Subscriber access provided by Kaohsiung Medical University
Fossil Fuels
Discovery of high-abundance diamondoids and thiadiamondoids and severe TSR alteration of Well ZS1C condensate, Tarim Basin, China Guangyou Zhu, Ying Zhang, Meng Wang, and Zhiyao Zhang Energy Fuels, Just Accepted Manuscript • DOI: 10.1021/acs.energyfuels.8b00908 • Publication Date (Web): 21 May 2018 Downloaded from http://pubs.acs.org on May 21, 2018
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
1 2
Discovery of high-abundance diamondoids and thiadiamondoids
3
and severe TSR alteration of Well ZS1C condensate, Tarim Basin,
4
China
5 6
Guangyou Zhu a, *, Ying Zhang a, Meng Wang a, Zhiyao Zhang a,
7 8 9
a
Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
10 11
*Corresponding author. Tel.: +86 10 8359 2318; +86 18601309981.
12
E-mail address:
[email protected] (G. Y. Zhu)
13
1
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 67
14
Abstract: Diamondoid and thiadiamondoid compounds in crude oils are
15
generally related with thermal cracking and TSR (thermochemical sulfate
16
reduction). Diamondoids occur in almost all petroleum, but usually with low
17
concentration (2 µg/g or less). The abundance of thiadiamondoid reflects the
18
extent of TSR, which is rarely detected > 20 µg/g. Recently, a commercial
19
oil-gas production has been discovered in the deep Cambrian strata of the Tarim
20
Basin, China. The condensate sample conducted with GC×GC-TOFMS
21
(two-dimensional
22
analysis revealed that diamondoids series contains 281 components with total
23
concentration of 187 mg/g, and the thiadiamondoids series contains 267
24
components with total concentration of 28 mg/g, respectively. In this study, we
25
reported the identification of 14 compounds, including 11 dithiatriamantanes
26
and 3 tetrathiadiamantanes for the first time in natural oils. According to the
27
comprehensive analysis of sulfur and carbon isotopes and hydrocarbon
28
composition of the condensate, these compounds are considered to be residual
29
products of thermal cracking at high temperature and severed TSR alteration.
30
The extremely heavy sulfur isotope of the thiadiamondoid compounds from TSR
31
alteration illustrates that hydrogen sulfide enriched gas reservoirs exist in the
32
deep Cambrian strata of the Tarim Basin.
33
Key words: Diamondoid; Thiadiamondoid; Thermochemical Sulfate Reduction;
34
H2S; Deep Strata; Tarim Basin
gas
chromatography/time-of-flight
35 2
ACS Paragon Plus Environment
mass
spectrometry)
Page 3 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
36
Energy & Fuels
1. Introduction:
37
Oil and gas in deep strata is a recent hot topic in scientific studies and
38
exploration activities. Thermal cracking at high temperatures and TSR are two
39
of the significant secondary alteration processes in oil and gas from deep
40
carbonate strata, thus, diamondoid and thiadiamondoid compounds are often
41
detected in deep oil and gas, which are used to indicate thermal cracking1-3 and
42
TSR4-7.
43
Adamantane was first isolated by Landa and Machacek8 from Hodonin crude
44
oil. The structure of adamantane was confirmed by Prelog and Serwerth 9.
45
Further homologues of adamantane were isolated from petroleum fractions.
46
Birch et al.10 reported thiaadamantanes isolated from South Iran crude oil.
47
Thiadiamondoids have the same skeleton structure with diamondoids, with
48
carbon atom(s) replaced by sulfur atom(s) at the bridgehead position(s)
49
Diamantane was chosen as the official emblem of a 1963 IUPAC conference.
50
Triamantane was isolated and characterized in 1966. Diamondoid hydrocarbons
51
had aroused the interest of many scientists11-19. Chen et al.20 mainly applied
52
diamondoid compounds as maturity parameters. Dahl et al.21 demonstrated that
53
the relative abundance of diamondoid compounds can be used as indicators for
54
natural oil cracking to identify the occurrence and estimate the extent of oil
55
destruction and the oil deadline in a particular basin. Alkylated diamondoids
56
have been identified in crude oils and source rocks 22-24. On further study, 3 3
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 67
57
tetramantanes, 6 isomeric pentamantanes, and as many as 17 possible
58
hexamantane isomers have been isolated from petroleum1,25. Bridgehead
59
alkylated 2-thiaadamantanes were identified in the sulfurization process affected
60
petroleum which has undergone high thermal stress and indicated the occurrence
61
and extent of TSR26. More thiadiamondoids were found in oils and reservoirs
62
from the Smackover Formation4,27-28, and oils from the Tarim Basin6,29-33.
63
The concentration of diamondoids and thiadiamondoids in crude oil is
64
usually low2,21-22. They were often difficult to be isolated in GC-MS analysis.
65
Recently,
66
chromatography/time-of-flight mass spectrometry) has widely been used in
67
analysis of oil and condensate6,31-34. In GC×GC-TOFMS data, diamondoid and
68
thiadiamondoid compounds can be well separated from other alkanes and
69
aromatic hydrocarbons, and much more substitutions of these compounds can be
70
identified.
GC×GC-TOFMS
(comprehensive
two-dimensional
gas
71
Recently, we conducted GC×GC-TOFMS analysis on the condensate
72
sampled from the first discovery well (ZS1C) that penetrated oil-gas in deep
73
Cambrian strata of the Tarim Basin. A series of diamondoid and thiadiamondoid
74
compounds were detected with extremely high abundance. We have detected
75
281 components of adamantane, diamantane, triamantane, tetramantane and
76
pentamantane;
77
thiatriamantane,
267
components
dithiaadamantane,
of
thiaadamantane,
dithiadiamantane, 4
ACS Paragon Plus Environment
thiadiamantane, dithiatriamantane,
Page 5 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
78
trithiaadamantane, trithiadiamantane, tetrathiaadamantane, tetrathiadiamantane
79
in ZS1C condensate, much more than previous studies32,38. Dithiatriamantane,
80
tetrathiadiamantane were detected in oil for the first time. The identification of
81
these diamondoids and thiadiamondoids were based on the comparison with
82
literature
83
tetrathiadiamondoids were detected in GC×GC-TOFMS for the first time.
data2,4,27,30.
Dithiadiamondoids,
trithiadiamondoids,
84
The discovery of the commercial oil-gas production in the well ZS1C has
85
opened a new exploration area and will lead to an extensive hydrocarbon
86
exploration in deep Cambrian reservoirs of the Tarim Basin.
87 88
2. Methods
89
2.1 GC×GC-TOFMS
90
The comprehensive GC×GC system for the GC×GC-TOFMS is from Leco
91
Corporation. Studies reporting GC×GC analysis of condensate samples are
92
rare43. The GC×GC system was composed of an Agilent 7890 GC coupled to a
93
hydrogen flame ionization detector (FID) and a liquid-nitrogen-cooled pulse jet
94
modulator. The TOF mass spectrometer is a Pegasus 4D (Leco Corporation). All
95
the data were processed with ChromaTOF software.
96
The one-dimensional chromatographic column was a DB-petro (50 m × 0.2
97
mm × 0.5 mm). The temperature program used was 0.2 min at 35 °C; increased
98
to 210 °C at a rate of 1.5 °C/min and held for 0.2 min; and increased to 300 °C 5
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
99
at the rate of 2 °C/min and held for 20 min. The two-dimensional
100
chromatographic column was a DB-17ht (3 m × 0.1 mm × 0.1 μm). The
101
temperature program applied was the same as that for the one-dimensional gas
102
chromatography, but the temperatures were 5 °C higher. The modulator
103
temperature was 45 °C higher than for the one-dimensional gas chromatography.
104
The inlet temperature was 300 °C, the inlet mode was split injection, the split
105
ratio was 700:1, and the sample volume was 0.5μL. Helium was used as the
106
carrier gas, with a flow rate of 1.5 mL/min. The modulation time was 10s, 2.5s
107
of which was the hot pulse time. For the mass spectrometry, the temperatures of
108
the transfer line and the ion source were 300 °C and 240 °C, respectively, the
109
detector voltage was 1600 V, the scan range was 40-520 amu, the acquisition
110
rate was 100 spectra/s, and the delay time of the solvent was 9 min.
111
The group components of the compounds were quantified by peak area
112
normalization. D16-adamantane (using CH2Cl2 as a solvent) was added in the
113
condensate sample, and the quantitative results of conventional diamondoids in
114
the condensate were obtained using the internal standard method.
115
2.2 Carbon isotope analysis
116
The carbon isotope analysis of the hydrocarbon constituents of the natural
117
gas samples, collected in steel bottles at the production well site, was measured
118
using a GC interfaced to a Thermo Scientific Delta V Advantage isotope ratio
119
mass spectrometer. All δ13C values are given in per mil (‰, VPDB) according to 6
ACS Paragon Plus Environment
Page 6 of 67
Page 7 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
120
delta notation with standard deviation accuracy of 0.10‰.
121
2.3 Sulfur isotope analysis
122
The δ34S analysis of the aromatic fraction of ZS1C condensate (isolated by
123
liquid chromatography) were achieved using an Agilent 6890 GC coupled to a
124
Thermo Neptune Plus multi-collector inductively coupled plasma mass
125
spectrometer (ICP-MS)44. The OSCs were separated on the GC with a DB-5 MS
126
column (30 m × 0.25 mm i.d. × 0.1 µm film thickness). The GC oven was
127
heated from 100 °C (held for 0.5 min) to an end temperature of 300 °C (held for
128
15 min) at a rate of 8 °C/min. The argon gas for the plasma torch was pre-heated
129
and introduced co-axially with the analytes from the GC. An SF6 gas standard of
130
known
131
pulses were included at both the start and end of all sample analyses to internally
132
calibrate
133
relative to the international sulfur isotope standard Vienna Canyon Diablo
134
Troilite (VCDT) and represent the average of duplicate analyses and their
135
variance expressed as standard variation (SV ±).
136
34
S value was used for tuning and calibration of the ICP-MS. Two SF6
34
S measurements.
34
S results were reported as per mil (‰)
The aromatic fraction of ZS1C condensate contained large series of 34
137
alkylated benzothiophene and dibenzothiophene products, however,
138
measurement was only possible for those of highest abundance. The OSCs were
139
identified based on correlation of their GC elution position with published data
140
(e.g., Garcia et al.,45; Asif et al.,46). Methyl DBT isomers were identified from 7
ACS Paragon Plus Environment
S
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
141
previously reported GC elution data (order of elution is 4-, 3+2- and 1-mDBT;
142
Garcia et al.,45). Isomeric assignment of higher molecular-weight alkyl DBTs
143
(and alkyl BTs) was not attempted and these analytes are simply referred to as
144
isomers i to iv (i.e., 34S data was measured for up to 4 different isomers of
145
some OSCs).
146
3. Results
147
3.1 Physical characteristics of the condensate oil
148
A condensate sample was obtained from 6861-6944 m interval of well ZS1C
149
which penetrated the lower Cambrian strata. The density of this condensate was
150
0.79 g/cm3 (20°C), the viscosity was 1.2-1.4 mPa·s (50°C) and the sulfur
151
content was less than 0.2%.
152
The bulk oil composition in well ZS1C condensate is dominated by saturated
153
and aromatic hydrocarbons which are 36.0%and 50.5%, respectively. This oil
154
contains unusually large amount of aromatic hydrocarbons. With increasing
155
maturity level, oils are generally enriched in saturated hydrocarbons. ZS1C
156
condensate enriched in aromatic hydrocarbons is caused by TSR alteration. So,
157
the organosulfur compounds are generated, and the density of oils becomes
158
heavy with highly aromatic hydrocarbons5,35.
159
3.2 Chemical composition of the condensate oil
160
The composition of the condensate samples was analyzed using
161
GC×GC-TOFMS to obtain a comprehensive two-dimensional color contour 8
ACS Paragon Plus Environment
Page 8 of 67
Page 9 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
162
chromatogram (Fig. 1). The quantitative analysis of group components based on
163
the GC×GC-FID of oil samples indicates that the content of saturated
164
hydrocarbons, aromatic hydrocarbons, and resins was 42.2%, 54.9%, and 2.9%,
165
respectively. This result is rarely seen in ordinary condensates. According to the
166
GC×GC-FID analysis, the hydrocarbon distribution in the condensate ranges
167
from C6 to C30 with the main peak carbon of C11. Hydrocarbons greater than C30
168
are insignificant6.
169
The dominant aromatic hydrocarbons were multi-substituted series of
170
benzene, naphthalene, and phenanthrene. The content of alkylbenzene series and
171
polycyclic aromatic hydrocarbons was low. No sterane or terpane compounds
172
can be detected.
173 174
Fig. 1. GC×GC-TOFMS 2D contour chromatogram of ZS1C condensate.
175 176
3.3 Distribution of diamondoids
177
There are abundant diamondoids in ZS1C condensate, where adamantanes,
178
diamantanes, triamantanes, tetramantanes and pentamantanes can be detected
179
(See Fig. S1 for the family of diamondoids). The total content of diamondoids is
180
up to 187.8 mg/g. Fig. 2a shows the GC×GC-TOFMS color contour
181
chromatogram of the diamondoids. The lightness of each peak represents the
182
content of the compound. The closer the peak color to the red, the greater the 9
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
183
peak area is. The quantitative results of all diamondoids were listed in Table S1.
184
In GC×GC-TOFMS data all diamondoids are well separated from each other,
185
different substitutions of diamondoids distribute regularly in their own cages in
186
distinctive regions. Different compound isomers show a distinctive linear
187
GCGC-TOFMS profile.
