Subscriber access provided by UNIV OF LOUISIANA
Agricultural and Environmental Chemistry
Discovery of Pimprinine Alkaloids as Novel Agents against a Plant Virus Bin Liu, Rui Li, Yanan Li, Songyi Li, Jin Yu, Binfen Zhao, Ancai Liao, Ying Wang, Ziwen Wang, Aidang Lu, Yuxiu Liu, and Qingmin Wang J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.8b06175 • Publication Date (Web): 25 Jan 2019 Downloaded from http://pubs.acs.org on January 27, 2019
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 44
Journal of Agricultural and Food Chemistry
Discovery of Pimprinine Alkaloids as Novel Agents against a Plant Virus
Bin Liu,† Rui Li,† Yanan Li,† Songyi Li,† Jin Yu,† Binfen Zhao,† Ancai Liao,† Ying Wang,† Ziwen Wang,†,* Aidang Lu,‡,* Yuxiu Liu§ and Qingmin Wang§
†
Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key
Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin Normal University, Tianjin 300387, China
‡
School of Chemical Engineering and Technology, Hebei University of Technology,
Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China
§
State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic
Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
* To whom correspondence should be addressed. For Ziwen Wang, E-mail:
[email protected]; Phone:
0086-22-23766531;
Fax:
0086-22-23766531;
For
Aidang
[email protected]; Phone: 0086-22-60302812; Fax: 0086-22-60204274.
1
ACS Paragon Plus Environment
Lu,
E-mail:
Journal of Agricultural and Food Chemistry
1
2
ABSTRACT: Plant viral diseases cause tremendous decreases in yield and quality.
3
Natural products have always been valuable source for lead discovery in medicinal and
4
agricultural chemistry. A series of pimprinine alkaloids and their derivatives were
5
prepared and identified by nuclear magnetic resonance (NMR) and high-resolution
6
mass spectrometer (HR-MS). The antiviral activities of these alkaloids against tobacco
7
mosaic virus (TMV) were systematically investigated for the first time. Most of the
8
compounds exhibited higher antiviral activities than ribavirin. Compounds 5l, 9h and
9
10h with similar or higher antiviral activities than ningnanmycin (perhaps the most
10
widely used antiviral agent at present) emerged as new antiviral pilot compounds. The
11
systematically structure-activity relationship research lays a foundation for simplifying
12
the structure of these alkaloids. As the ring open products, acylhydrazones 9a–9u were
13
also found to possess good antiviral activities. Moreover, all the synthesized
14
compounds displayed broad-spectrum fungicidal activities. This study provides
15
important information for the research and development of pimprinine alkaloids as
16
novel antiviral agents.
17
2
ACS Paragon Plus Environment
Page 2 of 44
Page 3 of 44
Journal of Agricultural and Food Chemistry
18
19
KEYWORDS: natural product, alkaloid, pimprinine, anti-TMV activity, fungicidal
20
activity
21
22
23
INTRODUCTION
24
The recent population survey reveals that the population growth rate far exceeds
25
the growth rate of land production capacity, which will lead to the urgent need to
26
increase food production.1,2 Plant viruses often drastically damage crops and cause
27
serious reductions in crop yield and quality. Tobacco Mosaic Virus (TMV) is the
28
earliest discovered plant virus and widely used as a model virus in the study of new
29
antiviral agents. It is known to infect more than 400 crops, leading to yield reduction or
30
abortion.3 The management of these viruses has puzzled scientists for years. Few
31
chemical agents for controlling viruses have been commercialized as effective products.
32
As the most widely used antiviral agent at present, ribavirin and ningnanmycin can only
33
show moderate field control effect. The discovery of novel antiviral agents with
34
different scaffolds or modes of action are needed urgently.
35
Natural products and their derivatives have always been valuable source for lead
36
discovery in medicinal and agricultural chemistry, because their novel scaffolds can
37
provide different action modes from the existing agents.4 Some natural products have 3
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
38
been commercialized5,6 or found as lead compounds7–13 for plant virus control.
39
Pimprinine is an indole alkaloid first isolated from the filtrates of Streptomyces
40
pimprina cultures in 1963. Members of this family (Figure 1) display a range of
41
biological activities, such as anti-epileptic effect14,15, platelet aggregation inhibitory
42
effect16, anti-tumor activity17, and fungicidal activity18. Because of the low natural
43
content and difficult synthesis of these alkaloids, the research on their biological
44
activities is not deep enough, and there is no report on their anti-plant viral activities at
45
present.
46
Our research group has been devoted to the development of new antiviral agents
47
based on natural products for a long time.10–13 In this work, pimprinine was taken as the
48
parent structure to carry out structural optimization for discovering simpler structure
49
analogues with higher activity. As shown in Figure 2, we designed and synthesized a
50
series of pimprinine analogues in which the indole nitrogen, 2-position of oxazole,
51
oxazole ring have been derivatised. The antiviral and fungicidal activities of these
52
compounds were systematically studied.
53
MATERIALS AND METHODS
54
Chemicals. All the reagents used are purchased analytical pure reagents.
55
Instruments. The melting points of the synthesized compounds were determined on an
56
X-4 binocular microscope (Beijing Tech Instruments Co., Beijing, China) without
57
temperature correction. 1H NMR and 13C NMR spectra of the compounds were obtained
58
on Bruker AV 400 spectrometer (Bruker Corp., Switzerland) in CDCl3 or DMSO-d6 4
ACS Paragon Plus Environment
Page 4 of 44
Page 5 of 44
Journal of Agricultural and Food Chemistry
59
with tetramethylsilane as the internal standard. High-resolution mass spectra were
60
obtained with an FT-ICR MS spectrometer (Ionspec, 7.0 T).
61
Preparation of Compound 2-(1H-Indol-3-yl)-2-oxoacetyl Chloride (2). The ether
62
solution (100 mL) of oxaloyl chloride (0.22 mol) was added to the ether solution (350
63
mL) of indole (0.17 mol) dropwise while maintaining the temperature at 0 oC. The
64
yellowish mixture was stirred at 0 oC for 90 min and filtered, washed with cold ether to
65
give 2 (yield 90%) as a yellow solid, which was directly used for next reaction without
66
purification.
67
Preparation of Compound 2-(1H-Indol-3-yl)-2-oxoacetaldehyde (3). Under Ar
68
atmosphere, the ethyl acetate solution (150 mL) of tributyltin hydride (0.15 mol) was
69
added to ethyl acetate solution (150 mL) of oxoacetyl chloride 2 (0.15 mol) drop by
70
drop at 0 °C. The reaction mixture was stirred at 0 °C for 30 min and at 25 °C for 15 h.
71
To the mixture was added petroleum ether (700 mL), then filtered to afford 2-
72
oxoacetaldehyde 3 as a yellow powder in 80% yield, which was directly used for next
73
reaction without purification.
74
General Methods for Synthesis of Compounds 5a–5l. The mixture of 2-
75
oxoacetaldehyde 3 (5.8 mmol), corresponding amino acids (11.6 mmol) and I2 (5.8
76
mmol) in dimethyl sulfoxide (DMSO, 30 mL) was stirred at 110 °C for 30 min, then
77
added 5% solution of Na2S2O3 (300 mL) and ethyl acetate (400 mL). Then the reaction
78
mixture was stirred for 30 min and separated. The organic layer was washed with
79
saturated NaCl solution (200 mL × 2), dried with anhydrous Na2SO4, filtered and 5
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
80
concentrated in vacuum. The compounds 5a–5l were obtained by column
81
chromatography on silica gel.
82
Pimprinine (5a). Brown solid; mp. 202−203 oC (lit.14, 204−205 oC); yield 66%; 1H
83
NMR (400 MHz, DMSO-d6) δ 11.54 (s, 1H, NH), 7.84 (d, J = 7.9 Hz, 1H, Ar-H), 7.74
84
(d, J = 2.6 Hz, 1H, Ar-H), 7.47 (d, J = 8.0 Hz, 1H, Ar-H), 7.30 (s, 1H, Ar-H), 7.12–
85
7.23 (m, 2H, Ar-H), 2.49 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ 158.2, 147.3,
86
136.3, 123.5, 122.8, 122.0, 120.0, 119.4, 119.2, 112.0, 103.9, 13.6; HRMS (ESI) calcd
87
for C12H11N2O (M+H)+ 199.0866, found 199.0861.
88
5-(1H-Indol-3-yl)oxazole (5b). Brown solid; mp. 152−154 oC (lit.19, 156−157 oC);
89
yield 68%; 1H NMR (400 MHz, DMSO-d6) δ 11.63 (s, 1H, NH), 8.36 (s, 1H, Ar-H),
90
7.88 (d, J = 5.9 Hz, 1H, Ar-H), 7.83 (s, 1H, Ar-H), 7.49 (s, 2H, Ar-H), 7.17–7.23 (m,
91
2H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 149.6, 147.6, 136.4, 123.5, 122.1, 120.1,
92
119.4, 118.7, 112.1, 103.6.
93
2-(tert-Butyl)-5-(1H-indol-3-yl)oxazole (5c). Brown solid; mp. 172−174 oC; yield
94
57%; 1H NMR (400 MHz, DMSO-d6) δ 11.56 (s, 1H, NH), 7.84 (d, J = 7.8 Hz, 1H, Ar-
95
H), 7.77 (d, J = 2.6 Hz, 1H, Ar-H), 7.48 (d, J = 7.9 Hz, 1H, Ar-H), 7.26 (s, 1H, Ar-H),
96
7.14–7.23 (m, 2H, Ar-H), 1.41 (s, 9H, CH3); 13C NMR (100 MHz, DMSO-d6) δ 167.7,
97
147.1, 136.3, 123.6, 123.0, 122.0, 120.0, 119.4, 118.8, 112.0, 104.0, 33.2, 28.5; HRMS
98
(ESI) calcd for C15H17N2O (M+H)+ 241.1335, found 241.1339.
