Difluoromethylornithine Combined with a Polyamine Transport

Jan 4, 2018 - Free-floating and adherent cells were collected for apoptosis and necrosis analysis using a FITC Annexin V Apoptosis Detection Kit I (BD...
0 downloads 7 Views 6MB Size
Article Cite This: Mol. Pharmaceutics XXXX, XXX, XXX−XXX

Difluoromethylornithine Combined with a Polyamine Transport Inhibitor Is Effective against Gemcitabine Resistant Pancreatic Cancer Sarah B. Gitto,†,∥ Veethika Pandey,†,∥,§ Jeremiah L. Oyer,† Alicja J. Copik,† Frederick C. Hogan,† Otto Phanstiel, IV,‡ and Deborah A. Altomare*,† †

Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, Florida 32827, United States Department of Medical Education, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States



ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is highly chemo-resistant and has an extremely poor patient prognosis, with a survival rate at five years of 0.05).

increased survival compared to the untreated group or the combination treatment. In comparison, DFMO + PTI treated mice survival was significantly increased (Log-rank Mantel-Cox test, p < 0.0009). The mean survival time of mice in the combination treatment group (34 days post-treatment) was nearly doubled compared to the untreated group (18.5 days post-treatment). These experiments indicated that the Trimer44NMe PTI shows improved efficacy, when combined with DFMO, in prolonging survival in this PDAC model.



DISCUSSION DFMO is currently being tested in several Phase I and II clinical trials, alone and in combination with various other therapeutics, for treatment of neuroblastoma and other neoplasms. However, cancer cells treated with DFMO may overcome polyamine depletion by the uptake of polyamines from extracellular sources. Hence, the experiments here tested the Trimer44NMe PTI, which previously was shown to exhibit low toxicity against normal cells, decrease sensitivity to exogenous addition of amine oxidases and potently inhibit the uptake of spermidine (1 μM) in DFMO-treated L3.6pl human pancreatic cancer cells.7 Trimer44NMe PTI has minimal toxicity when tested alone, especially when used on cell lines that were previously shown to have high sensitivity to DFMO.7 Tumor size or weight alone was not a good indicator of response to the combination DFMO and Trimer44NMe. Immunohistochemical markers and survival studies show the benefit of using a combination treatment with DFMO and Trimer44NMe.



CONCLUSIONS In summary, a combination therapy of DFMO + Trimer44NMe PTI was shown to nearly double the survival of tumor-bearing mice orthotopically injected with Pan02 cells. F