188 189 190
Fig. 2. Diamondoid hydrocarbons GC×GC-MS analysis of ZS1C condensate.
191 192
Adamantanes: at least 144 alkyl-adamantanes have been identified in the
193
selected m/z 135,136, 149, 163, 177, 191 or 205 chromatograms from ZS1C
194
condensate (Fig. 2b). The concentration of summed alkyl-adamantanes in this
195
condensate is up to 125.7 mg/g. The C0-, C1-, C2-, C3-, C4-, C5-, C6-, C7-, C8- and
196
C9-adamantane groups comprised 1, 2, 8, 23, 29, 30, 26, 13, 9 and 3 isomers,
197
respectively.
198
Diamantanes: a total of 74 alkyl-diamantanes have been detected (Fig. 2c).
199
The concentration of summed alky-diamantines is 56.0 mg/g. The C0-, C1-, C2-,
200
C3-, C4- and C5-diamantane groups comprised 1, 3, 21, 33, 13 and 3 isomers,
201
respectively.
202
Triamantanes: 50 alkyl-triamantanes exist with s/n ratios of over 100 (Fig.
203
2d). The concentration of alkyl-triamantanes is 6.0 mg/g. The C0-, C1-, C2- and 10
ACS Paragon Plus Environment
Page 10 of 67
Page 11 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
204
Energy & Fuels
C3-triamantane groups comprised 1, 6, 21, 22 isomers, respectively.
205
Tetramantanes: 9 alkyl-tetramantanes have been detected (Fig. 2e). The C0-,
206
C1- and C2-tetramantane groups comprised 3, 4, 2 isomers, respectively. The
207
structure of three isomers of tetramantane has already been confirmed.
208
According to the distribution of these tetramantanes and 3 corresponding
209
C1-tetramantanes, it is inferred that the substituents of these three
210
C1-tetramantane are the same.
211
Pentamantanes: 3 alkyl-pentamantanes were detected (Fig. 2f). The
212
concentration of alkyl-pentamantanes is only 0.005 mg/g. There are six isomers
213
of alkyl-pentamantanes. Two isomers of pentamantane (cannot confirm their
214
structure) and one C1-pentamantane have been found in this condensate.
215
The identification of alkyl-tetramantanes and alkyl-pentamantanes is based
216
on their distribution in GC×GC-TOFMS chromatogram and the prominent
217
fragmental ions of 77, 91 and 105 in the mass spectra of all 12 compounds (see
218
Fig. S2 for the mass spectra of alkyl-tetramantanes and alkyl-pentamantanes).
219
3.4 Distribution of organic sulfur compounds
220
Extensive distributions of abundant OSCs (organic sulfur compounds) were
221
detected in ZS1C condensate (Fig. 3). The different OSCs’ resolved by
222
GCGC-TOFMS
223
benzylmercaptane,
224
phenanthrothiophene and thiadiamondoid compounds. Among the OSCs,
analysis
included
tetrahydrothiophene,
alkylbenzothiophene,
11
ACS Paragon Plus Environment
alkylthiophene,
dibenzothiophene,
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
225
dibenzothiophenes have the highest concentration of 163.7 mg/g (Table S2). The
226
total content of thiadiamondoids is up to 28 mg/g (See Table S3 for
227
concentration and identification of all the thiadiamondoids). Such a high
228
abundance of OSCs in crude oil is very rare, indicating unique formation
229
mechanism of ZS1C condensate. The formation of ZS1C oil and gas represents
230
the complexity of geology and geochemistry progress.
231 232 233
Fig. 3. OSCs detected in ZS1C condensate collectively highlighted in the 2D GC×GC contour chromatograms.
234 235
3.5 Distribution of thiadiamondoid compounds
236
Diamondoids have the prominent fragmental ions of 79, 93,107 (77, 91 and
237
105) in the mass spectra. Thiadiamondoids have the same structure as
238
diamondoids, therefore, they have the similar prominent fragment ions.
239
Different compound isomers showed a distinctive linear distribution pattern,
240
which formed several lines in each cage separately. The identification of
241
thiadiamondoids was based on the comparison with mass spectra data reported
242
by Wei et al.2,4 Cai et al.30 respectively. Dithia-, trithia-, tetrathia-diamondoids
243
are first reported in the present study. Thiadiamondoids and corresponding
244
diamondoids have similar distribution in GCGC-TOFMS data, but later on 1st
245
and 2nd dimension retention time. Dithia-, trithia-, tetrathia-diamondoids have 12
ACS Paragon Plus Environment
Page 12 of 67
Page 13 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
246
larger molecular weight, which are distributed later on 1st dimension retention
247
time, but are similar on 2nd dimension retention time. Diamondoids substituted
248
by the same number of sulfur atom distribute regularly. The possible location of
249
polythiadiamondoids can be predicted base on the regularity (Fig 3). Wei et al.27
250
considered the formation of thiadiamondoids might be accompanied by
251
diamondoidthiols.
252
diamondoidthiols or polythiadiamondoidthiols have been detected from ZS1C
253
condensate.
254
thiadiamondoids cannot only rely on their prominent fragment ions. For
255
example, adamantanethiols and thiaadamantanes have the same molecular
256
weight, same structure of diamondoids, thus they distribute close in
257
GCGC-TOFMS. The diamondoidthiols and thiadiamondoids were discussed
258
together in the present study.
259
3.5.1 Thiadiamondoids
However,
the
and
differentiation
diamantanethiols,
of
diamondthiols
even
from
Distribution of thiadiamondoids (substitute by 1 S atom) is showed in Fig.
260 261
Adamantanethiols
4a.
262 263
Fig. 4. Thiadiamondoids GC×GC-MS analysis of the ZS1C condensate.
264 265
Thiaadamantanes and adamantanethiols: 43 thiaadamantanes of ZS1C
266
condensate have been identified (Fig. 4b) with 23 more than the previous study 13
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
267
of ZS1C condensate30,32. Newly recognized thiaadamantane products are the C1-,
268
C2-, C3-, C4- and C5-thiaadamantane groups comprised 1, 2, 2, 2 and 5 isomers,
269
respectively. Eleven (11) adamantanethiols were distinguished, which have the
270
unique fragment ions of 135, 149 and 163. Total concentration of
271
thiaadamantanes and adamantanethiols is 10.9 mg/g (Fig. 4b, Fig. S3).
272
Thiadiamantanes and diamantanethiols: a total of 53 alkyl-thiadiamantanes
273
have been detected. The C0-, C1-, C2-, C3- and C4-thiadiamantane groups
274
comprised 1, 9, 20, 18 and 5 isomers, respectively. Two diamantanethiols with
275
unique fragmental ions of 187, 201 have been identified. Total concentration of
276
thiadiamantanes and diamantanethiols is 9.9 mg/g (Fig. 4c, Fig. S4).
277
Thiatriamantanes and triamantanethiols: 17 alkyl-thiadiamantanes were
278
detected in the ZS1C condensate. The C0-, C1-, C2- and C3-thiatriamantane
279
groups comprised 3, 8, 5 and 1 isomers, respectively. Three (3) distinguishable
280
triamantanethiols have the unique fragmental ions of 239, 253 and 267. Total
281
concentration of thiatriamantanes and triamantanethiols is 0.7 mg/g (Fig. 4d, Fig.
282
S5). In addition to the prominent fragmental ions of 77, 91 and 105, there are
283
also fragmental ions of 128, 143 and 157 in the mass spectra of thiatriamantanes.
284
The position of alkyl-thiatriamantanes in GCGC-TOFMS data is the first time
285
to be reported here.
286 287
No thiatetramantanes have been identified in the condensate. 3.5.2 Dithiadiamondoids 14
ACS Paragon Plus Environment
Page 14 of 67
Page 15 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
288
Distribution of dithiadiamondoids is showed in Fig. 5a. The position of all
289
dithiadiamondoids in GCGC-TOFMS data is the first time to be reported here.
290
There are 36 dithiaadamantanes identified from ZS1C condensate (Fig. 5b). The
291
total concentration of dithiaadamantanes is 2.5 mg/g (Fig. 5b, Fig. S6). Because
292
of the same molecular weight and similar distribution with 2-ring aromatic
293
hydrocarbons,
294
identification of dithiaadamantanes is based on the regular distribute of all
295
dithiadiamondoids and prominent fragmental ion of the mass spectra.
296
Dithiadiamantanes and dithiatriamantanes are easier to be recognized in
297
GCGC-TOFMS, which have the unique fragmental ions of 141 and 155
298
(mostly formed by the break of two bridgehead sulfur atoms). A total of 34
299
alkyl-dithiadiamantanes
300
thiadiamantaness and diamantanethiols is 1.0 mg/g (Fig. 5c, Fig. S7).
301
Alkyl-dithiatriamantanes
302
alkyl-dithiatriamantanes being detected from ZS1C condensate. The total
303
concentration of dithiatriamantanes is 0.06 mg/g (Fig. 5d, Fig. 6). No
304
dithiatetramantanes have been identified in the studied condensate.
dithiaadamantanes
were
were
were
detected.
identified
difficult
The
to
differentiate.
total
for the
first
The
concentration
time
with
of
11
305 306
Fig. 5. Dithiadiamondoids GC×GC-MS analysis of the ZS1C condensate.
307
Fig. 6. Mass spectra of representative dithiatriamantanes of ZS1C
308
condensate. Peak numbers correspond to those in Fig. 5d. 15
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
309 310
3.5.3 Trithiadiamondoids
311
Distribution of trithiadiamondoids and tetrathiadiamondoids was showed in
312
Fig. 7a. The position of all trithiadiamondoids and tetrathiadiamondoids in
313
GCGC-TOFMS data are the first time to be reported with 43 different
314
trithiaadamantanes being identified from ZS1C condensate (Fig. 7b, Fig. S8).
315
The total concentration of trithiaadamantanes is 2.5 mg/g. The identification of
316
dithiaadamantanes is based on the regular distribute of all trithiadiamondoids,
317
the concentration of compounds, and the prominent fragmental ion of the mass
318
spectra. Trithiadiamantanes are easier to be recognized in GCGC-TOFMS with
319
5 components being detected. Concentration of trithiadiamantane is 0.25 mg/g
320
(Fig. 7c, Fig. 8).
321 322 323 324 325
Fig. 7. Trithiadiamondoids and tetrathiadiamondoids GC×GC-MS analysis of ZS1C condensate. Fig. 8. Mass spectra of representative trithiadiamantanes of ZS1C condensate. Peak No. correspond to those in Fig. 7c.
326 327
3.5.4 Tetrathiaadamantanes
328
Tetrathiaadamantanes with 6 substations and tetrathiadiamantanes with 3
329
substations were detected from ZS1C condensate (Fig. 7d, e, f, Fig 9). 16
ACS Paragon Plus Environment
Page 16 of 67
Page 17 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
330
Concentration of tetrathiaadamantanes and tetrathiadiamantanes are 0.025 mg/g,
331
0.025 mg/g, respectively. The mass spectra of tetrathiaadamantanes is influenced
332
by other compounds because of low concentration, with obscure prominent
333
fragmental ions. Tetrathiadiamantanes are identified in the oil for the first time
334
(Fig. 7f, Fig. 10). All their mass spectra have fragmental ions 77, 91 and 105
335
with high reliability.
336 337 338 339 340
Fig. 9. Mass spectra of representative tetrathiaadamantanes of ZS1C condensate. Peak No. correspond to those in Fig. 7e. Fig. 10. Mass spectra of representative tetrathiadiamantanes of ZS1C condensate. Peak No. correspond to those in Fig. 7f.
341 342
4. Discussion
343
4.1 The origin of diamondoids
344
Diamondoid compounds are continually generated and concentrated during
345
thermal cracking of crude oils at high temperatures2, therefore, the concentration
346
of diamondoid compounds is indicative for the extent of crude oil cracking1-2,36.
347
We have
348
alkyl-triamantanes, 9 alkyl-tetramantanes and 3 alkyl-pentamantanes from well
349
ZS1C condensate. This condensate sample contains highest number of
350
diamondoid compounds (281 in total) in the worldwide studies, indicating the
detected 145
alkyl-adamantanes, 74
17
ACS Paragon Plus Environment
alkyl-diamantanes, 50
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
351
high extent of thermal cracking. Alkyl-adamantanes has the highest
352
concentration (125.7 mg/g), which is almost 67.0% of all diamondoids (Table
353
S1), illustrating they are more stable than other diamondoid compounds.
354
According to the compositional and isotopic character of natural gas in well
355
ZS1C, the methane content reaches 62.7% while that of ethane is less than 0.5%
356
and the dryness coefficient (C1/C1+) is 0.987, representing a dry gas. Carbon
357
isotope values of the natural gas is relatively heavy, with δ13C1 of -42‰ and the
358
value δ13C2-δ13C1 less than 10‰, reflecting a high maturity37. Compared with
359
natural gases from Ordovician strata38, the gas from well ZS1C is classified as
360
oil-cracking gas at high temperatures, which is consistent with the high extent of
361
oil cracking indicated by the high concentration of diamondoid compounds.
362
4.2 The origin and implication of thiadiamondoids
363
Thiadiamondoids are molecular indicator of TSR3,26,39-41. Thiadiamondoids
364
share the same skeleton as diamondoids but with the bridgehead carbon replaced
365
by sulfur. Thiadiamondoid compounds with high abundance and diverse types
366
were detected in the condensate from well ZS1C (discussed in former section).