99
5-(1H-Indol-3-yl)-2-isopropyloxazole (5d). Brown solid; mp. 125−126 oC (lit.19,
100
125−126 oC); yield 72%; 1H NMR (400 MHz, DMSO-d6) δ 11.56 (s, 1H, NH), 7.85 (s, 6
ACS Paragon Plus Environment
Page 6 of 44
Page 7 of 44
Journal of Agricultural and Food Chemistry
101
1H, Ar-H), 7.76 (s, 1H, Ar-H), 7.48 (s, 1H, Ar-H), 7.29 (s, 1H, Ar-H), 7.21 (s, 1H, Ar-
102
H), 7.17 (s, 1H, Ar-H), 3.15 (s, 1H, Ar-CH), 1.36 (s, 6H, CH3); 13C NMR (100 MHz,
103
DMSO-d6) δ 165.5, 147.1, 136.3, 123.6, 122.9, 122.0, 120.0, 119.4, 118.9, 112.0, 103.9,
104
27.6, 20.4.
105
Labradorin 1 (5e). Brown solid; mp. 145−146 oC (lit.19, 147−148 oC); yield 78%; 1H
106
NMR (400 MHz, DMSO-d6) δ 11.55 (s, 1H, NH), 7.84 (d, J = 7.8 Hz, 1H, Ar-H), 7.73
107
(d, J = 2.6 Hz, 1H, Ar-H), 7.47 (d, J = 8.0 Hz, 1H, Ar-H), 7.30 (s, 1H, Ar-H), 7.12–
108
7.22 (m, 2H, Ar-H), 2.69 (d, J = 7.1 Hz, 2H, Ar-CH2), 2.09–2.19 (m, 1H, ArCH2-CH),
109
0.98 (d, J = 6.7 Hz, 6H, CH3); 13C NMR (100 MHz, DMSO-d6) δ 160.9, 147.2, 136.3,
110
123.5, 122.9, 122.0, 120.0, 119.4, 119.1, 112.0, 103.9, 36.2, 27.1, 22.1; HRMS (ESI)
111
calcd for C15H17N2O (M+H)+ 241.1135, found 241.1133.
112
2-Cyclohexyl-5-(1H-indol-3-yl)oxazole (5f). Brown solid; mp. 169−170 oC; yield
113
48%; 1H NMR (400 MHz, DMSO-d6) δ 11.54 (s, 1H, NH), 8.19–8.24 (m, 1H, Ar-H),
114
7.83 (d, J = 7.7 Hz, 1H, Ar-H), 7.74 (d, J = 2.6 Hz, 1H, Ar-H), 7.46 (d, J = 7.9 Hz, 1H,
115
Ar-H), 7.28 (s, 2H, Ar-H), 2.84–2.90 (m, 1H, Ar-CH), 2.05–2.10 (m, 2H, CH-CH2),
116
1.76–1.80 (m, 2H, CH-CH2), 1.13–1.66 (m, 4H, CHCH2-CH2), 1.26–1.45 (m, 2H,
117
CHCH2CH2-CH2); 13C NMR (100 MHz, DMSO-d6) δ 164.6, 146.9, 137.1, 136.3, 122.9,
118
122.0, 120.0, 119.4, 118.9, 112.0, 104.0, 36.5, 30.3, 25.0; HRMS (ESI) calcd for
119
C17H19N2O (M+H)+ 267.1492, found 267.1493.
120
(5-(1H-Indol-3-yl)oxazol-2-yl)methanol (5g). Brown solid; mp. 187−189 oC (lit.19,
121
189−190 oC); yield 39%; 1H NMR (400 MHz, DMSO-d6) δ 11.59 (s, 1H, NH), 7.89 (d, 7
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
Page 8 of 44
122
J = 7.7 Hz, 1H, Ar-H), 7.79 (d, J = 1.4 Hz, 1H, Ar-H), 7.50 (d, J = 7.9 Hz, 1H, Ar-H),
123
7.39 (s, 1H, Ar-H), 7.22 (t, J = 7.1 Hz, 1H, Ar-H), 7.16 (t, J = 7.5 Hz, 1H, Ar-H), 5.71
124
(t, J = 5.9 Hz, 1H, OH), 4.59 (d, J = 5.8 Hz, 2H, CH2); 13C NMR (100 MHz, DMSO-
125
d6) δ 160.8, 147.9, 136.3, 123.5, 123.2, 122.1, 120.1, 119.5, 112.1, 103.7, 55.9.
126
5-(1H-Indol-3-yl)-2-(2-(methylthio)ethyl)oxazole (5h). Brown solid; mp. 146−147
127
oC (lit.19, 149−150 oC); yield 47%; 1H NMR (400 MHz, DMSO-d ) δ 11.57 (s, 1H, NH), 6
128
7.86 (d, J = 7.7 Hz, 1H, Ar-H), 7.76 (s, 1H, Ar-H), 7.48 (d, J = 7.9 Hz, 1H, Ar-H), 7.34
129
(s, 1H, Ar-H), 7.13–7.23 (m, 2H, Ar-H), 3.12 (t, J = 6.9 Hz, 2H, CH2), 2.94 (t, J = 7.1
130
Hz, 2H, CH2), 2.11 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ 160.0, 147.5, 136.3,
131
123.5, 123.0, 122.1, 120.0, 119.4, 119.1, 112.0, 103.8, 30.5, 27.9, 14.6.
132
5-(1H-Indol-3-yl)-2-phenyloxazole (5i). Brown solid; mp. 226−228
133
226−228 oC); yield 83%; 1H NMR (400 MHz, DMSO-d6) δ 11.70 (s, 1H, NH), 8.12 (d,
134
J = 1.4 Hz, 1H, Ar-H), 8.10 (s, 1H, Ar-H), 7.99 (s, 1H, Ar-H), 7.98 (d, J = 5.9 Hz, 1H,
135
Ar-H), 7.62 (s, 1H, Ar-H), 7.58 (t, J = 6.9 Hz, 2H, Ar-H), 7.52 (t, J = 6.8 Hz, 2H, Ar-
136
H), 7.19–7.27 (m, 2H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 158.0, 148.3, 136.4,
137
130.0, 129.1, 127.2, 125.5, 123.8, 123.5, 122.2, 120.8, 120.3, 119.5, 112.1, 103.6.
138
2-(4-Fluorophenyl)-5-(1H-indol-3-yl)oxazole (5j). Brown solid; mp. 205−206 oC;
139
yield 51%; 1H NMR (400 MHz, DMSO-d6) δ 11.69 (s, 1H, NH), 8.13 (dd, J = 6.3, 9.0
140
Hz, 2H, Ar-H), 7.97 (s, 1H, Ar-H), 7.96 (d, J = 9.0 Hz, 1H, Ar-H), 7.60 (s, 1H, Ar-H),
141
7.50 (d, J = 7.6 Hz, 1H, Ar-H), 7.41 (t, J = 8.2 Hz, 2H, Ar-H), 7.17–7.25 (m, 2H, Ar-
142
H); 13C NMR (100 MHz, DMSO-d6) δ 164.3, 161.8, 157.2, 148.3, 136.4, 127.94, 127.86, 8
ACS Paragon Plus Environment
oC
(lit.19,
Page 9 of 44
Journal of Agricultural and Food Chemistry
143
123.9, 123.5, 122.2, 120.7, 120.3, 119.5, 116.4, 116.1, 112.1, 103.5; HRMS (ESI) calcd
144
for C17H12FN2O (M+H)+ 279.0928, found 279.0933.
145
Pimprinaphine (5k). Brown solid; mp. 199−200 oC (lit.19, 202−203 oC); yield 56%;
146
1H
147
7.74 (s, 1H, Ar-H), 7.47 (d, J = 7.6 Hz, 1H, Ar-H), 7.32–7.40 (m, 5H, Ar-H), 7.29 (s,
148
1H, Ar-H), 7.20 (t, J = 6.9 Hz, 1H, Ar-H), 7.14 (t, J = 7.2 Hz, 1H, Ar-H), 4.22 (s, 2H,
149
Ar-CH2); 13C NMR (100 MHz, DMSO-d6) δ 160.0, 147.8, 136.3, 136.2, 128.7, 128.6,
150
127.2, 126.8, 123.5, 123.1, 122.1, 120.0, 119.4, 119.3, 112.0, 103.7, 33.7; HRMS (ESI)
151
calcd for C18H15N2O (M+H)+ 275.1179, found 275.1177.
152
4-((5-(1H-Indol-3-yl)oxazol-2-yl)methyl)phenol (5l). Brown solid; mp. 165−166 oC;
153
yield 44%; 1H NMR (400 MHz, DMSO-d6) δ 11.54 (s, 1H, NH), 9.45 (s, 1H, OH), 8.01
154
(s, 1H, Ar-H), 7.81 (d, J = 7.8 Hz, 1H, Ar-H), 7.72 (d, J = 2.4 Hz, 1H, Ar-H), 7.46 (d,
155
J = 7.5 Hz, 1H, Ar-H), 7.31 (s, 1H, Ar-H), 7.16 (d, J = 8.9 Hz, 2H, Ar-H), 6.75 (d, J =
156
8.3 Hz, 2H, Ar-H), 4.07 (s, 2H, Ar-CH2); 13C NMR (100 MHz, DMSO-d6) δ 166.4,
157
161.0, 156.6, 148.1, 136.9, 136.8, 132.8, 130.2, 126.7, 123.5, 122.6, 122.5, 121.0, 119.9,
158
115.8, 112.5, 104.2, 33.4; HRMS (ESI) calcd for C18H15N2O2 (M+H)+ 291.1128, found
159
291.1129.
160
General Methods for the Synthesis of Compounds 6aa and 6ab. The 60% NaH (7
161
mmol) powder was batched into tetrahydrofuran solution of methyloxazole 5a (2 mmol)
162
at room temperature and stirred for 30 min. To the reaction solution was added
163
iodomethane or benzyl chloride (6 mmol) and stirred for 1 h at room temperature and
NMR (400 MHz, DMSO-d6) δ 11.57 (s, 1H, NH), 7.82 (d, J = 7.4 Hz, 1H, Ar-H),
9
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
164
refluxed for 1 h. Water (200 mL) was added and extracted with CH2Cl2 (80 mL × 3).
165
The organic layer was washed with saturated NaCl solution (50 mL), dried with
166
anhydrous Na2SO4, filtered and concentrated in vacuum. The compounds 6aa and 6ab
167
were obtained by column chromatography on silica gel.
