d i c a t e t h a t the p e r m e a b i l i t y U i s roughly p r o p o r t i o n a l t o 1/d, w h i l e D i s e s s e n t i a l l y i n d e p e n d e n t o f t h i c k n e s s . Variat i o n s i n D f o r t h e same g e l s a p p e a r t o be m a i n l y due t o e r r o r s i n t h e t h i c k n e s s measurement and a s m a l l d e g r e e o f n o n - u n i f o r m i t y in thickness. W.p and Kp d e c r e a s e as c r o s s l i n k i n g c o n t e n t i n c r e a s e s , as
Downloaded by UNIV OF MINNESOTA on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0031.ch006
expected.
However,
Kp seems t o i n c r e a s e a g a i n a t
approximately
6 mole-% c r o s s ! i n k e r . The i n c r e a s i n g Kp o f t h e h i g h e r c r o s s l i n k e d g e l s may be t h e r e s u l t o f g r e a t e r i n t e r a c t i o n between w a t e r and a h i g h l y c r o s s l i n k e d p o l y m e r n e t w o r k . This water, a r e l a t i v e l y small f r a c t i o n o f the t o t a l gel w a t e r , i s not a v a i l a b l e f o r t r a n s p o r t o r i s i n v o l v e d i n a much s l o w e r d i f f u s i o n p r o c e s s . (13,14), A p l o t o f d i f f u s i o n c o e f f i c i e n t s v s . p e r c e n t EGDMA and TEGDMA c r o s s ! i n k e r s i s shown i n F i g u r e 1. The d i f f u s i o n c o e f f i c i e n t s d e c r e a s e as t h e c r o s s ! i n k e r c o n t e n t i n c r e a s e s , a p p r o a c h i n g a l i m i t i n g v a l u e a t about 6 mole-% c r o s s l i n k e r . This behavior may i n d i c a t e a " p a r t i t i o n " t y p e membrane. Diffusion coefficients r a p i d l y i n c r e a s e w i t h d e c r e a s i n g c r o s s l i n k e r c o n t e n t below about 2.5 m o l e - % c r o s s l i n k e r , s u g g e s t i n g t h e d e v e l o p m e n t o f " l o o s e pores." Two b a s i c mechanisms have been c o n s i d e r e d i n e x p l a i n i n g s o l u t e t r a n s p o r t t h r o u g h a p o l y m e r membrane: 1) a m i c r o p o r o u s t y p e , w h i c h can a c t as a s i e v e w i t h t h e s o l u t e m o l e c u l e s b e i n g t r a n s p o r t e d t h o u r g h t h e m i n u t e p o r e s o f t h e membrane, and 2) a " p a r t i t i o n " t y p e membrane, w h i c h f u r t h e r a c t s t o s l o w t h e d i f f u s i o n p r o c e s s due t o t h e i n t e r a c t i o n between d i f f u s i n g s o l u t e and membrane m a t r i x o r membrane w a t e r . C r a i g ' s work (9) showed t h a t , i n g e n e r a l , a l i n e a r r e l a t i o n s h i p e x i s t s between m o l e c u l a r w e i g h t and h a l f t i m e r a t e s o f t r a n s f e r f o r p o r o u s membranes. However, t h e e f f e c t o f m o l e c u l a r w e i g h t on t h e h a l f t i m e r a t e s t h r o u g h c e r t a i n " p a r t i t i o n " membranes i n d i c a t e d no such t r e n d (10). R e c e n t l y , Chen ( 6 j has d e s c r i b e d t h r e e d i f f e r e n t d i f f u s i o n mechanisms f r o m h i s w a t e r a b s o r p t i o n s t u d i e s : 1) a d i s s o l u t i o n mechanism f o r h i g h e r c r o s s l i n k i n g c o n t e n t , 2) a p o r e f l o w mechanism f o r l o w c r o s s l i n k i n g c o n t e n t , and 3) an i n t e r m e d i a t e mechanism a t i n t e r m e d i a t e c r o s s l i n k e r c o n c e n t r a t i o n s . We have found s i m i l a r r e s u l t s from our s t u d y . Water d i f f u s e s t h r o u g h t h e c r o s s l i n k e d p o l y HEMA membranes v i a a p r e d o m i n a n t l y p o r e mechanism f r o m 0% c r o s s l i n k e r t o a p p r o x i m a t e l y 2.5 m o l e - % c r o s s l i n k e r . Above 4 m o l e - % c r o s s l i n k e r , w a t e r t r a n s p o r t i s m a i n l y c o n t r o l l e d by t h e i n t e r a c t i o n o f w a t e r w i t h t h e g e l m a t r i x . The i n t e r m e d i a t e r e g i o n l i e s between 2.5 t o 4 m o l e - % . A d e s c r i p t i o n o f t h e homogeneous membrane model and t h e t h e o r e t i c a l assumptions i n v o l v e d i n the d e r i v a t i o n of the r e l a t i o n between d i f f u s i o n c o e f f i c i e n t s and w a t e r c o n t e n t i s f o u n d
In Hydrogels for Medical and Related Applications; Andrade, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
6.