367
Thiadiamondoid compounds with extremely high concentration have not been
368
reported in previous studies, indicates the reservoir has been severely altered by
369
TSR.
370
In view of the compositional character of natural gas from well ZS1C, the
371
non-hydrocarbon gas content is relatively high, with CO2 of 24.2% and H2S of 18
ACS Paragon Plus Environment
Page 18 of 67
Page 19 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
372
8.27%, suggesting a natural gas with high abundance of H2S generated through
373
TSR42. The extremely light carbon isotope values of CO2 (-30.18‰) indicates
374
the organic-inorganic interaction through TSR. TSR is a reservoir alteration
375
process in which organic matters or hydrocarbons are oxidized by sulfate,
376
ultimately yielding CO2 and H2S. TSR is well documented and can be
377
represented by the formula (1):
378
Hydrocarbon + CaSO4 → CaCO3 + H2S + CO2 + H2O
(1)
379
Because TSR is a chemical reaction between hydrocarbon and sulfate driven
380
by thermal dynamic, the organic-inorganic interaction and the isotopic
381
fractionation occurs in the TSR process. The CO2 was sourced from the
382
hydrocarbons participated in the reaction through TSR as its carbon isotope
383
value was similar to the natural gas which is -33‰32.
384
As to the sulfur isotopic character, the δ34S of thiadiamondoid compounds
385
varies in a range of 40.3‒45.1‰, whilst that of the sulfate in Cambrian strata
386
ranges from 32.0‒37.0‰ and that of the hydrogen sulfide is about 33.5‰. The
387
sulfur of hydrogen sulfide and thiadiamondoid compounds are sourced from
388
sulfate in the strata (Fig. 11), and they are considered to share the similar
389
isotopic values. Nevertheless, the δ34S of thiadiamondoid compounds is much
390
heavier than that of the sulfate from the Cambrian strata, thus, the δ34S
391
enrichment should be related to the severe sulfur isotopic fractionation caused
392
by TSR7. The light sulfur isotope was extracted and transferred to hydrogen 19
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 20 of 67
393
sulfide or other unstable organosulfur compounds, meanwhile, the heavy sulfur
394
isotope was concentrated in the thiadiamondoid compounds which were more
395
thermally stable. Therefore, the detection of thiadiamondoid compounds with
396
high abundance and diverse types, coupled with the extremely heavier sulfur
397
isotope, represents the occurrence of severe TSR and also indicates the high
398
concentration of hydrogen sulfide in deep oil-gas.
399 400
Fig. 11. Possible schemes for the formation thiadiamondoids and
401
diamondoidthiols
(thiadiamondoidthiols)
during
thermochemical
402
reduction (TSR) in Petroleum. R=nCH3(n=0, 1, 2, 3, ...)
sulfate
403 404
5. Conclusions
405
A series of diamondoid and thiadiamondoid compounds with extremely high
406
abundance and diverse types were detected in the condensate from the first
407
discovery well that penetrated oil-gas in deep Cambrian strata of the Tarim
408
Basin. The number of diamondoid compounds reaches 282 and that of
409
thiadiamondoid compounds is 268. This is a very unique condensate sample
410
which contains the most diamondoid and thiadiamondoid compounds in the oils
411
worldwide.
412 413
Various diamondoids and thiadiamondoids have been detected through GC×GC-TOFMS
analysis
with
some
2
cages
20
ACS Paragon Plus Environment
of
thiadiamondoids:
Page 21 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
414
dithiatriamantanes and tetrathiadiamantanes being detected for the first time in
415
this study. The detection of the polythiadiamondoid unravels the complexity of
416
TSR. Sulfuration reaction of different cages of diamondoids may occur
417
separately. Polythiadiamondoid are the production of the deep sulfuration of
418
diamondoids, accompanied by large amount of H2S generation at the same time.
419
According to the comprehensive analysis of sulfur and carbon isotopes and
420
hydrocarbon composition, these compounds are residues resulted from thermal
421
cracking at high temperatures and severe TSR alteration. Gas reservoirs
422
containing high abundance of hydrogen sulfide are the major exploration targets
423
in the deep Cambrian reservoirs of the Tarim Basin.
424
21
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
425
Reference:
426
1. Dahl, J.E.P.; Liu, S.G.; Carlson, R.M.K. Science 2003, 299, 96-99.
427
2. Wei, Z.B.; Moldowan, J.M.; Zhang, S.C.; Hill, R.; Jarvie, D.M.; Wang,
428
H.T.; Song, F.Q.; Fago, F. Org. Geochem. 2007a, 38, 227-249.
429
3. Wei, Z.B.; Mankiewicz, P.J. Org. Geochem. 2011, 42, 121-133.
430
4. Wei, Z.B.; Walters, C.C.; Moldowan, J.M.; Mankiewicz, P.J.; Pottorf, R.J.;
431
Xiao, Y.T.; Maze, W.; Nguyen, P.T.H.; Madincea, M.E.; Phan, N.T.; Peters,
432
K.E. Org. Geochem. 2012, 44, 53-70.
433 434
5. Walters, C.C.; Wang, F.C.; Qian, K.N.; Wu, C.P.; Mennito, A.S.; Wei, Z.B. Geochim. Cosmochim. Acta 2015, 153, 37-71.
435
6. Zhu, G.Y.; Wang, H.; Weng, N. Mar. Petro. Geol. 2016, 69, 1-12.
436
7. Cai, C.F.; Amrani, A.; Worden, R.H.; Xiao, Q.L.; Wang, T.K.; Gvirzman,
437
Z.; Li, H.X.; Said-Ahmad, W.; Jia, L.Q. Geochim. Cosmochim. Acta
438
2016a, 182, 88-108.
439
8. Landa, S.; Machacek, V. Chem. Comm. in Germany. 1933.
440
9. Prelog, V.; Seiwerth, R.; 1941. Über die Synthese des Adamantans.
441
Berichte Der Deutschen Chemischen Gesellschaft, in Germany, 1933, 74,
442
1644-1648.
443 444 445
10. Birch, S.F.; Cullum, T.V.; Dean, R.A.; Denyer, R.L.; 1952. Nature 170, 629-630. 11. Barnes, J.E.; Dalziel, J.A.W.; Ross, S.D. Spectrochim. Acta Part A 27, 22
ACS Paragon Plus Environment
Page 22 of 67
Page 23 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
446 447 448
Energy & Fuels
1971, 1671-1676. 12. Graham, W.D.; Schleyer, P.vR.; Hagaman, E.W.; Wenkert, E. J. Am. Chem. Soc. 1973, 95, 5785-5786.
449
13. Janko, J.; Popl, M. J. Chomatogra. 1974, 89, 319-324.
450
14. Mccabe, P.H.; Nelson, C.R.; Routledge, W. Tetrahedron 1977, 33,
451 452 453 454 455
1755-1757. 15. Aczel, T.; Gorbaty, M.L.; Maa, P.S.; Schlosberg, R.H. Fuel 1979, 58, 228-230. 16. Clark, T.; Knox, T.M.O.; Mckervey, M.A.; Mackle, H.; Rooney, J.J. J. Am. Chem. Soc. 1979, 101, 2404-2410.
456
17. Mckervey, M.A. Tetrahedron 1980, 36, 971-992.
457
18. Williams, J.A.; Bjoroy, M.; Dolcater, D.L.; Winters, J.C. Org. Geochem.
458 459 460 461 462 463 464
1986, 10, 451-461. 19. Rollmann, L.D.; Green, L.A.; Bradway, R.A.; Timken, H.K.C. Catal. Today 1996, 31, 163-169. 20. Chen, J.H.; Fu, J.M.; Sheng, G.Y.; Liu, D.H.; Zhang, J.J. Org. Geochem. 1996, 25, 179-190. 21. Dahl, J.E.P.; Moldowan, J.M.; Peters, K.; Claypool, G.; Rooney, M.; Michael, G.; Mello, M.; Kohnen, M. Nature 1999, 399, 54-56.
465
22. Wingert, W.S. Fuel 1992, 71, 37-43.
466
23. Wei, Z.B.; Moldowan, J.M.; Paytan, A. Org. Geochem. 2006, 37, 891-911. 23
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
467 468
24. Zhu, G.Y.; Wang, H.T.; Weng N, Huang H. P.; Liang, H.B.; Ma, S.P. Org. Geochem. 2013, 63, 8-17.
469
25. Dahl, J.E.; Moldowan, J.M.; Wei, Z.B.; Lipton, P.A.; Denisevich, P.; Gat,
470
R.; Liu, A.G.; Schreiner, P.R.; Carlson, R.M.K. Angew. Chem. Int. Ed.
471
2010, 49, 9881-9885.
472 473 474 475
26. Hanin, S.; Adam, P.; Kowalewski, I.; Huc, A.Y.; Carpentier, B.; Albrecht, P. Chem. Comm. 2002, 16, 1750-1751. 27. Wei, Z.B.; Moldowan, J.M.; Fago, F.; Dahl, J.E.; Cai, C.F.; Peters, K.E. Energy Fuels 2007b, 21, 3431-3436.
476
28. Gvirtzman, Z.; Said-Ahmad, W.; Ellis, G.S.; Hill, R.J.; Moldowan, J.M.;
477
Wei, Z.B.; Amrani, A. Geochim. Cosmochim. Acta 2015, 167, 144-161.
478
29. Wang, M.; Zhu, G.Y.; Ren, L.M.; Liu, X.X.; Zhao, S.Q.; Shi, Q. Energy
479 480 481 482 483
Fuels 2015, 29, 4842-4849. 30. Cai, C.F.; Xiao, Q.L.; Fang, C.C.; Wang, T.K.; He, W.X.; Li, H.X. Org. Geochem. 2016b, 101, 49-62. 31. Zhu, G.Y.; Weng, N.; Wang, H.T, Yang, H.J.; Zhang, S.C.; Su, J.; Liao, F.R.; Zhang, B.; Ji, Y.G. Mar. Petro. Geol. 2015a, 62, 14-27.
484
32. Zhu, G.Y.; Huang, H.P.; Wang, H.T. Energy Fuels 2015b, 29, 1332-1344.
485
33. Zhu, G.Y.; Wang, H.T.; Weng, N.; Yang H.J.; Zhang, K.; Liao, F.R.; Yuan,
486 487
N. Mar. Petro. Geol. 2015c, 65, 103-113. 34. Zhang, S. C.; Huang, H.P.; Su, J.; Liu, M.; Wang, X.M.; Hu, J. Org. 24
ACS Paragon Plus Environment
Page 24 of 67
Page 25 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
488 489 490 491 492
Energy & Fuels
Geochem. 2015, 86, 5-18. 35. Oldenburg, T.B.P.; Brown, M.; Bennett, B.; Larter, S.R. Org. Geochem. 2014, 75, 151-168. 36. Zhang, S.C.; Su, J.; Wang, X.W.; Zhu, G.Y.; Yang, H.J.; Liu, K.Y.; Li, Z.X. Org. Geochem. 2011, 42, 1394-1410.
493
37. Dai, J.X.; Zou, C.N.; Zhang, S.C.; Li, J.; Ni, Y.Y.; Hu, G.Y.; Luo, X.; Tao,
494
S.Z.; Zhu, G.Y.; Mi, J.K.; Li, Z.S.; Hu, A.P.; Yang, C.; Zhou, Q.H.; Shuai,
495
Y.H.; Zhang, Y.; Ma, C.H. Sci. China, Ser. D 2008, 38, 1329-1341.
496 497
38. Zhu, G.Y, Zhang, B.T.; Yang, H.J.; Su, J.; Han, J.F. Org. Geochem. 2014, 74, 85-97.
498
39. Galimberti, R.; Zecchinello, F.; Nali, M.; Gigantiello, N.; Caldiero, L. The
499
22nd International Meeting of Organic Geochemists (IMOG) Seville,
500
Spain, Abstracts Book Part 2005, 1, 229-230.
501 502
40. Zhu, G.Y.; Zhang, S.C.; Huang, H.P.; Liang, Y.B.; Meng, S. C.; Li, Y.G. Appl. Geochem. 2011, 26, 1261-1273.
503
41. Jiang, N.H.; Zhu, G.Y.; Zhang, S.C. Chin. Sci. Bull. 2008, 53(3), 396-401.
504
42. Zhu, G.Y.; Zhang, S.C.; Liang, Y.B.; Dai, J.X.; Li, J. Sci. China, Ser. D
505 506 507 508
2005, 48, 1037-1046. 43. Li, M.; Zhang, S.; Jiang, C.; Zhu, G.; Fowler, M.; Achal, S.; Milovic, M.; Robinson, R.; Larter, S. Org. Geochem. 2008, 39, 1144-1149. 44. Greenwood, P.F.; Amrani, A.; Sessions, A.; Raven, M.R.; Holman, A.; 25
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
509
Dror, G.; Grice, K.; McCulloch, M.T.; Adkins, J.F. in, Grice, K. (Ed.),
510
Principles and Practice of Analytical Techniques in Geosciences. Royal
511
Society of Chemistry, UK, 2015, 285-312.
512 513 514 515
45. Garcia, C.L.; Becchi, M.; Grenier-Loustalot, M. F.; Paїsse, O.; Szymanski, R. Appl. Geochem. 2002, 74, 3849-57. 46. Asif, M.; Alexander, R.; Fazeelat, T.; Pierce, K. Org. Geochem. 2009, 40, 895-901.
516
26
ACS Paragon Plus Environment
Page 26 of 67
Page 27 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
517
Fig. 1. GC×GC-TOFMS 2D contour chromatogram of ZS1C condensate.