168
2-Methyl-5-(1-methyl-1H-indol-3-yl)oxazole (6aa). Yellow solid; mp. 71−73 oC;
169
yield 86%; 1H NMR (400 MHz, DMSO-d6) δ 7.86 (d, J = 7.8 Hz, 1H, Ar-H), 7.73 (s,
170
1H, Ar-H), 7.50 (d, J = 8.1 Hz, 1H, Ar-H), 7.30 (s, 1H, Ar-H), 7.27 (d, J = 7.5 Hz, 1H,
171
Ar-H), 7.19 (d, J = 7.5 Hz, 1H, Ar-H), 3.83 (s, 3H, N-CH3), 2.48 (s, 3H, Ar-CH3); 13C
172
NMR (100 MHz, DMSO-d6) δ 158.3, 147.0, 136.8, 126.8, 123.7, 122.1, 120.1, 119.6,
173
119.2, 110.3, 103.0, 32.6, 13.5; HRMS (ESI) calcd for C13H13N2O (M+H)+ 213.1022,
174
found 213.1027.
175
5-(1-Benzyl-1H-indol-3-yl)-2-methyloxazole (6ab). Yellow solid; mp. 94−96 oC;
176
yield 88%; 1H NMR (400 MHz, DMSO-d6) δ 7.93 (s, 1H, Ar-H), 7.87 (d, J = 7.7 Hz,
177
1H, Ar-H), 7.55 (d, J = 8.1 Hz, 1H, Ar-H), 7.15–7.32 (m, 7H, Ar-H), 5.48 (s, 2H, Ar-
178
CH2), 2.48 (s, 3H, Ar-CH3); 13C NMR (100 MHz, DMSO-d6) δ 158.4, 146.8, 137.7,
179
136.1, 128.6, 127.5, 127.2, 126.2, 124.0, 122.3, 120.3, 119.8, 119.5, 110.8, 103.7, 49.2,
180
13.5; HRMS (ESI) calcd for C19H17N2O (M+H)+ 289.1335, found 289.1337.
181
General Methods for the Synthesis of Compounds 9a–9u. The reaction mixture of
182
1H-indole-3-carbohydrazide (7, 6 mmol) and corresponding aldehydes 8a–8u (6 mmol)
183
in anhydrous ethanol (80 mL) was stirred and refluxed at 90 oC for 4 h, then cooled to
184
room temperature and filtered to give compounds 9a–9u. 10
ACS Paragon Plus Environment
Page 10 of 44
Page 11 of 44
Journal of Agricultural and Food Chemistry
185
(E)-N'-Benzylidene-1H-indole-3-carbohydrazide (9a). White solid; mp. 233−234 oC
186
(lit.20, 232−234 oC); yield 79%; 1H NMR (400 MHz, DMSO-d6) δ 11.74 (s, 1H, NH),
187
11.38 (s, 1H, NH), 8.20–8.33 (m, 3H, Ar-H), 7.72 (d, J = 7.3 Hz, 2H, Ar-H), 7.47 (s,
188
1H, Ar-CH), 7.38–7.49 (m, 3H, Ar-H), 7.14–7.22 (m, 2H, Ar-H); 13C NMR (100 MHz,
189
DMSO-d6) δ 134.7, 129.5, 128.8, 126.7, 122.2, 120.8, 111.9.
190
(E)-N'-(4-Methoxybenzylidene)-1H-indole-3-carbohydrazide (9b). White solid; mp.
191
242−243 oC (lit.20, 239−241 oC); yield 90%; 1H NMR (400 MHz, DMSO-d6) δ 11.72
192
(s, 1H, NH), 11.27 (s, 1H, NH), 8.20–8.29 (m, 3H, Ar-H, Ar-CH), 7.66 (d, J = 8.6 Hz,
193
2H, Ar-H), 7.45 (d, J = 7.8 Hz, 1H, Ar-H), 7.15–7.20 (m, 2H, Ar-H), 7.03 (d, J = 8.7
194
Hz, 2H, Ar-H), 3.82 (s, 3H, OCH3); 13C NMR (100 MHz, DMSO-d6) δ 160.4, 128.3,
195
127.3, 122.2, 120.7, 114.3, 111.9, 55.2.
196
(E)-N'-(2-Bromobenzylidene)-1H-indole-3-carbohydrazide (9c). White solid; mp.
197
294−296 oC; yield 92%; 1H NMR (400 MHz, DMSO-d6) δ 11.81 (s, 1H, NH), 11.71 (s,
198
1H, NH), 8.68 (s, 1H, Ar-H), 8.30 (s, 1H, Ar-CH), 8.23 (d, J = 7.3 Hz, 1H, Ar-H), 8.02
199
(dd, J = 6.6, 1.2 Hz, 1H, Ar-H), 7.70 (d, J = 8.0 Hz, 1H, Ar-H), 7.46–7.51 (m, 2H, Ar-
200
H), 7.33–7.37 (m, 1H, Ar-H), 7.16–7.24 (m, 2H, Ar-H); 13C NMR (100 MHz, DMSO-
201
d6) δ 136.0, 133.5, 130.1, 131.2, 128.0, 127.0, 123.1, 122.3, 120.9, 112.0; HRMS (ESI)
202
calcd for C16H13BrN3O (M+H)+ 342.0237, found 342.0239.
203
(E)-N'-(4-Nitrobenzylidene)-1H-indole-3-carbohydrazide (9d). Yellow solid; mp.
204
287−288 oC (lit.20, 289−291 oC); yield 92%; 1H NMR (400 MHz, DMSO-d6) δ 11.83
205
(d, J = 1.4 Hz, 1H, NH), 11.73 (s, 1H, NH), 8.38–8.43 (m, 1H, Ar-H), 8.31 (d, J = 8.8 11
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
206
Hz, 2H, Ar-H), 8.29 (s, 1H, Ar-CH), 8.21 (d, J = 7.5 Hz, 1H, Ar-H), 7.98 (d, J = 8.8
207
Hz, 2H, Ar-H), 7.51 (d, J = 7.5 Hz, 1H, Ar-H), 7.16–7.24 (m, 2H, Ar-H); 13C NMR
208
(100 MHz, DMSO-d6) δ 147.4, 141.2, 136.0, 127.6, 124.1, 122.4, 121.1, 120.9, 112.0.
209
(E)-N'-(4-(Trifluoromethyl)benzylidene)-1H-indole-3-carbohydrazide (9e). White
210
solid; mp. 298−300 oC; yield 53%; 1H NMR (400 MHz, DMSO-d6) δ 11.80 (s, 1H,
211
NH), 11.61 (s, 1H, NH), 8.20–8.39 (m, 3H, Ar-H, Ar-CH), 7.94 (d, J = 8.1 Hz, 2H, Ar-
212
H), 7.82 (d, J = 8.2 Hz, 2H, Ar-H), 7.49 (d, J = 8.1 Hz, 1H, Ar-H), 7.15–7.23 (m, 2H,
213
Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 139.2, 129.9, 129.5, 127.8, 126.3, 126.19,
214
126.15, 126.0, 122.9, 121.4, 112.5; HRMS (ESI) calcd for C17H13F3N3O (M+H)+
215
332.1005, found 332.1001.
216
(E)-N'-(Furan-2-ylmethylene)-1H-indole-3-carbohydrazide (9f). White solid; mp.
217
284−286 oC; yield 89%; 1H NMR (400 MHz, DMSO-d6) δ 11.77 (s, 1H, NH), 11.35 (s,
218
1H, NH), 8.10–8.30 (m, 3H, Ar-H, NHN-CH), 7.84 (s, 1H, Ar-H), 7.48 (d, J = 7.8 Hz,
219
1H, Ar-H), 7.13–7.21 (m, 2H, Ar-H), 6.88 (d, J = 3.3 Hz, 1H, Ar-H), 6.64 (dd, J = 3.0,
220
1.6 Hz, 1H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 149.8, 144.6, 122.2, 120.8, 112.3,
221
112.1, 111.9; HRMS (ESI) calcd for C14H12N3O2 (M+H)+ 254.0924, found 254.0925.
222
(E)-N'-(Naphthalen-1-ylmethylene)-1H-indole-3-carbohydrazide (9g). White solid;
223
mp. 279−281 oC; yield 86%; 1H NMR (400 MHz, DMSO-d6) δ 11.80 (s, 1H, NH),
224
11.52 (s, 1H, NH), 8.90–9.10 (m, 2H, Ar-H, NCH), 8.20–8.30 (m, 2H, Ar-H), 8.00–
225
8.04 (m, 2H, Ar-H), 7.94 (d, J = 7.0 Hz, 1H, Ar-H), 7.68 (d, J = 7.1 Hz, 1H, Ar-H),
226
7.60–7.63 (m, 2H, Ar-H), 7.50 (d, J = 7.5 Hz, 1H, Ar-H), 7.16–7.24 (m, 2H, Ar-H); 13C 12
ACS Paragon Plus Environment
Page 12 of 44
Page 13 of 44
Journal of Agricultural and Food Chemistry
227
NMR (100 MHz, DMSO-d6) δ 133.5, 130.1, 130.0, 128.8, 127.1, 126.2, 125.6, 122.3,
228
120.8, 112.0; HRMS (ESI) calcd for C20H16N3O (M+H)+ 314.1288, found 314.1284.
229
(E)-N'-((5-Bromo-1H-indol-3-yl)methylene)-1H-indole-3-carbohydrazide
230
Brown solid; mp. 230−231 oC (lit.21, 232−233 oC); yield 78%; 1H NMR (400 MHz,
231
DMSO-d6) δ 11.74 (s, 2H, NH), 11.19 (s, 1H, NH), 8.53 (d, J = 4.8 Hz, 2H, Ar-H), 8.24
232
(d, J = 7.4 Hz, 1H, Ar-H), 8.20 (s, 1H, Ar-CH), 7.87 (s, 1H, Ar-H), 7.15–7.51 (m, 5H,
233
Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 136.2, 131.3, 126.4, 125.5, 122.6, 121.1.
234
114.3, 113.4, 112.4.
235
(E)-N'-(Cyclohexylmethylene)-1H-indole-3-carbohydrazide (9i). White solid; mp.