WISNIEWSKI ET AL.
TABLE Diffusion
Downloaded by UNIV OF MINNESOTA on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0031.ch006
I.
C o e f f i c i e n t s , P e r m e a b i l i t i e s and H y d r o g e l
45% H2O-HEMA EGDMA-mole-% 7.5 5.3 3.8 2.3 0.75 0.38 =0.02
83
Diffusion through Hydrogel Membranes
„ _D
u
d(cm)
P(g/cc)
_f
Composition
D χ 10 (cm /sec)
U χ 10* (cm/sec)
6
2
0.0777 0.0713 0.0717 0.0696 0.0739 0.0679 0.0717 0.0583 0.0638 0.0682
1.26 1.22 1.20 1.20 1.25 1.27 1.20 1.25 1.30 1.22
0.381 0.348 0.355 0.376 0.403 0.417 0.415 0.419 0.420 0.418
0.481 0.426 0.427 0.452 0.505 0.531 0.499 0.525 0.547 0.511
2.3 2.3 2.4 2.6 3.0 3.3 3.6 3.4 3.4 3.3
1.4 1.4 1.4 1.7 2.1 2.6 2.5 3.1 2.9 2.5
0.07-76 0.0736 0.0702 0.0697 0.0793
1.20 1.22 1.23 1.23 1.33
0.405 0.368 0.377 0.402 0.418
0.488 0.450 0.465 0.496 0.557
2.5 2.6 2.7 3.1 3.4
1.6 1.6 1.8 2.2 2.4
0.0660 0.0694 0.0686 0.0901 0.0733 0.0747
1.22 1.25 1.29 1.11 1.20 1.20
0.0348 0.173 0.308 0.631 0.504 0.444
0.0426 0.217 0.397 0.702 0.605 0.534
0.23 0.58 1.6 7.6 5.1 3.9
0.015 0.18 0.94 5.9 4.2 2.8
45% H2O-HEMA TEGDMA-mole-% 7.5 4.6 2.5 1.4 0.46
Copolymers: Volume-% MEMA 33% HEMA-67% MEMA 67% HEMA-33% MEMA MEEMA 33% HEMA-67% MEEMA 67% HEMA-33% MEEMA
MEMA
- methoxyethyl
methacrylate
MEEMA - m e t h o x y e t h o x y e t h y l HEMA
- hydroxyethyl
methacrylate
methacrylate
In Hydrogels for Medical and Related Applications; Andrade, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
84
HYDROGELS FOR MEDICAL AND RELATED APPLICATIONS
elsewhere
(11 ), and t h a t r e l a t i o n i s g i v e n as f o l l o w s :
In D/D = β χ ( 1 - α ) / ( 1 + x a ) , Q
where χ = ( 1 - K p ) / K p ,
a = V / V , β = V*/V , D = experimental p
w
w
d i f f u s i o n c o e f f i c i e n t w i t h p a r t i t i o n c o e f f i c i e n t Kp, D
Downloaded by UNIV OF MINNESOTA on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0031.ch006
s i o n c o e f f i c i e n t o f water i n pure w a t e r , V
w
Q
= diffu
= f r e e volume i n
u n i t volume o f p u r e w a t e r , V = f r e e volume i n u n i t volume o f Ρ p o l y m e r p h a s e , and V * = a c h a r a c t e r i s t i c volume p a r a m e t e r d e s c r i b i n g t h e d i f f u s i o n o f a permeant m o l e c u l e i n t h e medium. It i s possible to rearrange t h i s equation i n order t o obtain a l i n e a r plot. That i s ,
A p l o t o f (In D/Do)" v s . x " s h o u l d y i e l d a s t r a i g h t l i n e w i t h s l o p e = - 1 / β ( 1 - α ) and i n t e r c e p t = - α / β ( 1 - α ) . T a b l e I I g i v e s v a l u e s o f _ ( l n D/Do) and x " f o r t h e g e l s s t u d i e d , u s i n g D = 2 . 4 χ 1 0 " c m / s e c f r o m (12). The v a l u e s f o r p o l y HEMA, u n c r o s s ! i n k e d (^ 0 . 0 2 m o l e - % ) , a r e an a v e r a g e o f f o u r d i f f e r e n t g e l s . Figure 2 i s a p l o t o f (In D/Do)" v s . x " f o r a l l b u t t h e c r o s s l i n k e d gels. L e a s t s q u a r e s f i t y i e l d s v a l u e s o f α = 0 . 