518
a: Alkanes; b: Cycloalkanes; c: Benzene; d: Tetrahydro-naphthalene; e:
519
Benzo[b]thiophene and naphthalene; f: Fluorene; g: Phenanthrene and
520
Dibenzothiophene; h: Phenanthrothiophene; i: Benzo[b]naphthothiophene
521 522 523 524
Fig. 2. Diamondoid hydrocarbons GC×GC-MS analysis of ZS1C condensate. a:
m/z
525
135+136+149+163+177+191+205+188+187+201+215+229+243+257+240+23
526
9+253+267+281+292+291+305+319+303+344+343+358
527
highlighting
528
135+136+149+163+177+191+205 chromatogram highlighting adamantanes; c:
529
m/z 188+187+201+215+229+243+257 chromatogram highlighting diamantanes;
530
d: m/z 240+239+253+267+281 chromatogram highlighting triamantanes; e: m/z
531
292+291+305+319+303 chromatogram highlighting tetramantanes; f: m/z
532
344+343+358 chromatogram highlighting pentamantanes.
diamondoid
hydrocarbons
with
chromatogram
1-5
cages;
b:
m/z
533 534 535 536 537
Fig. 3. OSCs detected in ZS1C condensate collectively highlighted in the 2D GC×GC contour chromatograms. a:
Tetrahydrothiophene
and
thiophene;
b:
Benzothiophene;
c:
Dibenzothiophene; d: Phenanthrothiophene and Benzo[b]naphthothiophene; e, f, 27
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 28 of 67
538
g: thiaadamantanes, thiadiamantanes, thiatriamantanes; h, i, j: dithiaadamantanes,
539
dithiadiamantanes,
540
trithiadiamantanes; m, n: tetrathiaadamantanes, tetrathiadiamantanes
dithiatriamantanes;
k,
l:
trithiaadamantanes,
541 542
Fig. 4. Thiadiamondoids GC×GC-MS analysis of the ZS1C condensate.
543
a:
m/z
544
168+182+196+210+224+238+206+220+234+248+262+258+272+286+300
545
chromatogram highlighting
546
168+182+196+210+224+238 chromatogram highlighting thiaadamantanes; c:
547
m/z 206+220+234+248+262 chromatogram highlighting thiadiamantanes; d:
548
m/z 258+272+286+300 chromatogram highlighting thiatriamantanes
thiadiamondoids
with
1-3
cages;
b:
m/z
549 550
Fig. 5. Dithiadiamondoids GC×GC-MS analysis of the ZS1C condensate. a:
551
m/z 186+200+214+228+224+238+252+266+280+276+290+304 chromatogram
552
highlighting thiadiamondoids with 1-3 cages; b: m/z 186+200+214+228
553
chromatogram highlighting dithiaadamantanes; c: m/z 224+238+252+266+280
554
chromatogram
555
chromatogram highlighting dithiatriamantanes
highlighting
dithiadiamantanes;
d:
m/z
276+290+304
556 557 558
Fig. 6. Mass spectra of representative dithiatriamantanes of ZS1C condensate. Peak numbers correspond to those in Fig. 5d. 28
ACS Paragon Plus Environment
Page 29 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
559 560 561 562
Fig. 7. Trithiadiamondoids and tetrathiadiamondoids GC×GC-MS analysis of ZS1C condensate. a:
m/z
190+204+218+232+246+260+242+256+270 thiadiamondoids
with
1-2
cages;
chromatogram
563
highlighting
b:
m/z
564
190+204+218+232+246+260 chromatogram highlighting trithiaadamantanes; c:
565
m/z 242+256+270 chromatogram highlighting trithiadiamantanes; d: m/z
566
208+222+236+260+274 chromatogram highlighting thiadiamondoids with 1-2
567
cages; e: m/z 208+222+236 chromatogram highlighting tetrathiaadamantanes; f:
568
m/z 260 chromatogram highlighting tetrathiadiamantanes
569 570 571
Fig. 8. Mass spectra of representative trithiadiamantanes of ZS1C condensate. Peak No. correspond to those in Fig. 7c.
572 573 574
Fig. 9. Mass spectra of representative tetrathiaadamantanes of ZS1C condensate. Peak No. correspond to those in Fig. 7e.
575 576 577
Fig. 10. Mass spectra of representative tetrathiadiamantanes of ZS1C condensate. Peak No. correspond to those in Fig. 7f.
578 579
Fig. 11. Possible schemes for the formation thiadiamondoids and 29
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(thiadiamondoidthiols)
Page 30 of 67
580
diamondoidthiols
during
581
reduction (TSR) in Petroleum. R=nCH3(n=0, 1, 2, 3, ...)
582
30
ACS Paragon Plus Environment
thermochemical
sulfate
Page 31 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
583
Energy & Fuels
Fig. 1
584
585 586
31
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
587
Fig. 2
588
589 590
32
ACS Paragon Plus Environment
Page 32 of 67
Page 33 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
591
Energy & Fuels
Fig. 3
592
593 594
33
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
595
Fig. 4
596
597 598
34
ACS Paragon Plus Environment
Page 34 of 67
Page 35 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
599
Energy & Fuels
Fig. 5
600
601 602
35
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
603
Fig. 6
604
605 606
36
ACS Paragon Plus Environment
Page 36 of 67
Page 37 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
607
Energy & Fuels
Fig. 7
608
609 610
37
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
611
Fig. 8
612
613 614
38
ACS Paragon Plus Environment
Page 38 of 67
Page 39 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
615
Energy & Fuels
Fig. 9
616
617 618
39
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
619
Fig. 10
620 621
40
ACS Paragon Plus Environment
Page 40 of 67
Page 41 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
622
Energy & Fuels
Fig. 11
623
624 625
41
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 42 of 67
626
Supplementary Figure S1. The family of diamondoids.
627
a:adamantane; b: diamantane; c: triamantane; d,e,f: three isomers of
628
tetramantane; g-l: six isomers of pantamantane.
629 630
Supplementary Figure S2. Mass spectra of representative tetramantanes
631
and pentamantanes of ZS1C condensate. Peak No. correspond to those in Figure
632
1e, f.
633 634
Supplementary Figure S3. Mass spectra of representative thiaadamantane
635
and adamantanethiols of ZS1C condensate. Peak No. correspond to those in
636
Figure 4b.
637 638
Supplementary Figure S4. Mass spectra of representative thiadiamantane
639
and diamantanethiols of ZS1C condensate. Peak No. correspond to those in
640
Figure 4c.
641 642 643
Supplementary Figure S5. Mass spectra of representative thiatriamantanes of ZS1C condensate. Peak No. correspond to those in Figure 4d.
644 645 646
Supplementary
Figure
S6.
Mass
spectra
of
representative
dithiaadamantanes of ZS1C condensate. Peak No. correspond to those in Figure 42
ACS Paragon Plus Environment
Page 43 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
647
Energy & Fuels
5b.
648
Supplementary
649
Figure
S7.
Mass
spectra
of
representative
650
dithiadiamantanes of ZS1C condensate. Peak No. correspond to those in Figure
651
5c.
652
Supplementary
653
Figure
S8.
Mass
spectra
of
representative
654
trithiaadamantanes of ZS1C condensate. Peak No. correspond to those in Figure
655
7b.
656
43
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
657
Supplementary Figure S1
658
659 660
44
ACS Paragon Plus Environment
Page 44 of 67
Page 45 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
661
Energy & Fuels
Supplementary Figure S2
662
663 664
45
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
665
Supplementary Figure S3
666
667 668
46
ACS Paragon Plus Environment
Page 46 of 67
Page 47 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
669
Energy & Fuels
Supplementary Figure S4
670
671 672
47
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
673
Supplementary Figure S5
674
675 676
48
ACS Paragon Plus Environment
Page 48 of 67
Page 49 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
677
Energy & Fuels
Supplementary Figure S6
678
679 680
49
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
681
Supplementary Figure S7
682
683 684
50
ACS Paragon Plus Environment
Page 50 of 67
Page 51 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
685
Energy & Fuels
Supplementary Figure S8
686
687 688
51
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 52 of 67
TABLES
Table S1. Diamondoids detected in well ZS1C condensate. Peak No. correspond to GC-GC-MS assigned peaks in Fig 2. A=Adamantanes, D=Diamantanes, T=Triamantanes, TET=Tetramantanes, PENT=pentamantanes Compouds D16-Adamantane
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
Concentration mg/g
I.S.-1
2490 , 2.390
I.S.
C10D16
152
0.642
Adamantane
A-1
2538 , 2.420
A
C10H16
136
1.970
1-methyladamantane
A-2
2634 , 2.300
A
C11H18
135
4.646
2-methyladamantane
A-3
2922 , 2.420
A
C11H18
135
0.582
1,3-dimethyl-adamantane
A-4
2706 , 2.200
A
C12H20
149
3.098
1,4-dimethyladamantane (cis)
A-5
2976 , 2.290
A
C12H20
149
2.696
1,4-dimethyladamantane (trans)
A-6
3000 , 2.290
A
C12H20
149
0.702
1,2-dimethyl-adamantane
A-7
3114 , 2.380
A
C12H20
149
0.689
1-ethyladamantane
A-8
3216 , 2.360
A
C12H20
135
4.932
C2-adamantane
A-9
3246 , 2.420
A
C12H20
149
0.987
C2-adamantane
A-10
3276 , 2.440
A
C12H20
149
1.949
2-ethyladamantane
A-11
3336 , 2.410
A
C12H20
135
1.287
1,3,5-trimethyladamantane
A-12
2766 , 2.070
A
C13H22
163
1.577
1,3,6-trimethyladamantane
A-13
3036 , 2.160
A
C13H22
163
0.121
1,3,4-trimethyladamantane (cis)
A-14
3150 , 2.230
A
C13H22
163
0.355
1,3,4-trimethyladamantane(trans)
A-15
3174 , 2.240
A
C13H22
163
1.347
1-ethyl-3-methyl-adamantane
A-16
3276 , 2.229
A
C13H22
149
4.622
1,2,3-trimethyladamantane
A-17
3294 , 2.260
A
C13H22
163
3.547
C3-adamantane
A-18
3516 , 2.340
A
C13H22
149
3.229
C3-adamantane
A-19
3558 , 2.360
A
C13H22
149
2.660
C3-adamantane
A-20
3618 , 2.389