236
284−286 oC; yield 67%; 1H NMR (400 MHz, DMSO-d6) δ 11.66 (s, 1H, NH), 10.90 (s,
237
1H, NH), 8.02–8.14 (m, 2H, Ar-H), 7.53 (s, 1H, NHN-CH), 7.45 (d, J = 7.8 Hz, 1H,
238
Ar-H), 7.11–7.19 (m, 2H, Ar-H), 2.22–2.32 (m, 1H, NCH-CH), 1.63–1.82 (m, 5H, CH2),
239
1.19–1.36 (m, 5H, CH2); 13C NMR (100 MHz, DMSO-d6) δ 122.1, 120.6, 111.8, 29.8,
240
25.5, 25.0; HRMS (ESI) calcd for C16H20N3O (M+H)+ 270.1601, found 270.1607.
241
(E)-N'-Octylidene-1H-indole-3-carbohydrazide (9j). White solid; mp. 260−266 oC;
242
yield 56%; 1H NMR (400 MHz, DMSO-d6) δ 11.66 (s, 1H, NH), 10.93 (s, 1H, NH),
243
8.12–8.16 (m, 2H, Ar-H, NCH), 7.55–7.64 (m, 1H, Ar-H), 7.45 (d, J = 7.9 Hz, 1H, Ar-
244
H), 7.10–7.19 (m, 2H, Ar-H), 2.24–2.28 (m, 2H, CH2), 1.49–1.52 (m, 2H, CH2), 1.20–
245
1.35 (m, 8H, CH2), 0.87 (t, J = 5.5 Hz, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ
246
122.1, 120.5, 111.8, 31.9, 31.2, 28.6, 28.5, 26.2, 22.0, 13.9; HRMS (ESI) calcd for
247
C17H24N3O (M+H)+ 286.1914, found 286.1910. 13
ACS Paragon Plus Environment
(9h).
Journal of Agricultural and Food Chemistry
Page 14 of 44
248
(E)-N'-(3,4,5-Trimethoxybenzylidene)-1H-indole-3-carbohydrazide (9k). White
249
solid; mp. 243−245 oC (lit.21, 245−246 oC); yield 77%; 1H NMR (400 MHz, DMSO-
250
d6) δ 11.79 (s, 1H, NH), 11.43 (s, 1H, NH), 8.21–8.28 (m, 3H, Ar-H, Ar-CH), 7.49 (d,
251
J = 7.9 Hz, 1H, Ar-H), 7.14–7.22 (m, 2H, Ar-H), 7.02 (s, 2H, Ar-H), 3.85 (s, 6H, CH3),
252
3.71 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ 153.2, 138.7, 130.3, 122.3, 120.8,
253
112.0, 103.9, 60.1, 55.9.
254
(E)-N'-(3-Hydroxy-4-methoxybenzylidene)-1H-indole-3-carbohydrazide
255
White solid; mp. 248−250 oC; yield 88%; 1H NMR (400 MHz, DMSO-d6) δ 11.74 (s,
256
1H, NH), 11.25 (s, 1H, NH), 9.49 (s, 1H, OH), 8.15–8.30 (m, 3H, Ar-H, NHNC-H),
257
7.48 (d, J = 8.0 Hz, 1H, Ar-H), 7.31 (s, 1H, Ar-H), 7.13–7.21 (m, 2H, Ar-H), 7.07 (dd,
258
J = 8.1, 1.4 Hz, 1H, Ar-H), 6.85 (d, J = 8.1 Hz, 1H, Ar-H), 3.84 (s, 3H, OCH3); 13C
259
NMR (100 MHz, DMSO-d6) δ 148.4, 148.0, 126.2, 122.2, 120.7, 115.4, 111.9, 108.8,
260
55.5; HRMS (ESI) calcd for C17H16N3O3 (M+H)+ 310.1186, found 310.1191.
261
(E)-N'-(4-Hydroxybenzylidene)-1H-indole-3-carbohydrazide (9m). White solid;
262
mp. 296−298 oC; yield 88%; 1H NMR (400 MHz, DMSO-d6) δ 11.71 (s, 1H, NH),
263
11.22 (s, 1H, NH), 9.88 (s, 1H, OH), 8.12–8.30 (m, 3H, Ar-H, NHNC-H), 7.55 (d, J =
264
8.5 Hz, 2H, Ar-H), 7.48 (d, J = 7.8 Hz, 1H, Ar-H), 7.13–7.21 (m, 2H, Ar-H), 6.85 (d, J
265
= 8.5 Hz, 2H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 158.9, 128.5, 125.7, 122.2,
266
120.7, 115.7, 111.9; HRMS (ESI) calcd for C16H14N3O2 (M+H)+ 280.1081, found
267
280.1086.
268
(E)-N'-(4-Fluorobenzylidene)-1H-indole-3-carbohydrazide (9n). White solid; mp. 14
ACS Paragon Plus Environment
(9l).
Page 15 of 44
Journal of Agricultural and Food Chemistry
269
248−252 oC; yield 91%; 1H NMR (400 MHz, DMSO-d6) δ 11.75 (s, 1H, NH), 11.42 (s,
270
1H, NH), 8.19–8.40 (m, 3H, Ar-H, NHNC-H), 7.78 (dd, J = 8.6, 5.7 Hz, 2H, Ar-H),
271
7.48 (d, J = 7.6 Hz, 1H, Ar-H), 7.27–7.32 (m, 2H, Ar-H), 7.13–7.22 (m, 2H, Ar-H); 13C
272
NMR (100 MHz, DMSO-d6) δ 164.0, 161.5, 131.3, 128.9, 128.8, 122.2, 121.1, 120.8,
273
115.9, 115.7, 111.9; HRMS (ESI) calcd for C16H13FN3O (M+H)+ 282.1037, found
274
282.1042.
275
(E)-N'-(2-Nitrobenzylidene)-1H-indole-3-carbohydrazide (9o). Yellow solid; mp.
276
275−277 oC; yield 86%; 1H NMR (400 MHz, DMSO-d6) δ 11.83 (s, 1H, NH), 11.79 (s,
277
1H, NH), 8.73 (s, 1H, Ar-H), 8.30 (s, 1H, Ar-CH), 8.23 (d, J = 7.5 Hz, 1H, Ar-H), 8.16
278
(d, J = 7.7 Hz, 1H, Ar-H), 8.08 (dd, J = 8.2, 1.0 Hz, 1H, Ar-H), 7.82 (t, J = 7.7 Hz, 1H,
279
Ar-H), 7.64–7.68 (m, 1H, Ar-H), 7.50 (d, J = 7.9 Hz, 1H, Ar-H), 7.16–7.24 (m, 2H, Ar-
280
H); 13C NMR (100 MHz, DMSO-d6) δ 148.0, 136.0, 133.6, 130.1, 129.1, 127.7. 124.6,
281
122.3, 121.1, 120.9, 112.0; HRMS (ESI) calcd for C16H13N4O3 (M+H)+ 309.0982,
282
found 309.0985.
283
(E)-N'-(Quinolin-4-ylmethylene)-1H-indole-3-carbohydrazide (9p). Yellow solid;
284
mp. > 300 oC; yield 77%; 1H NMR (400 MHz, DMSO-d6) δ 11.86 (s, 1H, NH), 11.79
285
(s, 1H, NH), 8.99 (d, J = 4.5 Hz, 1H, Ar-H), 8.97 (s, 1H, Ar-H), 8.78 (s, 1H, NHNC-
286
H), 8.34 (s, 1H, Ar-H), 8.25 (d, J = 7.4 Hz, 1H, Ar-H), 8.12 (d, J = 8.4 Hz, 1H, Ar-H),
287
7.82–7.86 (m, 2H, Ar-H), 7.75 (t, J = 7.9 Hz, 1H, Ar-H), 7.52 (d, J = 7.9 Hz, 1H, Ar-
288
H), 7.18–7.25 (m, 2H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 150.8, 148.9, 138.4,
289
136.5, 130.2, 130.1, 127.9, 125.2, 122.9, 121.5, 112.6; HRMS (ESI) calcd for
15
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
290
C19H15N4O (M+H)+ 315.1240, found 315.1237.
291
(E)-N'-((1H-Pyrrol-2-yl)methylene)-1H-indole-3-carbohydrazide (9q). Gray solid;
292
mp. 253−255 oC; yield 52%; 1H NMR (400 MHz, DMSO-d6) δ 11.68 (s, 1H, NH),
293
11.45 (s, 1H, NH), 11.09 (s, 1H, NH), 8.13–8.20 (m, 3H, Ar-H, NHNC-H), 7.47 (d, J
294
= 7.8 Hz, 1H, Ar-H), 7.12–7.20 (m, 2H, Ar-H), 6.92 (s, 1H, Ar-H), 6.45 (s, 1H, Ar-H),
295
6.15 (s, 1H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 128.0, 122.6, 122.3, 121.1, 112.9,
296
112.4, 109.6; HRMS (ESI) calcd for C14H13N4O (M+H)+ 253.1084, found 253.1080.
297
(E)-N'-(Thiophen-2-ylmethylene)-1H-indole-3-carbohydrazide (9r). Yellow solid;
298
mp. 265−267 oC (lit.21, 269−271 oC); yield 93%; 1H NMR (400 MHz, DMSO-d6) δ
299
11.78 (s, 1H, NH), 11.36 (s, 1H, NH), 8.58 (s, 1H, Ar-H), 8.21 (s, 2H, Ar-H, NHNC-
300
H), 7.63 (s, 1H, Ar-H), 7.48 (d, J = 7.1 Hz, 1H, Ar-H), 7.43 (s, 1H, Ar-H), 7.14–7.20
301
(m, 3H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 128.0, 122.6, 122.3, 121.1, 112.9,
302
112.4, 109.6.
303
(E)-N'-(Pyridin-4-ylmethylene)-1H-indole-3-carbohydrazide (9s). Gray solid; mp.
304
> 300 oC; yield 54%; 1H NMR (400 MHz, DMSO-d6) δ 11.83 (s, 1H, NH), 11.70 (s,
305
1H, NH), 8.65 (d, J = 5.6 Hz, 2H, Ar-H), 8.28–8.39 (m, 2H, Ar-H, NHNC-H), 8.23 (d,
306
J = 7.4 Hz, 1H, Ar-H), 7.67 (d, J = 5.7 Hz, 2H, Ar-H), 7.51 (d, J = 7.8 Hz, 1H, Ar-H),
307
7.16–7.24 (m, 2H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 150.6, 142.4, 122.9, 121.5,
308
121.3, 112.5; HRMS (ESI) calcd for C15H13N4O (M+H)+ 265.1084, found 265.1086.