DOI: 10.1021/acs.molpharmaceut.7b00718 Mol. Pharmaceutics XXXX, XXX, XXX−XXX

Article

Molecular Pharmaceutics

(5) Meyskens, F. L. J.; Gerner, E. W. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin. Cancer Res. 1999, 5 (5), 945−951. (6) Samal, K.; Zhao, P.; Kendzicky, A.; Yco, L. P.; McClung, H.; Gerner, E.; Burns, M.; Bachmann, A. S.; Sholler, G. AMXT-1501, a novel polyamine transport inhibitor, synergizes with DFMO in inhibiting neuroblastoma cell proliferation by targeting both ornithine decarboxylase and polyamine transport. Int. J. Cancer 2013, 133 (6), 1323−1333. (7) Muth, A.; Madan, M.; Archer, J. J.; Ocampo, N.; Rodriguez, L.; Phanstiel, O. Polyamine transport inhibitors: design, synthesis, and combination therapies with difluoromethylornithine. J. Med. Chem. 2014, 57 (2), 348−363. (8) Grillo, M. A.; Colombatto, S. Polyamine transport in cells. Biochem. Soc. Trans. 1994, 22 (4), 894−898. (9) Seiler, N.; Delcros, J. G.; Moulinoux, J. P. Polyamine transport in mammalian cells. An update. Int. J. Biochem. Cell Biol. 1996, 28 (8), 843−861. (10) Kumagai, J.; Jain, R.; Johnson, L. R. Characteristics of spermidine uptake by isolated rat enterocytes. Am. J. Phyiol 1989, 256 (5 Pt 1), G905−G910. (11) De Smedt, H.; Van den Bosch, L.; Geuns, J.; Borghgraef, R. Polyamine transport systems in the LLC-PK1 renal epithelial established cell line. Biochim. Biophys. Acta, Mol. Cell Res. 1989, 1012 (2), 171−177. (12) Ruchko, M.; Gillespie, M. N.; Weeks, R. S.; Olson, J. W.; Babal, P. Putrescine transport in hypoxic rat main PASMCs is required for p38 MAP kinase activation. Am. J. Physiol Lung Cell Mol. Physiol 2003, 284 (1), L179−L-186. (13) Niemand, J.; Louw, A.; Birkholtz, L.; Kirk, K. Polyamine uptake by the intraerythrocytic malaria parasite, Plasmodium falciparum. Int. J. Parasitol. 2012, 42 (10), 921−929. (14) Schleger, C.; Verbeke, C.; Hildenbrand, R.; Zentgraf, H.; Bleyl, U. c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance. Mod. Pathol. 2002, 15 (4), 462−469. (15) Wang, C.; Delcros, J. G.; Cannon, L.; Konate, F.; Carias, H.; Biggerstaff, J.; Gardner, R. A.; Phanstiel, O. Defining the Molecular Requirements for the Selective Delivery of Polyamine-Conjugates into Cells Containing Active Polyamine Transporters. J. Med. Chem. 2003, 46 (24), 5129−5138. (16) Watanabe, T.; Sherman, M.; Shafman, T.; Iwata, T.; Kufe, D. Effects of ornithine decarboxylase inhibition on c-myc expression during murine erythroleukemia cell proliferation and differentiation. J. Cell. Physiol. 1986, 127 (3), 480−484. (17) Chang, B. K.; Libby, P. R.; Bergeron, R. J.; Porter, C. W. Modulation of polyamine biosynthesis and transport by oncogene transfection. Biochem. Biophys. Res. Commun. 1988, 157, 264−270. (18) Koomoa, D. L.; Geerts, D.; Lange, I.; Koster, J.; Pegg, A. E.; Feith, D. J.; Bachmann, A. S. DFMO/eflornithine inhibits migration and invasion downstream of MYCN and involves p27Kip1 activity in neuroblastoma. Int. J. Oncol. 2013, 42 (4), 1219−1228. (19) Albury, T. M.; Pandey, V.; Gitto, S. B.; Dominguez, L.; Spinel, L. P.; Talarchek, J.; Klein-Szanto, A. J.; Testa, J. R.; Altomare, D. A. Constitutively active Akt1 cooperates with KRasG12D to accelerate in vivo pancreatic tumor onset and progression. Neoplasia 2015, 17 (2), 175−182. (20) Madan, M.; Patel, A.; Skruber, K.; Geerts, D.; Altomare, D. A.; Phanstiel, O. ATP13A3 and caveolin-1 as potential biomarkers for difluoromethylornithine-based therapies in pancreatic cancers. Amer. J. Cancer Res. 2016, 6 (6), 1231−1252. (21) Hayes, C. S.; Shicora, A. C.; Keough, M. P.; Snook, A. E.; Burns, M. R.; Gilmour, S. K. Polyamine-Blocking Therapy Reverses Immunosuppression in the Tumor Microenvironment. Cancer Immunol. Res. 2014, 2 (3), 274−285. (22) Alexander, E. T.; Minton, A.; Peters, M. C.; Phanstiel, O.; Gilmour, S. K. A novel polyamine blockade therapy activates an antitumor immune response. Oncotarget 2017, 8, 84140−84152.

These experiments demonstrated that targeting both polyamine biosynthesis and import has therapeutic value in the treatment of Gemcitabine-resistant PDAC as evidenced by decreased expression of proliferation markers like Ki67 and reduced cMyc expression compared to untreated mice.



AUTHOR INFORMATION

Corresponding Author

*Phone: (407) 266-7040. E-mail: [email protected]. ORCID

Otto Phanstiel IV: 0000-0001-7101-1311 Deborah A. Altomare: 0000-0002-7014-0397 Present Address §

Mayo Clinic, Griffin Cancer Research Building, 4500 San Pablo Road, Jacksonville, Florida 32224, United States. Author Contributions ∥

These authors contributed equally.

Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS The investigators thank Dr. Laurence von Kalm (UCF) for project discussions, Dr. Isaiah Fidler (University of Texas, M. D. Anderson Cancer Center) and Dr. Cheryl Baker (BioCurity Holdings, Inc., Orlando, FL) for the gift of L3.6pl cells, and Meera Rathod for technical help with immunohistochemistry to assess DFMO in the L3.6pl tumor model. UCF Burnett School of Biomedical Sciences shared core equipment resources for animal care, histology, flow cytometry, and imaging used for this study. This work was supported by a Department of Defense Congressionally Directed Medical Research Program (CDMRP) Peer Review Cancer Research Program (PRCRP) Discovery Award CA110724 to O.P. and D.A.A.



ABBREVIATIONS PDAC, pancreatic ductal adenocarcinoma; PTI, polyamine transport inhibitor; DFMO, alpha-difluoromethylornithine; PTS, polyamine transport system; ODC, ornithine decarboxylase; PBS, phosphate buffered saline; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfenyl)-2H tetrazolium, inner salt



REFERENCES

(1) Hirschey, M. D.; DeBerardinis, R. J.; Diehl, A. M.; Drew, J. E.; Frezza, C.; Green, M. F.; Jones, L. W.; Ko, Y. H.; Le, A.; Lea, M. A.; Locasale, J. W.; Longo, V. D.; Lyssiotis, C. A.; McDonnell, E.; Mehrmohamadi, M.; Michelotti, G.; Muralidhar, V.; Murphy, M. P.; Pedersen, P. L.; Poore, B.; Raffaghello, L.; Rathmell, J. C.; Sivanand, S.; Vander Heiden, M. G.; Wellen, K. E. Dysregulated metabolism contributes to oncogenesis. Semin. Cancer Biol. 2015, 36 (Suppl), S129−S150. (2) Nowotarski, S. L.; Woster, P. M.; Casero, R. A. J. Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev. Mol. Med. 2013, 15, e3. (3) Casero, R. A. J.; Marton, L. J. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Discovery 2007, 6 (5), 373−390. (4) Mohammed, A.; Janakiram, N. B.; Madka, V.; Ritchie, R. L.; Brewer, M.; Biddick, L.; Patlolla, J. M.; Sadeghi, M.; Lightfoot, S.; Steele, V. E.; Rao, C. V. Eflornithine (DFMO) Prevents Progression of Pancreatic Cancer by Modulating Ornithine Decarboxylase Signaling. Cancer Prev. Res. 2014, 7 (12), 1198−1209. G

DOI: 10.1021/acs.molpharmaceut.7b00718 Mol. Pharmaceutics XXXX, XXX, XXX−XXX

Article

Molecular Pharmaceutics (23) Subhi, A. L.; Tang, B.; Balsara, B. R.; Altomare, D. A.; Testa, J. R.; Cooper, H. S.; Hoffman, J. P.; Meropol, N. J.; Kruger, W. D. Loss of methylthioadenosine phosphorylase and elevated ornithine decarboxylase is common in pancreatic cancer. Clin. Cancer Res. 2004, 10 (21), 7290−7296. (24) Wu, S.; Peña, A.; Korcz, A.; Soprano, D. R.; Soprano, K. J. Overexpression of Mxi1 inhibits the induction of the human ornithine decarboxylase gene by the Myc/Max protein complex. Oncogene 1996, 12 (3), 621−629. (25) Gysin, S.; Paquette, J.; McMahon, M. Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity. Mol. Cancer Res. 2012, 10 (12), 1607−1619. (26) He, C.; Jiang, H.; Geng, S.; Sheng, H.; Shen, X.; Zhang, X.; Zhu, S.; Chen, X.; Yang, C.; Gao, H. Expression and prognostic value of cMyc and Fas (CD95/APO1) in patients with pancreatic cancer. Int. J. Clin Exp Pathol 2014, 7 (2), 742−750.

H

DOI: 10.1021/acs.molpharmaceut.7b00718 Mol. Pharmaceutics XXXX, XXX, XXX−XXX