A
C13H22
149
1.571
C3-adamantane
A-21
3642 , 2.420
A
C13H22
149
1.857
C3-adamantane
A-22
3666 , 2.210
A
C13H22
149
2.076
C3-adamantane
A-23
3666 , 2.410
A
C13H22
149
1.603
C3-adamantane
A-24
3318 , 2.310
A
C13H22
163
2.073
C3-adamantane
A-25
3384 , 2.260
A
C13H22
163
1.297
C3-adamantane
A-26
3408 , 2.320
A
C13H22
163
2.567
C3-adamantane
A-27
3432 , 2.340
A
C13H22
163
4.167
C3-adamantane
A-28
3456 , 2.360
A
C13H22
163
2.681
C3-adamantane
A-29
3480 , 2.370
A
C13H22
163
0.136
C3-adamantane
A-30
3504 , 2.361
A
C13H22
163
0.842
C3-adamantane
A-31
3540 , 2.440
A
C13H22
163
0.246
C3-adamantane
A-32
3666 , 2.280
A
C13H22
163
1.270
C3-adamantane
A-33
3678 , 2.290
A
C13H22
163
2.552
C3-adamantane
A-34
3564 , 2.420
A
C13H22
163
1.192
ACS Paragon Plus Environment
Page 53 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Compouds
Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
1,3,5,7-tetramethyl-adamantane
A-35
2808 , 1.970
A
C14H24
177
0.421
1,2,5,7-tetramethyl-adamantane
A-36
3198 , 2.120
A
C14H24
177
2.102
C4-adamantane
A-37
3312 , 2.170
A
C14H24
177
0.227
1-ethyl-3,5-dimethyl-adamantane
A-38
3318 , 2.130
A
C14H24
163
1.290
C4-adamantane
A-39
3342 , 2.180
A
C14H24
177
1.176
1,3,5,6-tetramethyl-adamantane
A-40
3354 , 2.200
A
C14H24
177
1.338
1,2,3,5-tetramethyl-adamantane
A-41
3438 , 2.190
A
C14H24
177
2.170
C4-adamantane
A-42
3690 , 2.269
A
C14H24
149
0.175
C4-adamantane
A-43
3702 , 2.280
A
C14H24
149
0.719
C4-adamantane
A-44
3864 , 2.320
A
C14H24
149
0.225
C4-adamantane
A-45
3900 , 2.320
A
C14H24
149
0.614
C4-adamantane
A-46
3942 , 2.320
A
C14H24
149
0.914
C4-adamantane
A-47
3978 , 2.379
A
C14H24
149
0.728
C4-adamantane
A-48
3990 , 2.369
A
C14H24
149
0.563
C4-adamantane
A-49
3564 , 2.210
A
C14H24
163
1.998
C4-adamantane
A-50
3582 , 2.210
A
C14H24
163
1.688
C4-adamantane
A-51
3714 , 2.290
A
C14H24
163
1.915
C4-adamantane
A-52
3750 , 2.300
A
C14H24
163
0.212
C4-adamantane
A-53
3774 , 2.310
A
C14H24
163
0.152
C4-adamantane
A-54
3798 , 2.300
A
C14H24
163
2.811
C4-adamantane
A-55
3822 , 2.370
A
C14H24
163
1.140
C4-adamantane
A-56
3882 , 2.370
A
C14H24
163
0.397
C4-adamantane
A-57
3918 , 2.390
A
C14H24
163
0.420
C4-adamantane
A-58
3930 , 2.400
A
C14H24
163
0.518
C4-adamantane
A-59
3954 , 2.410
A
C14H24
163
0.604
C4-adamantane
A-60
3462 , 2.200
A
C14H24
177
2.415
C4-adamantane
A-61
3576 , 2.260
A
C14H24
177
0.598
C4-adamantane
A-62
3594 , 2.280
A
C14H24
177
1.976
C4-adamantane
A-63
3696 , 2.160
A
C14H24
177
0.717
mg/g
1-ethyl-3,5,7-trimethyl-adamantane
A-64
3348 , 2.040
A
C15H26
177
0.889
1,2,3,5,7,-pentamethyl-adamantane
A-65
3366 , 2.080
A
C15H26
191
0.643
C5-adamantane
A-66
4290 , 2.309
A
C15H26
149
0.302
C5-adamantane
A-67
4338 , 2.320
A
C15H26
149
0.287
C5-adamantane
A-68
3936 , 2.180
A
C15H26
163
0.752
C5-adamantane
A-69
4080 , 2.270
A
C15H26
163
0.845
C5-adamantane
A-70
3702 , 2.100
A
C15H26
163
1.390
C5-adamantane
A-71
4008 , 2.240
A
C15H26
163
0.275
C5-adamantane
A-72
4020 , 2.250
A
C15H26
163
0.409
C5-adamantane
A-73
4158 , 2.260
A
C15H26
163
0.831
C5-adamantane
A-74
4182 , 2.320
A
C15H26
163
0.474
C5-adamantane
A-75
4194 , 2.330
A
C15H26
163
0.094
C5-adamantane
A-76
3708 , 2.160
A
C15H26
177
1.000
C5-adamantane
A-77
3726 , 2.160
A
C15H26
177
1.205
C5-adamantane
A-78
3828 , 2.170
A
C15H26
177
1.260
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Compouds
Page 54 of 67 Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
C5-adamantane
A-79
3846 , 2.240
A
C15H26
177
0.520
C5-adamantane
A-80
3942 , 2.240
A
C15H26
177
1.200
C5-adamantane
A-81
3534 , 2.210
A
C15H26
177
0.991
C5-adamantane
A-82
4068 , 2.270
A
C15H26
177
0.595
C5-adamantane
A-83
4152 , 2.320
A
C15H26
177
0.666
C5-adamantane
A-84
3570 , 2.110
A
C15H26
191
0.560
C5-adamantane
A-85
3582 , 2.140
A
C15H26
191
0.381
C5-adamantane
A-86
3606 , 2.140
A
C15H26
191
0.342
C5-adamantane
A-87
3744 , 2.210
A
C15H26
191
0.936
C5-adamantane
A-88
3762 , 2.220
A
C15H26
191
1.216
C5-adamantane
A-89
3792 , 2.170
A
C15H26
191
0.329
C5-adamantane
A-90
3834 , 2.230
A
C15H26
191
0.605
C5-adamantane
A-91
3840 , 2.080
A
C15H26
191
0.395
C5-adamantane
A-92
3864 , 2.120
A
C15H26
191
0.225
C5-adamantane
A-93
4170 , 2.200
A
C15H26
191
0.668
C6-adamantane
A-94
4458 , 2.220
A
C16H28
149
0.221
C6-adamantane
A-95
4668 , 2.310
A
C16H28
149
0.136
C6-adamantane
A-96
4092 , 2.110
A
C16H28
163
0.364
C6-adamantane
A-97
4314 , 2.190
A
C16H28
163
0.181
C6-adamantane
A-98
4614 , 2.300
A
C16H28
163
0.116
C6-adamantane
A-99
4062 , 2.130
A
C16H28
177
0.449
C6-adamantane
A-100
4080 , 2.140
A
C16H28
177
0.557
C6-adamantane
A-101
4170 , 2.170
A
C16H28
177
0.188
C6-adamantane
A-102
4194 , 2.200
A
C16H28
177
0.274
C6-adamantane
A-103
4272 , 2.210
A
C16H28
177
0.270
C6-adamantane
A-104
4482 , 2.260
A
C16H28
177
0.597
C6-adamantane
A-105
4494 , 2.250
A
C16H28
177
0.327
C6-adamantane
A-106
3888 , 1.990
A
C16H28
177
0.004
C6-adamantane
A-107
4176 , 2.140
A
C16H28
177
0.398
C6-adamantane
A-108
3876 , 2.120
A
C16H28
191
0.235
C6-adamantane
A-109
4116 , 2.160
A
C16H28
191
0.055
C6-adamantane
A-110
4302 , 2.280
A
C16H28
191
0.352
C6-adamantane
A-111
4314 , 2.280
A
C16H28
191
0.211
C6-adamantane
A-112
4392 , 2.260
A
C16H28
205
0.056
C6-adamantane
A-113
4068 , 2.180
A
C16H28
205
0.054
C6-adamantane
A-114
3900 , 2.200
A
C16H28
205
0.178
C6-adamantane
A-115
3942 , 2.130
A
C16H28
205
0.039
C6-adamantane
A-116
4134 , 2.170
A
C16H28
205
0.122
C6-adamantane
A-117
3906 , 2.130
A
C16H28
205
0.093
C6-adamantane
A-118
3912 , 2.090
A
C16H28
205
0.158
C6-adamantane
A-119
4140 , 2.190
A
C16H28
205
0.126
C7-adamantane
A-120
4362 , 2.170
A
C17H30
149
0.026
C7-adamantane
A-121
4476 , 2.110
A
C17H30
163
0.104
C7-adamantane
A-122
4536 , 2.160
A
C17H30
177
0.096
ACS Paragon Plus Environment
mg/g
Page 55 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Compouds
Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
C7-adamantane
A-123
4632 , 2.180
A
C17H30
177
0.068
C7-adamantane
A-124
4464 , 2.170
A
C17H30
191
0.053
C7-adamantane
A-125
4512 , 2.190
A
C17H30
191
0.193
C7-adamantane
A-126
4776 , 2.250
A
C17H30
191
0.156
C7-adamantane
A-127
4500 , 2.130
A
C17H30
192
0.026
C7-adamantane
A-128
4176 , 2.040
A
C17H30
205
0.050
C7-adamantane
A-129
4626 , 2.270
A
C17H30
205
0.104
C7-adamantane
A-130
4296 , 2.160
A
C17H30
205
0.221
C7-adamantane
A-131
4218 , 2.110
A
C17H30
219
0.036
C7-adamantane
A-132
4320 , 2.160
A
C17H30
219
0.006
C8-adamantane
A-133
4836 , 2.230
A
C18H32
149
0.168
C8-adamantane
A-134
5016 , 2.200
A
C18H32
177
0.033
C8-adamantane
A-135
4818 , 2.150
A
C18H32
205
0.061
C8-adamantane
A-136
4584 , 2.120
A
C18H32
205
0.017
C8-adamantane
A-137
4890 , 2.190
A
C18H32
205
0.049
C8-adamantane
A-138
4896 , 2.220
A
C18H32
205
0.040
C8-adamantane
A-139
4962 , 2.220
A
C18H32
205
0.038
C8-adamantane
A-140
4494 , 2.020
A
C18H32
205
0.040
C8-adamantane
A-141
4614 , 2.130
A
C18H32
219
0.054
C9-adamantane
A-142
5136 , 2.170
A
C19H34
205
0.010
C9-adamantane
A-143
5094 , 2.160
A
C19H34
219
0.018
C9-adamantane
A-144
4884 , 2.050
A
C19H34
233
0.002
mg/g
Diamantane
D-1
4320 , 2.930
D
C14H20
188
4.532
4-methyldiamantane
D-2
4380 , 2.739
D
C15H22
187
3.617
1-methyldiamantane
D-3
4512 , 2.880
D
C15H22
187
3.929
3-methyldiamantane
D-4
4602 , 2.880
D
C15H22
187
1.437
4,9-dimethyldiamantane
D-5
4428 , 2.570
D
C16H24
201
1.599
1,4+2,4-dimethyldiamantane
D-6
4530 , 2.670
D
C16H24
201
2.073
4,8-dimethyldiamantane
D-7
4548 , 2.690
D
C16H24
201
2.009
C2-diamantane
D-8
4602 , 2.670
D
C16H24
201
0.063
3,4-dimethyldiamantane
D-9
4644 , 2.700
D
C16H24
201
2.398
C2-diamantane
D-10
4704 , 2.810
D
C16H24
201
1.148
C2-diamantane
D-11
4722 , 2.760
D
C16H24
201
0.325
C2-diamantane
D-12
4734 , 2.720
D
C16H24
201
0.027
C2-diamantane
D-13
4746 , 2.810
D
C16H24
201
3.393
C2-diamantane
D-14
4776 , 2.820
D
C16H24
201
1.811
C2-diamantane
D-15
4794 , 2.890
D
C16H24
201
0.988
C2-diamantane
D-16
4830 , 2.830
D
C16H24
201
0.613
C2-diamantane
D-17
4854 , 2.868
D
C16H24
201
1.294
C2-diamantane
D-18
5160 , 2.800
D
C16H24
201
0.149
C2-diamantane
D-19
5202 , 2.930
D
C16H24
201
0.065
C2-diamantane
D-20
5430 , 2.710
D
C16H24
201
0.080
C2-diamantane
D-21
5178 , 2.850
D
C16H24
201
0.351
C2-diamantane
D-22
5190 , 2.840
D
C16H24
201
0.325
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Compouds
Page 56 of 67 Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
n-ethyl-diamantane
D-23
4866 , 2.790
D
C16H24
187
0.885
n-ethyl-diamantane
D-24
4914 , 2.830
D
C15H22
187
0.399
mg/g
n-ethyl-diamantane
D-25
4938 , 2.900
D
C16H24
187
0.878
1,4,9-trimethyldiamantane
D-26
4560 , 2.510
D
C17H26
215
1.202
3,4,9-trimethyldiamantane
D-27
4788 , 2.630
D
C17H26
215
3.331
C3-diamantane
D-28
4908 , 2.630
D
C17H26
201
0.563
C3-diamantane
D-29
4938 , 2.700
D
C17H26
201
0.516
C3-diamantane
D-30
4950 , 2.720
D
C17H26
201
0.728
C3-diamantane
D-31
4992 , 2.700
D
C17H26
201
0.339
C3-diamantane
D-32
5016 , 2.740
D
C17H26
201
0.683
C3-diamantane
D-33
5118 , 2.750
D
C17H26
201
0.831
C3-diamantane
D-34
5136 , 2.840
D
C17H26
201
0.237
C3-diamantane
D-35
5076 , 2.770
D
C17H26
215
0.101
C3-diamantane
D-36
4686 , 2.600
D
C17H26
215
0.496
C3-diamantane
D-37
4704 , 2.630
D
C17H26
215
0.440
C3-diamantane
D-38