309
(E)-N'-Butylidene-1H-indole-3-carbohydrazide (9t). White solid; mp. 238−240 oC;
310
yield 77%; 1H NMR (400 MHz, DMSO-d6) δ 11.67 (s, 1H, NH), 10.95 (s, 1H, NH), 16
ACS Paragon Plus Environment
Page 16 of 44
Page 17 of 44
Journal of Agricultural and Food Chemistry
311
8.02–8.34 (m, 2H, Ar-H), 7.60 (s, 1H, NHN-CH), 7.45 (d, J = 7.8 Hz, 1H, Ar-H), 7.11–
312
7.19 (m, 2H, Ar-H), 2.25 (dd, J = 6.9, 13.1 Hz, 2H, NCH-CH2), 1.49–1.58 (m, 2H, CH3-
313
CH2), 0.95 (t, J = 7.3 Hz, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ 122.1, 120.6,
314
111.8, 33.9, 19.5, 13.6; HRMS (ESI) calcd for C13H16N3O (M+H)+ 230.1288, found
315
230.1283.
316
(E)-N'-(2-Methylpropylidene)-1H-indole-3-carbohydrazide (9u). White solid; mp.
317
197−199 oC; yield 81%; 1H NMR (400 MHz, DMSO-d6) δ 11.68 (s, 1H, NH), 10.93 (s,
318
1H, NH), 8.10–8.30 (m, 2H, Ar-H), 7.16 (s, 1H, NHNC-H), 7.44–7.47 (m, 1H, Ar-H),
319
7.12–7.19 (m, 2H, Ar-H), 2.50–2.55 (m, 1H, (CH3)2C-H), 1.10 (s, 3H, CH3), 1.08 (s,
320
3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ 122.6, 121.1, 112.3, 31.4, 20.2; HRMS
321
(ESI) calcd for C13H16N3O (M+H)+ 230.1288, found 230.1283.
322
General Methods for the synthesis of Compounds 10a–10j. The reaction mixture of
323
corresponding carbohydrazides 9a–9j (3 mmol) and iodobenzene diacetate (6 mmol) in
324
acetonitrile (60 mL) was stirred at 50 oC for 2 h. The acetonitrile was removed in
325
vacuum. Ethyl acetate (150 mL) was added and washed with saturated Na2CO3 solution
326
(80 mL), brine (80 mL) and dried with anhydrous Na2SO4, filtered and concentrated in
327
vacuum. The compounds 10a–10j were obtained by column chromatography on silica
328
gel.
329
2-(1H-Indol-3-yl)-5-phenyl-1,3,4-oxadiazole (10a). White solid; mp. 269−271 oC;
330
yield 72%; 1H NMR (400 MHz, DMSO-d6) δ 12.12 (s, 1H, NH), 8.34 (d, J = 2.9 Hz,
331
1H, Ar-H), 8.20 (t, J = 5.0 Hz, 1H, Ar-H), 8.14–8.16 (m, 2H, Ar-H), 7.64–7.66 (m, 3H, 17
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
Page 18 of 44
13C
332
Ar-H), 7.57–7.59 (m, 1H, Ar-H), 7.29–7.31 (m, 2H, Ar-H);
333
DMSO-d6) δ 162.0, 161.8, 136.5, 131.5, 129.4, 128.6, 126.3, 124.1, 123.7, 122.9, 121.3,
334
120.2, 112.5, 99.4; HRMS (ESI) calcd for C16H12N3O (M+H)+ 262.0975, found
335
262.0971.
336
2-(1H-Indol-3-yl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole (10b). White solid; mp.
337
276−277 oC; yield 69%; 1H NMR (400 MHz, DMSO-d6) δ 12.07 (s, 1H, NH), 8.07 (d,
338
J = 8.8 Hz, 1H, Ar-H), 7.75 (d, J = 8.0 Hz, 2H, Ar-H), 7.56 (d, J = 8.1 Hz, 1H, Ar-H),
339
7.40 (t, J = 7.4 Hz, 1H, Ar-H), 7.27–7.31 (m, 1H, Ar-H), 7.19 (t, J = 7.7 Hz, 3H, Ar-
340
H), 3.88 (s, 3H, OCH3); 13C NMR (100 MHz, DMSO-d6) δ 172.5, 162.2, 137.6, 135.0,
341
131.1, 128.6, 128.2, 123.8, 122.1, 118.9, 115.3, 113.4, 56.0; HRMS (ESI) calcd for
342
C17H14N3O2 (M+H)+ 292.1081, found 292.1087.
343
2-(2-Bromophenyl)-5-(1H-indol-3-yl)-1,3,4-oxadiazole (10c). Brown solid; mp.
344
236−238 oC; yield 78%; 1H NMR (400 MHz, DMSO-d6) δ 12.13 (s, 1H, NH), 8.29 (s,
345
1H, Ar-H), 8.18 (d, J = 5.3 Hz, 1H, Ar-H), 8.07 (d, J = 7.2 Hz, 1H, Ar-H), 7.92 (d, J =
346
7.7 Hz, 1H, Ar-H), 7.64 (t, J = 6.8 Hz, 1H, Ar-H), 7.57 (d, J = 5.5 Hz, 2H, Ar-H), 7.29
347
(d, J = 5.9 Hz, 2H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 162.8, 161.6, 137.0, 134.8,
348
133.4, 132.1, 129.2, 128.7, 125.6, 124.6, 123.4, 121.9, 121.3, 120.6, 113.0, 99.6; HRMS
349
(ESI) calcd for C16H11BrN3O (M+H)+ 340.0080, found 340.0081.
350
2-(1H-Indol-3-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole (10d). Gray solid; mp. >300 oC;
351
yield 66%; 1H NMR (400 MHz, DMSO-d6) δ 12.18 (s, 1H, NH), 8.47 (s, 1H, Ar-H),
352
8.45 (s, 1H, Ar-H), 8.35–8.39 (m, 3H, Ar-H), 8.18 (t, J = 5.0 Hz, 1H, Ar-H), 7.56–7.58 18
ACS Paragon Plus Environment
NMR (100 MHz,
Page 19 of 44
Journal of Agricultural and Food Chemistry
353
(m, 1H, Ar-H), 7.29–7.31 (m, 2H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 163.4,
354
161.1, 149.3, 137.0, 129.73, 129.70. 128.0, 125.1, 124.5, 123.5, 121.9, 120.7, 113.1,
355
99.5; HRMS (ESI) calcd for C16H11N4O3 (M+H)+ 307.0826, found 307.0822.
356
2-(1H-Indol-3-yl)-5-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazole
357
yellow solid; mp. 288−290 oC; yield 82%; 1H NMR (400 MHz, DMSO-d6) δ 12.16 (s,
358
1H, NH), 8.37 (d, J = 2.9 Hz, 1H, Ar-H), 8.34 (d, J = 8.1 Hz, 2H, Ar-H), 8.19 (t, J =
359
5.0 Hz, 1H, Ar-H), 8.01 (d, J = 8.3 Hz, 2H, Ar-H), 7.57–7.59 (m, 1H, Ar-H), 7.28–7.33
360
(m, 2H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 163.0, 161.4, 136.9, 127.7, 126.8,
361
124.5. 123.5, 121.9, 120.6, 113.1, 99.6; HRMS (ESI) calcd for C17H11F3N3O (M+H)+
362
330.0849, found 330.0844.
363
2-(Furan-2-yl)-5-(1H-indol-3-yl)-1,3,4-oxadiazole (10f). Gray solid; mp. 214−216 oC;
364
yield 61%; 1H NMR (400 MHz, DMSO-d6) δ 12.12 (s, 1H, NH), 8.27 (d, J = 2.9 Hz,
365
1H, Ar-H), 8.16 (dd, J = 3.4, 6.5 Hz, 1H, Ar-H), 8.09 (d, J = 1.1 Hz, 1H, Ar-H), 7.57
366
(dd, J = 2.0, 5.5 Hz, 1H, Ar-H), 7.41 (d, J = 3.5 Hz, 1H, Ar-H), 7.26–7.32 (m, 2H, Ar-
367
H), 6.84 (dd, J = 1.8, 3.5 Hz, 1H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 161.7,
368
155.4, 147.0, 139.5, 136.9, 129.1. 124.5, 123.4, 121.8, 120.7, 114.3, 113.1, 113.0, 99.5;
369
HRMS (ESI) calcd for C14H10N3O2 (M+H)+ 252.0768, found 252.0765.
370
2-(1H-Indol-3-yl)-5-(naphthalen-1-yl)-1,3,4-oxadiazole (10g). Gray solid; mp.
371
186−188 oC; yield 70%; 1H NMR (400 MHz, CDCl3) δ 9.37 (d, J = 8.6 Hz, 1H, Ar-H),
372
9.23 (s, 1H, NH), 8.38 (d, J = 7.1 Hz, 1H, Ar-H), 8.30 (d, J = 7.2 Hz, 1H, Ar-H), 8.11
373
(d, J = 2.6 Hz, 1H, Ar-H), 8.06 (d, J = 8.3 Hz, 1H, Ar-H), 7.97 (d, J = 8.2 Hz, 1H, Ar19
ACS Paragon Plus Environment
(10e).
Light
Journal of Agricultural and Food Chemistry
374
H), 7.70–7.76 (m, 1H, Ar-H), 7.61–7.66 (m, 2H, Ar-H), 7.53–7.58 (m, 2H, Ar-H), 7.34–
375
7.39 (m, 1H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 161.8, 161.5, 136.5, 133.5,
376
132.2, 129.3, 128.9, 128.2, 128.1, 126.8, 125.7, 125.4, 124.2, 122.9, 121.3, 120.2, 120.0,
377
112.5. 99.3; HRMS (ESI) calcd for C20H14N3O (M+H)+ 312.1131, found 312.1137.