6 9 and β = 11 with a c o r r e l a t i o n c o e f f i c i e n t of -0.998. The i n t e r c e p t y i e l d s a v a l u e o f 1.6 χ 1 0 " c m / s e c f o r t h e h y p o t h e t i c a l z e r o w a t e r content polymer. I n c l u s i o n o f c r o s s l i n k e d p o l y HEMA g e l s y i e l d s v a l u e s o f α = 0 . 7 2 and β = 13 w i t h a c o r r e l a t i o n c o e f f i c i e n t o f -0.988. Even t h o u g h a f a i r c o r r e l a t i o n i s o b t a i n e d w i t h t h e i n c l u s i o n o f t h e c r o s s l i n k e d g e l s , t h e s e g e l s seem t o e x h i b i t a t r e n d o f t h e i r own. These r e s u l t s and p r e v i o u s r e s u l t s ( 1 1 ) i n d i c a t e t h a t s t r u c t u r a l d i f f e r e n c e s o f t h e monomers used may p l a y some r o l e i n t h e d i f f u s i o n p r o c e s s o t h e r t h a n j u s t d e t e r mining water content. Changing o f t h e w a t e r c o n t e n t o f s w o l l e n g e l s f o r p u r e s y s t e m s by v a r y i n g p o l y m e r i z a t i o n w a t e r c o n c e n t r a t i o n may shed some l i g h t on s t r u c t u r a l e f f e c t s i n t h e d i f f u s i o n process. This study i s being continued. 1
1
1
1
0
5
2
1
7
1
2
Acknowledgements T h i s work was s u p p o r t e d by NHLI G r a n t No. HL 1 6 9 2 1 - 0 1 . The donations o f generous q u a n t i t i e s o f h y d r o x y e t h y l m e t h a c r y l a t e f r o m Hydro Med S c i e n c e s , I n c . , i s g r a t e f u l l y a c k n o w l e d g e d .
Abstract Water transport through fully swollen poly (2-hydroxyethyl methacrylate) (poly HEMA) hydrogels, containing varying concentra tions of ethylene glycol dimethacrylate (EGDMA) and tetraethylene
In Hydrogels for Medical and Related Applications; Andrade, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
6.
Diffusion through Hydrogel Membranes
WISNIEWSKI ET AL.
TABLE Values o f (In D/D )"
1
Q
(Using D
Q
Downloaded by UNIV OF MINNESOTA on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0031.ch006
Hydrogel (Copolymers i n volume-%) MEMA 33% HEMA-67% MEMA 67% HEMA-33% MEMA MEEMA 33% HEMA-67% MEEMA 67% HEMA-33% MEEMA HEMA
and x "
II. 1
f o r Hydrogels
= 2.4 χ 1 ( f
5
cm /sec) 2
IniD/D^"
1
Studied 1 2
χ
1
= K, D
-0.22 -0.27 -0.37 -0.87 -0.55 -0.65 -0.51
0.0445 0.277 0.658 2.36 1.15 1.53 1.09
-0.43 -0.43 -0.43 -0.45 -0.48 -0.50
0.927 0.742 0.745 0.825 1.02 1.13
-0.44 -0.45 -0.46 -0.49 -0.51
0.953 0.818 0.869 0.984 1.26
M o l e - % EDGMA 7.5 5.3 3.8 2.3 0.75 0.38
M o l e - % TEGDMA 7.5 4.6 2.5 1.4 0.46
In Hydrogels for Medical and Related Applications; Andrade, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
HYDROGELS FOR MEDICAL AND RELATED APPLICATIONS
86
10.00
•
EGDMR
+
TEGDMR
00
θ
ο
+
ω ο
ε mm
ε
CROSSL INKER
Downloaded by UNIV OF MINNESOTA on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0031.ch006
ο
,
Η.