4716 , 2.650
D
C17H26
215
0.487
C3-diamantane
D-39
4764 , 2.610
D
C17H26
215
0.816
C3-diamantane
D-40
4836 , 2.640
D
C17H26
215
0.025
C3-diamantane
D-41
4872 , 2.640
D
C17H26
215
1.046
C3-diamantane
D-42
4890 , 2.700
D
C17H26
215
1.661
C3-diamantane
D-43
4902 , 2.730
D
C17H26
215
0.391
C3-diamantane
D-44
4932 , 2.750
D
C17H26
215
0.668
C3-diamantane
D-45
4962 , 2.750
D
C17H26
215
0.256
C3-diamantane
D-46
4968 , 2.740
D
C17H26
215
0.275
C3-diamantane
D-47
4974 , 2.750
D
C17H26
215
0.227
C3-diamantane
D-48
4986 , 2.760
D
C17H26
215
0.876
C3-diamantane
D-49
5046 , 2.760
D
C17H26
215
0.259
C3-diamantane
D-50
5064 , 2.800
D
C17H26
215
0.152
C3-diamantane
D-51
5112 , 2.870
D
C17H26
215
0.121
C3-diamantane
D-52
5118 , 2.860
D
C17H26
215
0.132
C3-diamantane
D-53
5154 , 2.890
D
C17H26
215
0.130
C3-diamantane
D-54
5160 , 2.900
D
C17H26
215
0.206
C3-diamantane
D-55
5166 , 2.890
D
C17H26
215
0.075
C3-diamantane
D-56
5082 , 2.790
D
C17H26
215
0.068
C3-diamantane
D-57
4758 , 2.620
D
C17H26
215
0.103
C3-diamantane
D-58
5070 , 2.790
D
C17H26
215
0.117
C4-diamantane
D-59
4950 , 2.540
D
C18H28
215
0.238
C4-diamantane
D-60
5064 , 2.560
D
C18H28
215
0.119
C4-diamantane
D-61
4698 , 2.460
D
C18H28
229
0.282
C4-diamantane
D-62
4812 , 2.490
D
C18H28
229
0.193
C4-diamantane
D-63
4896 , 2.540
D
C18H28
229
0.470
C4-diamantane
D-64
4938 , 2.590
D
C18H28
229
0.106
C4-diamantane
D-65
4980 , 2.550
D
C18H28
229
0.174
C4-diamantane
D-66
5010 , 2.640
D
C18H28
229
0.292
ACS Paragon Plus Environment
Page 57 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Compouds
Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
C4-diamantane
D-67
5094 , 2.650
D
C18H28
229
0.403
C4-diamantane
D-68
5124 , 2.660
D
C18H28
229
1.101
C4-diamantane
D-69
5238 , 2.560
D
C18H28
229
0.097
C4-diamantane
D-70
5274 , 2.590
D
C18H28
229
0.087
C4-diamantane
D-71
5274 , 2.790
D
C18H28
229
0.174
C5-diamantane
D-72
4866 , 2.390
D
C19H30
243
0.030
C5-diamantane
D-73
5448 , 2.730
D
C19H30
243
0.254
C5-diamantane
mg/g
D-74
5502 , 2.720
D
C19H30
243
0.051
Triamantane
T-1
5658 , 3.360
T
C18H24
240
1.212
9-methyltriamantane
T-2
5676 , 3.140
T
C19H26
239
0.826
5-methyltriamantane
T-3
5790 , 3.260
T
C19H26
239
0.446
C1-triamantane
T-4
5814 , 3.270
T
C19H26
239
0.318
8-methyltriamantane
T-5
5850 , 3.280
T
C19H26
239
0.175
16-methyltriamantane
T-6
5880 , 3.290
T
C19H26
239
0.124
C1-triamantane
T-7
5970 , 3.440
T
C19H26
239
0.243
9,15-dimethyltriamantane
T-8
5700 , 2.900
T
C20H28
253
0.173
5,9-dimethyltriamantane
T-9
5790 , 3.060
T
C20H28
253
0.157
3,4-dimethyltriamantane
T-10
5802 , 3.040
T
C20H28
253
0.282
3,9-+4,9-+6,9-+7,9-Dimethyltriamantane
T-11
5826 , 3.060
T
C20H28
253
0.177
9,14-Dimethyltriamantane
T-12
5868 , 3.070
T
C20H28
253
0.130
C2-triamantane
T-13
5892 , 3.080
T
C20H28
253
0.080
C2-triamantane
T-14
5910 , 3.170
T
C20H28
253
0.067
C2-triamantane
T-15
5952 , 3.210
T
C20H28
253
0.133
C2-triamantane
T-16
5970 , 3.170
T
C20H28
253
0.210
C2-triamantane
T-17
5994 , 3.170
T
C20H28
253
0.134
C2-triamantane
T-18
6024 , 3.280
T
C20H28
253
0.069
C2-triamantane
T-19
6036 , 3.190
T
C20H28
253
0.055
C2-triamantane
T-20
6108 , 2.960
T
C20H28
253
0.013
C2-triamantane
T-21
6150 , 3.330
T
C20H28
253
0.029
C2-triamantane
T-22
6174 , 3.340
T
C20H28
253
0.017
C2-triamantane
T-23
6186 , 3.100
T
C20H28
253
0.016
C2-triamantane
T-24
6210 , 3.490
T
C20H28
253
0.009
C2-triamantane
T-25
6264 , 3.120
T
C20H28
253
0.012
n-ethyl-triamantane
T-26
6090 , 3.190
T
C20H28
239
0.080
n-ethyl-triamantane
T-27
6120 , 3.280
T
C20H28
239
0.019
n-ethyl-triamantane
T-28
6174 , 3.290
T
C20H28
239
0.008
5,9,15-Trimethyltriamantane
T-29
5802 , 2.830
T
C21H30
267
0.113
C3-triamantane
T-30
5892 , 2.930
T
C21H30
267
0.024
C3-triamantane
T-31
5904 , 2.970
T
C21H30
267
0.041
C3-triamantane
T-32
5940 , 2.960
T
C21H30
267
0.030
C3-triamantane
T-33
5964 , 2.940
T
C21H30
267
0.010
C3-triamantane
T-34
5976 , 2.950
T
C21H30
267
0.076
C3-triamantane
T-35
5994 , 3.050
T
C21H30
267
0.039
C3-triamantane
T-36
6006 , 2.960
T
C21H30
267
0.040
C3-triamantane
T-37
6036 , 3.050
T
C21H30
267
0.017
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Compouds
Page 58 of 67 Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
C3-triamantane
T-38
6048 , 3.000
T
C21H30
267
0.020
C3-triamantane
T-39
6054 , 3.040
T
C21H30
267
0.016
C3-triamantane
T-40
6066 , 3.090
T
C21H30
267
0.063
C3-triamantane
T-41
6078 , 3.080
T
C21H30
267
0.036
C3-triamantane
T-42
6108 , 3.080
T
C21H30
267
0.090
C3-triamantane
T-43
6126 , 3.110
T
C21H30
267
0.015
C3-triamantane
T-44
6132 , 3.090
T
C21H30
267
0.019
C3-triamantane
T-45
6138 , 3.110
T
C21H30
267
0.018
C3-triamantane
T-46
6144 , 3.100
T
C21H30
267
0.027
C3-triamantane
T-47
6186 , 3.230
T
C21H30
267
0.011
C3-triamantane
T-48
6216 , 3.200
T
C21H30
267
0.015
C3-triamantane
T-49
6234 , 3.190
T
C21H30
267
0.025
C3-triamantane
T-50
6252 , 3.230
T
C21H30
267
0.015
tetraadamantane
TET-1
6654 , 3.720
TET
C22H28
292
0.039
tetraadamantane
TET-2
6828 , 3.800
TET
C22H28
292
0.032
tetraadamantane
TET-3
6966 , 4.070
TET
C22H28
292
0.011
C1-tetraadamantane
TET-4
6648 , 3.450
TET
C23H30
291
0.037
C1-tetraadamantane
TET-5
6738 , 3.590
TET
C23H30
291
0.003
C1-tetraadamantane
TET-6
6828 , 3.580
TET
C23H30
291
0.007
C1-tetraadamantane
TET-7
6930 , 3.750
TET
C23H30
291
0.007
C2-tetraadamantane
TET-8
6642 , 3.200
TET
C24H32
305
0.004
C2-tetraadamantane
TET-9
6726 , 3.330
TET
C24H32
305
0.002
Pentamantane
PENT-1
7392 , 3.960
PENT
C26H32
344
0.003
Pentamantane
PENT-2
7842 , 4.470
PENT
C26H32
344
0.001
C1-Pentamantane
PENT-3
7362 , 3.660
PENT
C28H34
358
0.001
ACS Paragon Plus Environment
mg/g
Page 59 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Table S2. Concentration of organic sulfur compounds detected in well ZS1C condensate. BT= Benzo[b]thiophenes, DBT= Dibenzothiophenes, PT= Phenanthrothiophenes Compouds 1-Octadecanethiol Benzo[b]thiophene Benzo[b]thiophene, methylBenzo[b]thiophene, methylBenzo[b]thiophene, methylBenzo[b]thiophene, methylBenzo[b]thiophene, methylBenzo[b]thiophene, dimethylBenzo[b]thiophene, dimethylBenzo[b]thiophene, dimethylBenzo[b]thiophene, dimethylBenzo[b]thiophene, dimethylBenzo[b]thiophene, dimethylBenzo[b]thiophene, dimethylBenzo[b]thiophene, dimethylBenzo[b]thiophene, trimethylBenzo[b]thiophene, trimethylBenzo[b]thiophene, trimethylBenzo[b]thiophene, trimethylBenzo[b]thiophene, trimethylBenzo[b]thiophene, trimethylBenzo[b]thiophene, trimethylBenzo[b]thiophene, trimethylBenzo[b]thiophene, trimethylBenzo[b]thiophene, trimethylBenzo[b]thiophene, tetramethylBenzo[b]thiophene, tetramethylDibenzothiophene Dibenzothiophene, 4-methylDibenzothiophene, 1-methylDibenzothiophene, 3-methylDibenzothiophene, dimethylDibenzothiophene, dimethylDibenzothiophene, dimethylDibenzothiophene, dimethylDibenzothiophene, dimethylDibenzothiophene, dimethylDibenzothiophene, dimethylDibenzothiophene, dimethylDibenzothiophene, dimethylDibenzothiophene, dimethylDibenzothiophene, trimethylDibenzothiophene, trimethyl-
R.T. (s)
Classifications
Formula
Quant Masses
6270 , 2.280 2940 , 3.380 3360 , 3.290 3396 , 3.210 3402 , 3.250 3426 , 3.270 3450 , 3.370 3732 , 3.270 3804 , 3.190 3804 , 3.330 3846 , 3.260 3888 , 3.260 4026 , 3.390 3780 , 3.130 3870 , 3.230 4146 , 3.230 4158 , 3.100 4188 , 3.170 4200 , 3.040 4230 , 3.110 4236 , 3.150 4278 , 3.140 4284 , 3.190 4344 , 3.180 4410 , 3.250 4512 , 3.130 4668 , 3.090 5046 , 4.030 5382 , 3.923 5442 , 3.880 5502 , 4.130 5652 , 3.830 5688 , 3.830 5730 , 3.800 5754 , 3.780 5796 , 3.850 5814 , 3.990 5820 , 3.870 5850 , 3.970 5862 , 3.950 5898 , 3.920 5934 , 3.760 6072 , 3.710
I.S. BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT DBT DBT DBT DBT DBT DBT DBT DBT DBT DBT DBT DBT DBT DBT DBT DBT
C18H38S C8H6S C9H8S C9H8S C9H8S C9H8S C9H8S C10H10S C10H10S C10H10S C10H10S C10H10S C10H10S C10H10S C10H10S C11H12S C11H12S C11H12S C11H12S C11H12S C11H12S C11H12S C11H12S C11H12S C11H12S C12H14S C12H14S C12H8S C13H10S C13H10S C13H10S C14H12S C14H12S C14H12S C14H12S C14H12S C14H12S C14H12S C14H12S C14H12S C14H12S C15H14S C15H14S
70 134 147 147 147 147 147 147 147 147 147 147 147 161 161 147 147 161 161 161 161 161 161 161 161 175 175 184 198 198 198 212 212 212 212 212 212 212 212 212 212 226 226
ACS Paragon Plus Environment
Concentration mg/g 0.769 4.091 5.535 4.701 1.729 2.654 11.764 0.657 1.640 1.619 4.134 1.349 0.662 4.290 16.019 0.541 0.874 3.589 0.691 6.152 4.742 0.957 3.129 1.258 0.772 0.830 0.643 163.741 141.162 111.727 21.478 1.934 38.389 26.854 78.370 31.343 15.360 2.598 18.857 1.351 3.819 1.236 8.913
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Compouds Dibenzothiophene, trimethylDibenzothiophene, trimethylDibenzothiophene, trimethylDibenzothiophene, trimethylDibenzothiophene, trimethylDibenzothiophene, tetramethylDibenzothiophene, tetramethylPhenaleno[1,9-bc]thiophene 1-Methylphenanthro[4,5bcd]thiophene Anthra(2,3-b)thiophene
Page 60 of 67
R.T. (s)
Classifications
Formula
Quant Masses
6102 , 3.760 6102 , 3.880 6138 , 3.910 6192 , 3.850 6228 , 3.840 6324 , 3.560 6444 , 3.760 6060 , 4.680
DBT DBT DBT DBT DBT DBT DBT PT
C15H14S C15H14S C15H14S C15H14S C15H14S C16H16S C16H16S C14H8S