378
2-(5-Bromo-1H-indol-3-yl)-5-(1H-indol-3-yl)-1,3,4-oxadiazole (10h). Gray solid;
379
mp. 291−292 oC; yield 49%; 1H NMR (400 MHz, DMSO-d6) δ 12.23 (s, 1H, NH),
380
12.04 (s, 1H, NH), 8.34 (s, 2H, Ar-H), 8.26 (s, 1H, Ar-H), 8.22 (d, J = 6.4 Hz, 1H, Ar-
381
H), 7.58 (d, J = 1.9 Hz, 1H, Ar-H), 7.55 (d, J = 8.6 Hz, 1H, Ar-H), 7.43 (d, J = 8.6 Hz,
382
1H, Ar-H), 7.29 (t, J = 3.6 Hz, 2H, Ar-H); 13C NMR (100 MHz, DMSO-d6) δ 160.4,
383
159.7, 137.0, 135.8, 129.7, 126.3. 124.5, 123.4, 123.0, 120.9, 115.0, 112.9, 100.1, 99.9;
384
HRMS (ESI) calcd for C18H12BrN4O (M+H)+ 379.0189, found 379.0181.
385
2-Cyclohexyl-5-(1H-indol-3-yl)-1,3,4-oxadiazole (10i). White solid; mp. 197−198 oC;
386
yield 51%; 1H NMR (400 MHz, DMSO-d6) δ 11.98 (s, 1H, NH), 8.13 (d, J = 2.8 Hz,
387
1H, Ar-H), 8.08 (d, J = 7.0 Hz, 1H, Ar-H), 7.53 (dd, J = 6.5, 1.2 Hz, 1H, Ar-H), 7.23–
388
7.27 (m, 2H, Ar-H), 2.98–3.05 (m, 1H, Ar-CH), 2.07–2.11 (m, 2H, ArCH-CH2), 1.76–
389
1.81 (m, 2H, ArCH-CH2), 1.28–1.69 (m, 6H, ArCHCH2-(CH2)3); 13C NMR (100 MHz,
390
DMSO-d6) δ 167.7, 167.1, 136.9, 128.2, 123.2, 121.6. 120.6, 112.8, 100.1, 34.6, 30.2,
391
25.7, 25.2; HRMS (ESI) calcd for C16H18N3O (M+H)+ 268.1444, found 268.1449.
392
2-Heptyl-5-(1H-indol-3-yl)-1,3,4-oxadiazole (10j). Gray solid; mp. 176−177 oC; yield
393
46%; 1H NMR (400 MHz, CDCl3) δ 9.23 (d, J = 108.1 Hz, 1H, NH), 8.25–8.38 (m, 1H,
394
Ar-H), 7.84 (dd, J = 2.6, 64.6 Hz, 1H, Ar-H), 7.46–7.57 (m, 1H, Ar-H), 7.32–7.35 (m, 20
ACS Paragon Plus Environment
Page 20 of 44
Page 21 of 44
Journal of Agricultural and Food Chemistry
395
2H, Ar-H), 4.10–4.33 (m, 2H, CH2), 2.80–2.98 (m, 2H, CH2), 1.85–2.09 (m, 3H, CH2),
396
1.25–1.58 (m, 8H, CH2, CH3); 13C NMR (100 MHz, DMSO-d6) δ 164.3, 161.6, 136.4,
397
127.7, 124.1, 122.7, 121.0, 120.2, 112.3, 31.1, 28.3, 28.2, 26.0, 24.4, 22.0, 13.9; HRMS
398
(ESI) calcd for C17H22N3O (M+H)+ 284.1757, found 284.1752.
399
Biological Assay. The biological activity of target compounds were tested on the
400
corresponding test tissues. To ensure the accuracy of the data, each group of tests was
401
repeated at least three times. The activity data were expressed as percentage inhibition
402
rates ranging from 0 to 100 (0 means no activity, 100 means total inhibition).
403
Antiviral Biological Assay. The anti-TMV activities of target compounds were obtained
404
by using reported methods10 with tobacco (Nicotianatobaccum var. Xanthi-nc) as the
405
test plant. The detailed procedures also can be seen in Supporting Information.
406
Phytotoxic Activity. The growing 5–6 leaf stage tobaccos (Nicotiana tabacum var
407
Xanthi nc) were selected. The compound solution (500 µg/mL) was smeared on the
408
leaves and calculated the number of lesions after 3-4 days.
409
Antifungal Biological Assay. The fungicidal activities of target compounds were
410
obtained by using literature methods.22 The detailed procedures also can be seen in
411
Supporting Information.
412
RESULTS AND DISCUSSION
413
Chemistry. Till now, the synthesis of pimprinine has been accomplished by Joshi23,
414
Molina24, Wu19 and Zhou25. Considering a series of derivatives of pimprinine would be 21
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
415
needed, Wu’s method was selected and optimized (Figure 3).25 2-Oxoacetaldehyde 3
416
and corresponding amino acids underwent decarboxylation coupling reaction to give
417
5a–5l in 39%–83% yields. Indole nitrogen substituted products 6aa and 6ab were
418
prepared (Figure 4) to evaluate the influence of the NH on activity.
419
1,3,4-Oxadiazole is a very good bioisostere of amide and ester functional group.
420
Compounds containing a 1,3,4-oxadiazole ring often exhibit broad-spectrum biological
421
activities, such as anticancer26, antifungal27 and anti-HIV28. On the basis of the principle
422
of combination of active structural moieties, a series of pimprinine derivatives
423
containing a 1,3,4-oxadiazole ring were reasonably designed and prepared (Figure 5).
424
The reaction of hydrazide 7 with a number of aldehydes 8a–8u gave acylhydrazones
425
9a–9u (Figures 5 and 6). It is well known that acylhydrazone compounds may exist as
426
isomers (E/Z) due to the carbon-nitrogen double bonds and the rotamers (cis/trans)
427
caused by amide N–C(O) bond.29,30 The hydrazones prepared from aldehydes and
428
hydrazides exists in E-form in solution.29 For acylhydrazones 9a–9u, only E form were
429
detected by NMR in DMSO-d6. Acylhydrazones 9a–9j were transformed into
430
oxadiazoles 10a–10j by reacting with iodobenzene diacetate.
431
Phytotoxic Activity. The first phytotoxic activity evaluation indicated that pimprinine
432
alkaloids and their derivatives 5a–5l, 6aa, 6ab, 7, 9a–9u and 10a–10j displayed no
433
phytotoxic activity to the tested tobaccos at 500 μg/mL. No local lesion appear on the
434
tobacco leaves.
435
Antiviral Activity. The antiviral activities of pimprinine alkaloids and their derivatives 22
ACS Paragon Plus Environment
Page 22 of 44
Page 23 of 44
Journal of Agricultural and Food Chemistry
436
5a–5l, 6aa, 6ab, 7, 9a–9u and 10a–10j against TMV was shown in Table 1. Currently
437
widely used antivirals ribavirin and ningnanmycin were selected as the controls.
438
In Vitro Anti-TMV Activity. The in vitro anti-TMV activities of pimprinines 5a–5l, 6aa,
439
6ab, 7, 9a–9u and 10a–10j were first tested. Compounds 5g, 5j–5l, 9d, 9e, 9h, 9m, 9o,
440
9p, 9s, 10c, 10d, 10g and 10h exhibited higher in vitro anti-TMV activities than
441
ribavirin, in which, compounds 5l, 9h and 10h displayed similar or higher antiviral
442
activities than ningnanmycin (perhaps the most widely used antiviral agent at present).
443
Pimprinine (5a) showed about similar TMV inhibitory effect with compounds 6aa
444
and 6ab, which indicated that the modification of indole nitrogen is tolerant. The main
445
difference between 5a–5f lies in the size of alkyl substituents, 5c and 5e showed higher
446
inhibitory effect than the others which indicated that increasing steric hindrance is
447
beneficial to the activity. Compounds 5c and 5e exhibited higher inhibitory effect than
448
pimprinine (5a) which indicated that the introduction of hydroxyl and methylthio
449
groups is favorable for the activity. The replacement of methyl with phenyl maintained
450
activity (inhibitory effect: 5a ≈ 5i). However, the replacement of methyl with 4-F
451
phenyl significantly increased activity (inhibitory effect: 5j > 5a) which indicated that
452
the 2-position of pimprinine is a substituent effect sensitive region. Pimprinaphine (5k)
453
displayed significantly higher activity than pimprinine (5a) and 5i which indicated that
454
the benzyl is more beneficial to the activity. Introduction of hydroxy into benzyl further
455
increased antiviral activity (inhibitory effect: 5l > 5k). The replacement of oxazole ring
456
with oxadiazole ring increased antiviral activity (inhibitory effect: 10a > 5i, 10i > 5f).
23
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
457
The mainly difference between 10a–10e lies in the phenyl substituents, electron
458
deficient substituents are more beneficial to the activity (inhibitory effect: 10d > 10e >
459
10b). Ortho bromophenyl substituent 10c showed higher inhibitory effect than the
460
others. The replacement of phenyl with furany and alkyls decreased antiviral activity
461
(inhibitory effect: 10a > 10f ≈ 10i ≈ 5j). Naphthyl and indolyl substituents 10g and 10h
462
displayed about similar activities with 10c.
463
N-Acylhydrazones also play an important role in medicinal chemistry, as they
464
display broad-spectrum biological activities, such as antiviral31, anticonvulsant32 and
465
antitrypanosomal33. As the ring open products, 7 and 9a–9u were also tested for their
466
antiviral activities. The results revealed that acylhydrazones 9a–9u also showed good
467
antiviral activities. Compounds 9d, 9e, 9h, 9m, 9o, 9p and 9s showed higher activities
468
than ribavirin, especially for compound 9h displayed about similar activity to
469
ningnanmycin. As the ring open products of 10a–10j, 9a–9j displayed lower antiviral
470
activities than 10a–10j except for 9e (inhibitory effect: 9e > 10e) which indicated that
471
the open of oxadiazole ring is bad for antiviral activity. The alkyl substituted derivatives
472
9i, 9j, 9t and 9u exhibited relatively lower activities than the others. Among the phenyl
473
substituted derivatives 9a–9e and 9k–9o, electron deficient substituted compounds 9d,
474
9e, 9o and hydroxyl substituted compound 9m showed relatively higher activities.
475
Heterocyclic substituted derivatives 9f, 9q and 9r displayed about similar activities
476
with 9a. Compounds 9h and 9p exhibited excellent antiviral activities.