mm
2
mm
Β
2)0
a
ο
+
° 2.
m
2 .3 0
2 .3 0
2 .Β 0
D
Χ
10
0
α
ο
and TEGDMA
in
PHEMA
MEMR
•
-
3 . 5Γ0
(cm / s e c )
Figure 1. Plot of diffusion coefficients vs. mole % EGDMA hydrogel
0
3 . 2 0
.2
MEMR-HEMR
Χ κεΜΠ
. Η
Η
MEEMR—HEMR
Μ
MEEMR
c
.ε
Β
l ^0 0.
0
I . S
1 . 0
y
Figure 2. Plot of (In D/Do)'
1
2 . 0
2 . E
-1
vs. X' for hydrogels swollen to different water concentrations 1
In Hydrogels for Medical and Related Applications; Andrade, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1976.
equilibrium
Downloaded by UNIV OF MINNESOTA on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/bk-1976-0031.ch006
6.
wisNiEwsKi E T A L .
Diffusion through Hydrogel Membranes
87
glycol dimethacrylate (TEGDMA) crosslinkers, was investigated using tritiated water and a designed diffusion cell. Diffusion coefficients obtained in these experiments decrease as the concentration of crosslinker increases. This decrease is very sharp at crosslinker concentrations of 0-2.5 mole-%. At higher crosslinker concentrations (2.5-7.5 mole-%), the diffusion coefficients appear to reach a limiting value. This study indicates that a crosslinked poly HEMA membrane may provide both "partition" and "pore" mechanisms of solute transport based on crosslinker concentration. Hydrogels of varying water content were prepared to investi gate the relationship between water content and diffusion coefficient. Poly(methoxyethyl methacrylate) (poly MEMA), poly(methoxyethoxyethyl methacrylate) (poly MEEMA) and copolymers of MEMA and MEEMA with HEMA were formulated to give hydrogels with water content ranging from approximately 3% to 63%. The results of the diffusion experiments were examined in light of a free-volume model of diffusive transport. Excellent theoreticalexperimental correlation was obtained for the hydrogels used in this study. Literature Cited 1. Yasuda, H., Lamaze, C., and Ikenberry, L., Makromol. Chem. (1968) 118, 19. 2. Spacek, P., and Kubin, M., J. Poly. Sci., Part C, (1967) 16, 705. 3. Ikenberry, L., Yasuda, H., and Clark, H., Chem. Eng. Prog. Sym. Ser. (1968) 64 (84) 69. 4. Refojo, M. F., J. Appl. Poly. Sci. (1964) 9, 3417. 5. Ratner, B. D., and Miller, I. F., J. Biomed. Matl. Res. (1973) 7, 353. 6. Chen, R. Y. S., Polymer Preprints (1974) 15, No. 2, 387. 7. Mortimer, G. Α., J. Org. Chem. (1964) 30, 1632. 8. Mah, M. Y., Master's Thesis, University of Utah, 1972. 9. Craig, L. C., and Konigsberg, W., J. Phys. Chem. (1961) 65 116. 10. Lyman, D. J., Trans. Am. Soc. Art. Int. Org. (1964) 10, 17. 11. Yasuda, H., Lamaze, C. E., and Peterlin, Α., J. Poly, Sci., A-2 (1971) 9, 1117. 12. Wang, J. H., Robinson, C. V., and Edelman, I. S., J. Amer. Chem. Soc. (1953) 75, 466. 13. Chang, Y. J., Chen, C. T., and Tobolsky, J. Poly. Sci., Poly. Phys. Ed., (1974), 12, 1. 14. Hoffman, A. S., Modell, M., and Pan, P., J. Appl. Poly. Sci., 14, 285 (1970).
In Hydrogels for Medical and Related Applications; Andrade, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1976.