226 226 226 226 226 240 240 208
Concentration mg/g 1.035 4.135 10.833 7.215 1.086 2.739 1.174 2.363
6330 , 4.440
PT
C15H10S
222
1.465
6786 , 4.810
PT
C16H10S
234
1.940
ACS Paragon Plus Environment
Page 61 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Table S3. Thiadiamondoids detected in well ZS1C condensate. Peak No. correspond to GCGC-MS assigned peaks in Fig 4,5,7. TA=thiaadamantanes, TD=thiadiamantanes, TT=thiatriamantanes, dTA=dithiaadamantanes, dTD =dithiadiamantanes, dTT=dithiatriamantanes, tTA=trithiaadamantanes, tTD=trithiadiamantanes, tetTA=tetrathiaadamantanes, tetTD=tetrathiadiamantanes. Compounds
Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
5-methyl-2-thiaadamantane 1-methyl-2-thiaadamantane
TA-1 TA-2
3462 , 2.950 3540 , 2.990
TA TA
C10H16S C10H16S
168 168
0.451 0.424
C1-n-thiaadamantane
TA-3
3762 , 3.130
TA
C10H16S
168
0.006
Adamantane-n-thiol Adamantane-n-thiol 5,7-dimethyl-2-thiaadamantane 1,5-dimethyl-2-thiaadamantane 1,3-dimethyl-2-thiaadamantane
AT-1 AT-2 TA-4 TA-5 TA-6
3564 , 2.990 3834 , 3.170 3432 , 2.690 3522 , 2.760 3594 , 2.790
AT AT TA TA TA
C10H16S C10H16S C11H18S C11H18S C11H18S
168 168 182 182 182
0.044 0.008 0.850 2.455 0.684
C2-2-thiaadamantane
TA-7
3720 , 2.850
TA
C11H18S
182
0.144
C2-2-thiaadamantane
TA-8
3780 , 2.890
TA
C11H18S
182
0.049
C2-2-thiaadamantane
TA-9
3816 , 2.900
TA
C11H18S
182
0.098
C2-2-thiaadamantane
TA-10
3834 , 2.900
TA
C11H18S
182
0.045
C2-2-thiaadamantane
TA-11
3930 , 3.010
TA
C11H18S
182
0.006
C2-2-thiaadamantane
TA-12
3990 , 3.050
TA
C11H18S
182
0.011
C1-adamantane-n-thiol
AT-3
3624 , 2.790
AT
C11H18S
182
0.030
C1-adamantane-n-thiol
AT-4
3870 , 2.922
AT
C11H18S
182
0.021
C1-adamantane-n-thiol
AT-5
3900 , 2.970
AT
C11H18S
182
0.013
C1-adamantane-n-thiol
AT-6
3966 , 3.010
AT
C11H18S
182
0.005
C3-2-thiaadamantane
TA-13
3474 , 2.540
TA
C12H20S
196
1.254
C3-2-thiaadamantane
TA-14
3558 , 2.600
TA
C12H20S
196
1.047
C3-2-thiaadamantane
TA-15
3732 , 2.620
TA
C12H20S
196
0.084
C3-2-thiaadamantane
TA-16
3768 , 2.650
TA
C12H20S
196
0.483
C3-2-thiaadamantane
TA-17
3804 , 2.680
TA
C12H20S
196
0.326
C3-2-thiaadamantane
TA-18
3864 , 2.730
TA
C12H20S
196
0.037
C3-2-thiaadamantane
TA-19
3882 , 2.750
TA
C12H20S
196
0.115
C3-2-thiaadamantane
TA-20
3906 , 2.770
TA
C12H20S
196
0.089
C3-2-thiaadamantane
TA-21
3930 , 2.760
TA
C12H20S
196
0.096
C3-2-thiaadamantane
TA-22
3948 , 2.790
TA
C12H20S
196
0.025
C3-2-thiaadamantane
TA-23
3972 , 2.790
TA
C12H20S
196
0.065
C3-2-thiaadamantane
TA-24
4002 , 2.800
TA
C12H20S
196
0.044
C3-2-thiaadamantane
TA-25
4014 , 2.760
TA
C12H20S
196
0.030
C3-2-thiaadamantane
TA-26
4050 , 2.800
TA
C12H20S
196
0.236
C3-2-thiaadamantane
TA-27
4128 , 2.830
TA
C12H20S
196
0.095
C2-adamantane-2-thiol
AT-7
3666 , 2.620 AT ACS Paragon Plus Environment
C12H20S
196
0.005
mg/g
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Compouds
Page 62 of 67 Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
C2-adamantane-2-thiol
AT-8
3918 , 2.730
AT
C12H20S
196
0.002
C2-adamantane-2-thiol
AT-9
3996 , 2.780
AT
C12H20S
196
0.004
C2-adamantane-2-thiol
AT-10
4062 , 2.850
AT
C12H20S
196
0.004
C2-adamantane-2-thiol
AT-11
4152 , 2.830
AT
C12H20S
196
0.009
C4-2-thiaadamantane
TA-28
3504 , 2.400
TA
C13H22S
210
0.274
C4-2-thiaadamantane
TA-29
3840 , 2.520
TA
C13H22S
210
0.185
C4-2-thiaadamantane
TA-30
3876 , 2.540
TA
C13H22S
210
0.134
C4-2-thiaadamantane
TA-31
3912 , 2.580
TA
C13H22S
210
0.187
C4-2-thiaadamantane
TA-32
3954 , 2.571
TA
C13H22S
210
0.129
C4-2-thiaadamantane
TA-33
3990 , 2.570
TA
C13H22S
210
0.074
C4-2-thiaadamantane
TA-34
4074 , 2.620
TA
C13H22S
210
0.313
C4-2-thiaadamantane
TA-35
4164 , 2.630
TA
C13H22S
210
0.020
C4-2-thiaadamantane
TA-36
4404 , 2.720
TA
C13H22S
210
0.015
C4-2-thiaadamantane
TA-37
4410 , 2.800
TA
C13H22S
210
0.015
C4-2-thiaadamantane
TA-38
4278 , 2.710
TA
C13H22S
210
0.041
C5-2-thiaadamantane
TA-39
3990 , 2.470
TA
C14H24S
224
0.023
C5-2-thiaadamantane
TA-40
4032 , 2.490
TA
C14H24S
224
0.016
C5-2-thiaadamantane
TA-41
4212 , 2.510
TA
C14H24S
224
0.013
C5-2-thiaadamantane
TA-42
4326 , 2.580
TA
C14H24S
224
0.011
C5-2-thiaadamantane
TA-43
4008 , 2.410
TA
C14H24S
224
0.069
3-thiadiamantane
TD-1
5130 , 3.830
TD
C13H18S
206
2.282
C1-3-thiadiamantane
TD-2
5094 , 3.470
TD
C14H20S
220
1.242
C1-3-thiadiamantane
TD-3
5166 , 3.510
TD
C14H20S
220
0.861
C1-3-thiadiamantane
TD-4
5226 , 3.650
TD
C14H20S
220
0.037
C1-3-thiadiamantane
TD-5
5238 , 3.630
TD
C14H20S
220
0.717
C1-3-thiadiamantane
TD-6
5304 , 3.700
TD
C14H20S
220
0.363
C1-3-thiadiamantane
TD-7
5322 , 3.660
TD
C14H20S
220
0.121
C1-3-thiadiamantane
TD-8
5352 , 3.690
TD
C14H20S
220
0.035
C1-3-thiadiamantane
TD-9
5364 , 3.710
TD
C14H20S
220
0.203
C1-3-thiadiamantane
TD-10
5376 , 3.730
TD
C14H20S
220
0.235
Diamantane-n-thiol
DT-1
5202 , 3.510
DT
C14H20S
220
0.002
C2-3-thiadiamantane
TD-11
5130 , 3.210
TD
C15H22S
234
0.485
C2-3-thiadiamantane
TD-12
5172 , 3.300
TD
C15H22S
234
0.673
C2-3-thiadiamantane
TD-13
5226 , 3.330
TD
C15H22S
234
0.107
C2-3-thiadiamantane
TD-14
5250 , 3.390
TD
C15H22S
234
0.120
C2-3-thiadiamantane
TD-15
5262 , 3.350
TD
C15H22S
234
0.244
C2-3-thiadiamantane
TD-16
5310 , 3.380
TD
C15H22S
234
0.064
C2-3-thiadiamantane
TD-17
5322 , 3.410
TD
C15H22S
234
0.057
C2-3-thiadiamantane
TD-18
5328 , 3.380
TD
C15H22S
234
0.243
C2-3-thiadiamantane
TD-19
5346 , 3.370
TD
C15H22S
234
0.114
C2-3-thiadiamantane
TD-20
5358 , 3.360
TD
C15H22S
234
0.063
C2-3-thiadiamantane
TD-21
5394 , 3.450
TD
C15H22S
234
0.140
C2-3-thiadiamantane
TD-22
5418 , 3.530
TD
C15H22S
234
0.060
C2-3-thiadiamantane
TD-23
5424 , 3.490 TD ACS Paragon Plus Environment
C15H22S
234
0.069
mg/g
Page 63 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Compouds
Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
C2-3-thiadiamantane
TD-24
5454 , 3.500
TD
C15H22S
234
0.094
C2-3-thiadiamantane
TD-25
5478 , 3.520
TD
C15H22S
234
0.060
C2-3-thiadiamantane
TD-26
5484 , 3.530
TD
C15H22S
234
0.032
C2-3-thiadiamantane
TD-27
5502 , 3.550
TD
C15H22S
234
0.116
C2-3-thiadiamantane
TD-28
5520 , 3.550
TD
C15H22S
234
0.093
C2-3-thiadiamantane
TD-29
5526 , 3.580
TD
C15H22S
234
0.053
C2-3-thiadiamantane
TD-30
5538 , 3.550
TD
C15H22S
234
0.015
C2-diamantane-n-thiol
DT-2
5250 , 3.320
DT
C15H22S
248
0.001
C3-3-thiadiamantane
TD-31
5172 , 3.040
TD
C16H24S
248
0.147
C3-3-thiadiamantane
TD-32
5196 , 3.050
TD
C16H24S
248
0.085
C3-3-thiadiamantane
TD-33
5250 , 3.110
TD
C16H24S
248
0.021
C3-3-thiadiamantane
TD-34
5310 , 3.190
TD
C16H24S
248
0.016
C3-3-thiadiamantane
TD-35
5334 , 3.230
TD
C16H24S
248
0.031
C3-3-thiadiamantane
TD-36
5358 , 3.230
TD
C16H24S
248
0.064
C3-3-thiadiamantane
TD-37
5388 , 3.180
TD
C16H24S
248
0.030
C3-3-thiadiamantane
TD-38
5406 , 3.180
TD
C16H24S
248
0.058
C3-3-thiadiamantane
TD-39
5424 , 3.180
TD
C16H24S
248
0.030
C3-3-thiadiamantane
TD-40
5448 , 3.250
TD
C16H24S
248
0.123
C3-3-thiadiamantane
TD-41
5466 , 3.230
TD
C16H24S
248
0.014
C3-3-thiadiamantane
TD-42
5490 , 3.310
TD
C16H24S
248
0.007
C3-3-thiadiamantane
TD-43
5502 , 3.310
TD
C16H24S
248
0.026
C3-3-thiadiamantane
TD-44
5532 , 3.280
TD
C16H24S
248
0.029
C3-3-thiadiamantane
TD-45
5580 , 3.240
TD
C16H24S
248
0.081
C3-3-thiadiamantane
TD-46
5598 , 3.380
TD
C16H24S
248
0.021
C3-3-thiadiamantane
TD-47
5700 , 3.360
TD
C16H24S
248
0.010
C3-3-thiadiamantane
TD-48
5760 , 3.430
TD
C17H26S
248
0.005
C4-3-thiadiamantane
TD-49
5412 , 3.040
TD
C17H26S
262
0.054
C4-3-thiadiamantane
TD-50
5262 , 2.918
TD
C17H26S
262
0.008
C4-3-thiadiamantane
TD-51
5340 , 2.990
TD
C17H26S
262
0.004
C4-3-thiadiamantane
TD-52
5442 , 3.000
TD
C17H26S
262
0.010
C4-3-thiadiamantane
TD-53
5556 , 3.120
TD
C17H26S
262
0.005
n-thiatriamantane n-thiatriamantane n-thiatriamantane triamantane-n-thiol
TT-1 TT-2 TT-3 TT-4
6312 , 4.280 6366 , 4.280 6378 , 4.320 6246 , 3.880
TT TT TT TT
C17H22S C17H22S C17H22S C18H24S
258 258 258 272
0.101 0.027 0.176 0.050
C1-n-thiatriamantane
TT-5
6318 , 3.930
TT
C18H24S
272
0.083
C1-n-thiatriamantane
TT-6
6372 , 3.950
TT
C18H24S
272
0.012
C1-n-thiatriamantane
TT-7
6390 , 3.990
TT
C18H24S
272
0.040
C1-n-thiatriamantane
TT-8
6426 , 4.070
TT
C18H24S
272
0.024
C1-n-thiatriamantane
TT-9
6432 , 4.140
TT
C18H24S
272
0.025
C1-n-thiatriamantane
TT-10
6468 , 4.080
TT
C18H24S
272
0.027
C1-n-thiatriamantane
TT-11
6486 , 4.150
TT
C18H24S
272
0.012
C1-n-thiatriamantane
TT-12
6552 , 4.160
TT
C18H24S
272
0.008
Triamantane-n-thiol
TT-13
6558 , 4.280
TT
C18H24S
272
0.017
ACS Paragon Plus Environment
mg/g
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Compounds
Page 64 of 67 Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
C2-n-thiatriamantane
TT-14
6264 , 3.580
TT
C19H26S
286
0.014
C2-n-thiatriamantane
TT-15
6330 , 3.610
TT
C19H26S
286
0.013
triamantane-n-thiol
TT-16
6348 , 3.750
TT
C19H26S
286
0.007
C2-n-thiatriamantane
TT-17
6378 , 3.710
TT
C19H26S
286
0.007
C2-n-thiatriamantane
TT-18
6414 , 3.750
TT
C19H26S
286
0.010
C2-n-thiatriamantane
TT-19
6480 , 3.860
TT
C19H26S
286
0.015
C3-n-thiatriamantane
TT-20
6360 , 3.450
TT
C20H28S
300
0.005
C1-dithiaadamantane
dTA-1
4188 , 2.800
dTA
C9H14S2
186
0.083
C1-dithiaadamantane
dTA-2
4284 , 2.880
dTA
C9H14S2
186
0.019
C2-dithiaadamantane
dTA-3
4176 , 2.620