477
In Vivo Anti-TMV Activity Pimprinine alkaloids and their derivatives 5a–5l, 6aa, 6ab,
24
ACS Paragon Plus Environment
Page 24 of 44
Page 25 of 44
Journal of Agricultural and Food Chemistry
478
7, 9a–9u and 10a–10j also were evaluated for their in vivo anti-TMV activities. Most
479
of these compounds displayed good activities. Compounds 5l, 9h and 10h displayed
480
significantly higher in vivo activities than ribavirin. The SARs of in vivo activity are
481
similar to that of in vitro activity. The EC50 values of compounds 5l, 9h and 10h for
482
protection effect were further investigated to further confirm the activity data. As shown
483
in Table 2, ribavirin displayed 694 μg/mL EC50 value which is significantly higher than
484
that of compounds 5l, 9h and 10h. Ningnanmycin showed 203 μg/mL EC50 value which
485
is slightly lower than that of 5l (211 μg/mL) and higher than that of 9h (190 μg/mL)
486
and 10h (180 μg/mL). Compounds 5l, 9h and 10h with similar or higher antiviral
487
activities than ningnanmycin emerged as new lead compounds for antiviral research.
488
Fungicidal Activity. The in vitro fungicidal activities of pimprinine alkaloids and their
489
derivatives 5a–5l, 6aa, 6ab, 7, 9a–9u and 10a–10j were also tested against 14 kinds of
490
phytopathogenic fungi. Currently widely used fungicides carbendazim and
491
chlorothalonil were selected as the controls.
492
As shown in Table 3, all the tested compounds showed broad-spectrum in vitro
493
fungicidal activities at 50 µg/mL. The fungicidal activities of 5d, 6aa and 6ab are
494
higher than that of carbendazim against Cercospora arachidicola Hori. The fungicidal
495
activities of compounds 5b, 5k and 9i are higher than that of carbendazim against
496
Physalospora piricola. Compounds 5d, 5j, 6aa, 6ab and 9a exhibited higher fungicidal
497
activities than did carbendazim against Rhizoctonia cerealis. The fungicidal activities
498
of 5g against Bipolaris maydis were higher than that of chlorothalonil. The fungicidal
25
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
499
activities of 6ab and 9a against Alternaria solani and 5c, 5g, 6aa, 6ab, 9h, 9i and 9o
500
against Botrytis cinerea were higher than that of carbendazim.
501
In Summary, pimprinine alkaloids and their derivatives 5a–5l, 6aa, 6ab, 7, 9a–9u
502
and 10a–10j were synthesized and evaluated systematically for their antiviral and
503
fungicidal activities. The anti-TMV activities of these compounds were discovered for
504
the first time. Compounds 5l, 9h and 10h with simple structure showed similar or higher
505
in vivo anti-TMV activities than ningnanmycin, thus emerged as new antiviral pilot
506
compounds. The modification of indole nitrogen is tolerant for antiviral research. The
507
replacement of oxazole ring with oxadiazole ring increased antiviral activity. As the
508
ring open products, acylhydrazones 9a–9u were also found to possess good antiviral
509
activity. Moreover, all the synthesized compounds were found to have broad-spectrum
510
in vitro fungicidal activities. This study laid a solid foundation for the application of
511
pimprinine alkaloids and their derivatives in plant protection.
512
FUNDING
513
We gratefully acknowledge assistance from National Natural Science Foundation of
514
China (21772145, 21732002, 21672117), Tianjin Natural Science Foundation
515
(16JCZDJC32400), the Foundation of Development Program of Future Expert in
516
Tianjin Normal University (WLQR201703), Training Program of Outstanding Youth
517
Innovation Team of Tianjin Normal Uiversity and the Program for Innovative Research
518
Team in University of Tianjin (TD13-5074).
519
NOTES 26
ACS Paragon Plus Environment
Page 26 of 44
Page 27 of 44
Journal of Agricultural and Food Chemistry
520
The authors declare no competing financial interest.
521
SUPPORTING INFORMATION
522
Biological assay procedures, 1H and 13C NMR spectra of pimprinine alkaloids and their
523
derivatives 5a–5l, 6aa, 6ab, 7, 9a–9u and 10a–10j. This material is available free of
524
charge via the Internet at http://pubs.acs.org.
525
REFERENCES
526
(1) Godfray, H. C. J.; Beddington, J. R.; Crute, I. R.; Haddad, L.; Lawrence, D.; Muir,
527
J. F.; Pretty, J.; Robinson, S.; Thomas, S. M.; Toulmin, C. Food security: the challenge
528
of feeding 9 billion people. Science 2010, 327, 812−818.
529
(2) Tilman, D.; Balzer, C.; Hill, J.; Befort, B. L. Global food demand and the sustainable
530
intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260−20264.
531
(3) Song, B. A.; Yang, S.; Jin, L. H.; Bhadury, P. S. Environment-friendly anti-plant
532
viral agents; Chemical Industry Press (Beijing) & Springer Press: 2009, 1−305.
533
(4) Atanasov, A. G.; Waltenberger, B.; Pferschy-Wenzig, E. M.; Linder, T.; Wawrosch,
534
C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E. H.; Rollinger, J. M.;
535
Schuster, D.; Breuss, J. M.; Bochkov, V.; Mihovilovic, M. D.; Kopp, B.; Bauer, R.;
536
Dirsch, V. M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-
537
derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582−1614.
538
(5) Han, Y. G.; Luo, Y.; Qin, S. R.; Xi, L.; Wan, B.; Du, L. F. Induction of systemic
539
resistance against tobacco mosaic virus by Ningnanmycin in tobacco. Pestic. Biochem. 27
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
540
Physiol. 2014, 111, 14−18.
541
(6) Martinez, M. J. A.; Del Olmo, L. M. B. D.; Benito, P. B. Antiviral activities of
542
polysaccharides from natural sources. Stud. Nat. Prod. Chem. 2005, 30, 393−418.
543
(7) Wu, Z. J.; Ouyang, M. A.; Wang, C. Z.; Zhang, Z. K.; Shen, J. G. Anti-tobacco
544
mosaic virus (TMV) triterpenoid saponins from the leaves of IIex oblonga. J. Agric.
545
Food Chem. 2007, 55, 1712–1717.
546
(8) Ge, Y. H.; Liu, K. X.; Zhang, J. X.; Mu, S. Z.; Hao, X. J. The limonoids and their
547
antitobacco mosaic virus (TMV) activities from Munronia unifoliolata Oliv. J. Agric.
548
Food Chem. 2012, 60, 4289–4295.
549
(9) Gan, X. H.; Hu, D. Y.; Wang, Y. J.; Yu, L.; Song, B. A. Novel trans-ferulic acid
550
derivatives containing a chalcone moiety as potential activator for plant resistance
551
induction. J. Agric. Food Chem. 2017, 65, 4367–4377.
552
(10) Wang, Z. W.; Wei, P.; Wang, L. Z.; Wang, Q. M. Design, synthesis, and anti-
553
tobacco mosaic virus (TMV) activity of phenanthroindolizidines and their analogues.
554
J. Agric. Food Chem. 2012, 60, 10212–10219.
555
(11) Guo, P. B.; Wang, Z. W.; Li, G.; Liu, Y. X; Xie, Y. F.; Wang, Q. M. First discovery
556
of polycarpine, polycarpaurines A and C, and their derivatives as novel antiviral and
557
anti-phytopathogenic fungi agents. J. Agric. Food Chem. 2016, 64, 4264–4272.
558
(12) Li, G.; Guo, J. C.; Wang, Z. W.; Liu, Y. X; Song, H. B.; Wang, Q. M. Marine
559
natural products for drug discovery: first discovery of kealiinines A−C and their 28
ACS Paragon Plus Environment
Page 28 of 44
Page 29 of 44
Journal of Agricultural and Food Chemistry
560
derivatives as novel antiviral and antiphytopathogenic fungus agents. J. Agric. Food
561
Chem. 2018, 66, 4062–4072.
562
(13) Guo, P. B.; Li, G.; Liu, Y. X.; Lu, A. D.; Wang, Z. W.; Wang, Q. M. Naamines
563
and naamidines as novel agents against a plant virus and phytopathogenic fungi. Mar.
564
Drugs 2018, 16, 311.
565
(14) Naik, S. R.; Harindran, J.; Varde, A. B. Pimprinine, an extracellular alkaloid
566
produced by Streptomyces CDRIL-312: fermentation, isolation and pharmacological
567
activity. J. Biotechnol. 2001, 88, 1–10.
568
(15) Roy, S.; Haque, S.; Gribble, G. W. Synthesis of novel oxazolyl-indoles. Synthesis
569
2006, 23, 3948–3954.
570
(16) Miao, Y. P.; Wen, R.; Hitoshi, A.; Zhou, P. G. Synthesis and antioxidative activity
571
of 2-subsitituted phenyl-5-5(3’-indolyl)-oxazole derivatives. Acta Pharm. Sinica 2004,
572
39, 37–40.
573
(17) Pettit, G. R.; Knight, J. C.; Herald, D. L.; Davenport, R.; Pettit, R. K.; Tucker, B.
574
E.; Schmidt, J. M. Isolation of labradorins 1 and 2 from Pseudomonas syringae pv,
575
coronafaciens. J. Nat. Prod. 2002, 65, 1793–1797.
576
(18) Zhang, M. Z.; Chen, Q.; Mulholland, N.; Beattie, D.; Irwin, D.; Gu, Y. C.; Yang,
577
G. F.; Clough, J. Synthesis and fungicidal activity of novel pimprinine analogues. Eur.
578
J. Med. Chem. 2012, 53, 283–291.
579
(19) Xiang, J. C.; Wang, J. G.; Wang, M.; Meng, X. G.; Wu, A. X. One-pot total 29
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
580
synthesis: the first total synthesis of chiral alkaloid pimprinol A and the facile
581
construction of its natural congeners from amino acids. Tetrahedron 2014, 70, 7470–
582
7475.
583
(20) Mirfazli, S. S.; Khoshneviszadeh, M.; Jeiroudi, M.; Foroumadi, A.; Kobarfard, F.;
584
Shafiee, A. Design, synthesis and QSAR study of arylidene indoles as anti-platelet
585
aggregation inhibitors. Med. Chem. Res. 2016, 25, 1–18.