dTA
C10H16S2
200
0.027
C2-dithiaadamantane
dTA-4
4278 , 2.690
dTA
C10H16S2
200
0.056
C2-dithiaadamantane
dTA-5
4308 , 2.700
dTA
C10H16S2
200
0.012
C2-dithiaadamantane
dTA-6
4320 , 2.740
dTA
C10H16S2
200
0.072
C2-dithiaadamantane
dTA-7
4362 , 2.730
dTA
C10H16S2
200
0.025
C2-dithiaadamantane
dTA-8
4446 , 2.800
dTA
C10H16S2
200
0.086
C2-dithiaadamantane
dTA-9
4476 , 2.830
dTA
C10H16S2
200
0.331
C3-dithiaadamantane
dTA-10
4296 , 2.540
dTA
C11H18S2
214
0.048
C3-dithiaadamantane
dTA-11
4338 , 2.560
dTA
C11H18S2
214
0.057
C3-dithiaadamantane
dTA-12
4488 , 2.670
dTA
C11H18S2
214
0.041
C3-dithiaadamantane
dTA-13
4518 , 2.680
dTA
C11H18S2
214
0.184
C3-dithiaadamantane
dTA-14
4578 , 2.730
dTA
C11H18S2
214
0.113
C3-dithiaadamantane
dTA-15
4620 , 2.780
dTA
C11H18S2
214
0.226
C3-dithiaadamantane
dTA-16
4686 , 2.770
dTA
C11H18S2
214
0.062
C3-dithiaadamantane
dTA-17
4734 , 2.810
dTA
C11H18S2
214
0.108
C4-dithiaadamantane
dTA-18
4344 , 2.430
dTA
C12H20S2
228
0.024
C4-dithiaadamantane
dTA-19
4476 , 2.480
dTA
C12H20S2
228
0.056
C4-dithiaadamantane
dTA-20
4590 , 2.560
dTA
C12H20S2
228
0.067
C4-dithiaadamantane
dTA-21
4602 , 2.590
dTA
C12H20S2
228
0.058
C4-dithiaadamantane
dTA-22
4626 , 2.610
dTA
C12H20S2
228
0.083
C4-dithiaadamantane
dTA-23
4662 , 2.600
dTA
C12H20S2
228
0.113
C4-dithiaadamantane
dTA-24
4734 , 2.620
dTA
C12H20S2
228
0.026
C4-dithiaadamantane
dTA-25
4746 , 2.670
dTA
C12H20S2
228
0.122
C4-dithiaadamantane
dTA-26
4824 , 2.740
dTA
C12H20S2
228
0.058
C5-dithiaadamantane
dTA-27
4464 , 2.370
dTA
C13H22S2
242
0.008
C5-dithiaadamantane
dTA-28
4482 , 2.370
dTA
C13H22S2
242
0.025
C5-dithiaadamantane
dTA-29
4680 , 2.480
dTA
C13H22S2
242
0.042
C5-dithiaadamantane
dTA-30
4686 , 2.500
dTA
C13H22S2
242
0.033
C5-dithiaadamantane
dTA-31
4746 , 2.500
dTA
C13H22S2
242
0.042
C5-dithiaadamantane
dTA-32
4800 , 2.540
dTA
C13H22S2
242
0.041
C5-dithiaadamantane
dTA-33
4842 , 2.560
dTA
C13H22S2
242
0.038
C5-dithiaadamantane
dTA-34
4926 , 2.620
dTA
C13H22S2
242
0.087
C5-dithiaadamantane
dTA-35
4968 , 2.630
dTA
C13H22S2
242
0.052
C6-dithiaadamantane
dTA-36
4932 , 2.470
dTA
C14H24S2
256
0.022
dithiadiamantane
dTD-1
5580 , 3.580 dTD ACS Paragon Plus Environment
C12H16S2
224
0.241
mg/g
Page 65 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Compounds
Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
C1-dithiadiamantane
dTD-2
5520 , 3.370
dTD
C13H18S2
238
0.060
C1-dithiadiamantane
dTD-3
5526 , 3.360
dTD
C13H18S2
238
0.045
C1-dithiadiamantane
dTD-4
5610 , 3.340
dTD
C13H18S2
238
0.141
C1-dithiadiamantane
dTD-5
5640 , 3.390
dTD
C13H18S2
238
0.035
C1-dithiadiamantane
dTD-6
5658 , 3.460
dTD
C13H18S2
238
0.043
C1-dithiadiamantane
dTD-7
5778 , 3.480
dTD
C13H18S2
238
0.008
C1-dithiadiamantane
dTD-8
5814 , 3.530
dTD
C13H18S2
238
0.018
C1-dithiadiamantane
dTD-9
5862 , 3.530
dTD
C13H18S2
238
0.020
C1-dithiadiamantane
dTD-10
5880 , 3.550
dTD
C13H18S2
238
0.018
C1-dithiadiamantane
dTD-11
5898 , 3.600
dTD
C13H18S2
238
0.008
C1-dithiadiamantane
dTD-12
5940 , 3.580
dTD
C13H18S2
238
0.009
C2-dithiadiamantane
dTD-13
5526 , 2.990
dTD
C14H20S2
252
0.033
C2-dithiadiamantane
dTD-14
5538 , 3.150
dTD
C14H20S2
252
0.023
C2-dithiadiamantane
dTD-15
5544 , 3.140
dTD
C14H20S2
252
0.022
C2-dithiadiamantane
dTD-16
5586 , 3.230
dTD
C14H20S2
252
0.045
C2-dithiadiamantane
dTD-17
5658 , 3.160
dTD
C14H20S2
252
0.053
C2-dithiadiamantane
dTD-18
5676 , 3.230
dTD
C14H20S2
252
0.028
C2-dithiadiamantane
dTD-19
5712 , 3.120
dTD
C14H20S2
252
0.008
C2-dithiadiamantane
dTD-20
5718 , 3.100
dTD
C14H20S2
252
0.010
C2-dithiadiamantane
dTD-21
5754 , 3.290
dTD
C14H20S2
252
0.007
C2-dithiadiamantane
dTD-22
5766 , 3.280
dTD
C14H20S2
252
0.014
C2-dithiadiamantane
dTD-23
5778 , 3.190
dTD
C14H20S2
252
0.008
C2-dithiadiamantane
dTD-24
5790 , 3.350
dTD
C14H20S2
252
0.026
C2-dithiadiamantane
dTD-25
5808 , 3.370
dTD
C14H20S2
252
0.020
C2-dithiadiamantane
dTD-26
5898 , 3.350
dTD
C14H20S2
252
0.017
C2-dithiadiamantane
dTD-27
5904 , 3.340
dTD
C14H20S2
252
0.022
C2-dithiadiamantane
dTD-28
5922 , 3.350
dTD
C14H20S2
252
0.027
C2-dithiadiamantane
dTD-29
6018 , 3.440
dTD
C14H20S2
252
0.008
C3-dithiadiamantane
dTD-30
5592 , 3.020
dTD
C15H22S2
266
0.018
C3-dithiadiamantane
dTD-31
5808 , 3.150
dTD
C15H22S2
266
0.034
C3-dithiadiamantane
dTD-32
5820 , 3.150
dTD
C15H22S2
266
0.009
C3-dithiadiamantane
dTD-33
5856 , 3.160
dTD
C15H22S2
266
0.018
C3-dithiadiamantane
dTD-34
6036 , 3.280
dTD
C15H22S2
266
0.007
dithiatriamantane dithiatriamantane dithiatriamantane
dTT-1 dTT-2 dTT-3
6678 , 3.900 6744 , 4.060 6816 , 4.220
dTT dTT dTT
C16H20S2 C16H20S2 C17H22S2
276 276 290
0.001 0.007 0.037
C1-dithiatriamantane
dTT-4
6744 , 3.920
dTT
C17H22S2
290
0.002
C1-dithiatriamantane
dTT-5
6756 , 3.740
dTT
C17H22S2
290
0.002
C1-dithiatriamantane
dTT-6
6810 , 3.900
dTT
C17H22S2
290
0.003
C1-dithiatriamantane
dTT-7
6840 , 3.830
dTT
C17H22S2
290
0.002
C1-dithiatriamantane
dTT-8
6942 , 4.140
dTT
C17H22S2
290
0.001
C1-dithiatriamantane
dTT-9
7002 , 4.110
dTT
C17H22S2
290
0.002
C1-dithiatriamantane
dTT-10
7062 , 4.190
dTT
C17H22S2
290
0.002
C2-dithiatriamantane
dTT-11
6768 , 3.570 dTT ACS Paragon Plus Environment
C18H24S2
304
0.001
mg/g
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Compounds
Page 66 of 67 Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
trithiaadamantane
tTA-1
4266 , 2.720
tTA
C7H10S3
190
0.437
C1-trithiaadamantane
tTA-2
4278 , 2.540
tTA
C8H12S3
204
0.364
C1-trithiaadamantane
tTA-3
4308 , 2.560
tTA
C8H12S3
204
0.200
C1-trithiaadamantane
tTA-4
4404 , 2.620
tTA
C8H12S3
204
0.103
C1-trithiaadamantane
tTA-5
4542 , 2.660
tTA
C8H12S3
204
0.053
C2-trithiaadamantane
tTA-6
4308 , 2.400
tTA
C9H14S3
218
0.272
C2-trithiaadamantane
tTA-7
4404 , 2.460
tTA
C9H14S3
218
0.123
C2-trithiaadamantane
tTA-8
4476 , 2.450
tTA
C9H14S3
218
0.072
C2-trithiaadamantane
tTA-9
4620 , 2.530
tTA
C9H14S3
218
0.047
C2-trithiaadamantane
tTA-10
4620 , 2.590
tTA
C9H14S3
218
0.019
C2-trithiaadamantane
tTA-11
4668 , 2.580
tTA
C9H14S3
218
0.043
C2-trithiaadamantane
tTA-12
4728 , 2.580
tTA
C9H14S3
218
0.041
C3-trithiaadamantane
tTA-13
4392 , 2.310
tTA
C10H16S3
232
0.011
C3-trithiaadamantane
tTA-14
4398 , 2.270
tTA
C10H16S3
232
0.025
C3-trithiaadamantane
tTA-15
4416 , 2.330
tTA
C10H16S3
232
0.039
C3-trithiaadamantane
tTA-16
4464 , 2.300
tTA
C10H16S3
232
0.034
C3-trithiaadamantane
tTA-17
4482 , 2.300
tTA
C10H16S3
232
0.056
C3-trithiaadamantane
tTA-18
4530 , 2.280
tTA
C10H16S3
232
0.010
C3-trithiaadamantane
tTA-19
4572 , 2.360
tTA
C10H16S3
232
0.043
C3-trithiaadamantane
tTA-20
4578 , 2.370
tTA
C10H16S3
232
0.045
C3-trithiaadamantane
tTA-21
4602 , 2.360
tTA
C10H16S3
232
0.026
C3-trithiaadamantane
tTA-22
4626 , 2.430
tTA
C10H16S3
232
0.036
C3-trithiaadamantane
tTA-23
4632 , 2.410
tTA
C10H16S3
232
0.023
C3-trithiaadamantane
tTA-24
4650 , 2.410
tTA
C10H16S3
232
0.042
C3-trithiaadamantane
tTA-25
4668 , 2.420
tTA
C10H16S3
232
0.029
C3-trithiaadamantane
tTA-26
4680 , 2.390
tTA
C10H16S3
232
0.031
C3-trithiaadamantane
tTA-27
4740 , 2.430
tTA
C10H16S3
232
0.071
C3-trithiaadamantane
tTA-28
4764 , 2.490
tTA
C10H16S3
232
0.030
C3-trithiaadamantane
tTA-29
4776 , 2.450
tTA
C10H16S3
232
0.041
C3-trithiaadamantane
tTA-30
4788 , 2.520
tTA
C10H16S3
232
0.037
C3-trithiaadamantane
tTA-31
4890 , 2.520
tTA
C10H16S3
232
0.008
C4-trithiaadamantane
tTA-32
4554 , 2.230
tTA
C11H18S3
246
0.005
C4-trithiaadamantane
tTA-33
4578 , 2.220
tTA
C11H18S3
246
0.008
C4-trithiaadamantane
tTA-34
4632 , 2.230
tTA
C11H18S3
246
0.007
C4-trithiaadamantane
tTA-35
4716 , 2.230
tTA
C11H18S3
246
0.008
C4-trithiaadamantane
tTA-36
4716 , 2.260
tTA
C11H18S3
246
0.008
C4-trithiaadamantane
tTA-37
4740 , 2.250
tTA
C11H18S3
246
0.005
C4-trithiaadamantane
tTA-38
4746 , 2.260
tTA
C11H18S3
246
0.008
C4-trithiaadamantane
tTA-39
4812 , 2.330
tTA
C11H18S3
246
0.009
C4-trithiaadamantane
tTA-40
4818 , 2.320
tTA
C11H18S3
246
0.009
C4-trithiaadamantane
tTA-41
4860 , 2.380
tTA
C11H18S3
246
0.010
C4-trithiaadamantane
tTA-42
4914 , 2.390
tTA
C11H18S3
246
0.008
C4-trithiaadamantane
tTA-43
5166 , 2.480
tTA
C11H18S3
246
0.005
trithiadiamantane
tTD-1
5748 , 3.180 tTD ACS Paragon Plus Environment
C11H14S3
242
0.168
mg/g
Page 67 of 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Compounds
Concentration
Peak No.
R.T. (s)
Classifications
Formula
Quant Masses
C1-trithiadiamantane
tTD-2
5784 , 2.970
tTD
C12H16S3
256
0.038
C1-trithiadiamantane
tTD-3
5928 , 3.090
tTD
C12H16S3
256
0.007
C1-trithiadiamantane
tTD-4
5952 , 3.130
tTD
C12H16S3
256
0.013
C2-trithiadiamantane
tTD-5
5850 , 2.880
tTD
C13H18S3
270
0.019
C1-tetrathiaadamantane
tetTA-1
4362 , 2.960
tetTA
C6H8S4
208
0.003
C2-tetrathiaadamantane
tetTA-2
4434 , 2.820
tetTA
C7H10S4
222
0.009
C2-tetrathiaadamantane
tetTA-3
4482 , 2.840
tetTA
C7H10S4
222
0.003
C2-tetrathiaadamantane
tetTA-4
4500 , 2.860
tetTA
C7H10S4
222
0.005
C2-tetrathiaadamantane
tetTA-5
4620 , 2.960
tetTA
C7H10S4
222
0.002
C3-tetrathiaadamantane
tetTA-6
4734 , 2.850
tetTA
C8H11S4
236
0.003
tetrathiadiamantane tetrathiadiamantane tetrathiadiamantane
tetTD-1 tetTD-2 tetTD-3
5694 , 3.380 5742 , 3.440 5790 , 3.500
tetTD tetTD tetTD
C10H12S4 C10H12S4 C10H12S4
260 260 260
0.005 0.014 0.006
ACS Paragon Plus Environment
mg/g