586
(21) Mukherjee, D. D.; Kumar, N. M.; Tantak, M. P.; Das, A.; Ganguli, A.; Datta, S.;
587
Kumar, D.; Chakrabarti, G. Development of novel bis(indolyl)-hydrazide−hydrazone
588
derivatives as potent microtubule-targeting cytotoxic agents against A549 lung cancer
589
cells. Biochemistry 2016, 55, 3020–3035.
590
(22) Zhao, H. P.; Liu, Y. X.; Cui, Z. P.; Beattie, D.; Gu, Y. C.; Wang, Q. M. Design,
591
synthesis, and biological activities of arylmethylamine substituted chlorotriazine and
592
methylthiotriazine compounds. J. Agric. Food Chem. 2011, 59, 11711−11717.
593
(23) Joshi, B. S.; Taylor, W. I.; Bhate, D. S.; Karmarkar, S. S. The structure and
594
synthesis of pimprinine. Tetrahedron 1963, 19, 1437–1439.
595
(24) Molina, P.; Fresneda, P. M.; Almendros, P. Iminophosphorane-mediated synthesis
596
of 3-(oxazol-5-yl)indoles: application to the preparation of pimprinine type alkaloids.
597
Synthesis 1993, 1993, 54–56.
598
(25) Zhou, H. P.; Gai, K.; Lin, A. J.; Xu, J. Y.; Wu, X. M.; Yao, H. Q. Palladium-
599
catalyzed oxidative cross-coupling of azole-4-carboxylates with indoles: an approach 30
ACS Paragon Plus Environment
Page 30 of 44
Page 31 of 44
Journal of Agricultural and Food Chemistry
600
to the synthesis of pimprinine. Org. Biomol. Chem. 2015, 13, 1243–1248.
601
(26) Kumar, D.; Sundaree, S.; Johnson, E. O.; Shah, K. An efficient synthesis and
602
biological study of novel indolyl-1,3,4-oxadiazoles as potent anticancer agents. Bioorg.
603
Med. Chem. Lett. 2009, 19, 4492–4494.
604
(27) Xu, W. M.; He, J.; He, M.; Han, F. F.; Chen, X. H.; Pan, Z. X.; Wang, J.; Tong,
605
M. G. Synthesis and antifungal activity of novel sulfone derivatives containing 1,3,4-
606
oxadiazole moieties. Molecules 2011, 16, 9129–9141.
607
(28) Summa, V.; Petrocchi, A.; Bonelli, F. Discovery of raltegravir, a potent, selective
608
orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J.
609
Med. Chem. 2008, 51, 5843–5855.
610
(29) Palla, G.; Predieri, G.; Domiand, P.; Vignali, C.; Turner, W. Conformational
611
behaviour and E/Z isomerization of N-acyl and N-aroylhydrazones. Tetrahedron 1986,
612
42, 3649–3654.
613
(30) Syakaev, V. V.; Podyachev, S. N.; Buzykin, B. I.; Latypov, S. K.; Habicher, W.
614
D.; Konovalov, A. I. NMR study of conformation and isomerization of aryl- and
615
heteroarylaldehyde 4-tert-butylphenoxyacetylhydrazones. J. Mol. Struct. 2006, 788,
616
55–62.
617
(31) Ei-Sabbagh, O. I.; Rady, H. M. Synthesis of new acridines and hydrazones derived
618
from cyclic β-diketone for cytotoxic and antiviral evaluation. Eur. J. Med. Chem. 2009,
619
44, 3680–3686. 31
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
620
(32) Kulandasamy, R.; Adhikari, A. V.; Stables, J. P. Synthesis and anticonvulsant
621
activity of some new bishydrazones derived from 3,4-dipropyloxythiophene. Eur. J.
622
Med. Chem. 2009, 44, 3672–3679.
623
(33) dos Santos Filho, J. M.; Moreira, D. R. M.; de Simone, C. A.; Ferreira, R. S.;
624
McKerrow, J. H.; Meira, C. S.; Guimarães, E. T.; Soares, M. B. P. Optimization of anti-
625
trypanosoma cruzi oxadiazoles leads to identification of compounds with efficacy in
626
infected mice. Bioorg. Med. Chem. 2012, 20, 6423–6433.
627
628
629
630
Figure Captions
631
Figure 1. Chemical structure of pimprinine alkaloids.
632
Figure 2. Design of pimprinine analogues.
633
Figure 3. Synthesis of compounds 5a–5l.
634
Figure 4. Synthesis of compounds 6aa and 6ab.
635
Figure 5. Synthesis of compounds 9a–9j and 10a–10j.
636
Figure 6. Synthesis of compounds 9k–9u.
637
32
ACS Paragon Plus Environment
Page 32 of 44
Page 33 of 44
Journal of Agricultural and Food Chemistry
Table 1. Antiviral Activities of Ribavirin, Ningnanmycin and Compounds 5a–5l, 6aa, 6ab, 7, 9a–9u and 10a–10j Against TMV. In vivo
Compd.
Conc. (µg/mL)
In vitro inactivation
curative
protection
effect (%)
effect (%)
effect (%)
inhibition rate (%)
500
27±2
25±3
25±1
20±1
100
0
15±2
10±3
6±3
500
26±4
22±2
21±1
23±3
100
0
10±1
0
9±1
500
34±3
34±4
31±3
32±1
100
11±2
15±2
13±1
9±3
500
31±2
35±1
35±1
39±4
100
0
11±1
9±1
15±3
500
35±1
37±2
34±1
33±1
100
14±2
15±1
10±1
14±2
500
25±3
25±2
26±2
27±2
100
10±2
13±1
12±2
11±3
500
43±2
44±4
41±1
39±1
100
14±2
15±3
10±1
12±2
5a
5b
5c
5d
5e
5f
5g
33
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
Page 34 of 44
500
35±2
33±2
32±2
34±2
100
12±2
11±1
9±1
10±2
500
28±3
27±2
24±2
23±5
100
0
12±1
12±2
9±2
500
45±3
46±2
38±3
45±3
100
15±1
17±3
18±1
19±2
500
48±1
46±1
48±1
49±1
100
22±3
21±2
19±1
19±2
500
56±1
55±1
56±2
52±1
100
26±3
23±2
25±1
21±1
500
25±2
23±3
27±4
20±1
100
0
11±2
0
8±2
500
25±2
25±2
20±2
26±2
100
0
0
9±2
11±2
500
15±2
10±3
16±1
17±4
100
0
0
0
0
500
27±1
21±4
24±2
26±2
100
0
0
0
0
500
31±2
36±3
32±3
34±2
100
0
8±2
0
11±3
500
38±2
38±4
39±3
40±2
100
15±2
17±2
15±2
18±2
500
42±3
40±2
41±1
40±1
100
16±2
19±4
15±2
12±2
5h
5i
5j
5k
5l
6aa
6ab
7
9a
9b
9c
9d
34
ACS Paragon Plus Environment
Page 35 of 44
Journal of Agricultural and Food Chemistry
500
46±2
48±3
48±3
46±2
100
20±1
23±2
24±3
18±1
500
26±2
23±1
20±1
24±2
100
10±2
18±1
15±1
11±1
500
33±3
32±1
39±2
31±4
100
9±2
15±2
20±1
12±2
500
50±3
56±3
51±2
55±3
100
19±2
17±3
19±1
21±2
500
21±2
18±4
15±4
27±2
100
0
11±2
6±1
10±1
500
17±3
13±1
10±1
24±2
100
0
0
0
7±2
500
22±2
21±4
28±2
29±3
100
0
14±2
0
0
500
39±2
40±3
42±3
41±1
100
6±3
14±1
18±1
15±4
500
43±3
47±2
41±1
38±2
100
14±2
23±4
18±2
16±1
500
30±2
28±1
29±1
24±1
100
8±3
11±3
12±4
9±1
500
49±2
45±1
40±2
43±1
100
27±2
30±1
15±1
21±2
500
50±3
47±1
48±3
48±2
100
29±2
27±4
21±2
22±1
9e
9f
9g
9h
9i
9j
9k
9l
9m
9n
9o
9p
35
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
Page 36 of 44
500
22±2
20±3
23±3
26±3
100
0
13±3
7±2
11±3
500
25±5
25±1
22±3
20±2
100
17±2
10±3
10±3
15±4
500
42±2
42±5
48±2
49±3
100
16±2
14±2
15±2
14±2
500
19±2
18±3
22±3
21±1
100
6±3
9±1
8±1
5±1
500
13±3
17±2
11±1
18±2
100
6±2
13±4
8±2
10±1
500
40±2
38±1
39±1
34±1
100
18±3
15±3
18±4
13±1
500
30±1
34±2
33±1
30±2
100
5±1
12±3
14±2
13±2
500
51±3
50±2
48±3
47±3
100
26±1
24±3
21±2
23±1
500
52±2
48±5
53±2
50±3
100
21±2
24±2
22±3
20±2
500
39±2
40±3
42±3
41±1
100
6±3
14±1
18±1
15±4
500
33±3
37±2
31±1
38±2
100
14±2
13±4
18±2
16±1
500
50±2
53±1
49±1
44±1
100
28±3
21±3
24±4
22±1
9q
9r
9s
9t
9u
10a
10b
10c
10d
10e
10f
10g
36
ACS Paragon Plus Environment
Page 37 of 44
Journal of Agricultural and Food Chemistry
500
59±2
58±1
60±2
63±1
100
27±2
30±1
25±1
27±2
500
30±3
37±1
38±3
34±2
100
13±2
17±4
20±2
19±1
500
32±2
42±5
28±2
29±3
100
0
14±2
0
0
500
40±2
35±1
36±1
38±2
100
13±2
14±3
11±3
15±1
500
55±2
56±1
56±1
58±2
100
24±2
27±3
25±3
27±1
10h
10i
10j
Ribavirin
Ningnanm ycin a
Average of three replicates. All results are expressed as mean ± SD.
Table 2. The EC50 Values of Compounds 5l, 9h, 10h, Ribavirin and Ningnanmycin Against TMV. Protection effect
Compd.
Regression equation
r
5l
y =1.39+1.56x
0.9762
211
9h
y =1.23+1.66x
0.9747
190
10h
y =0.97+1.79x
0.9870
180
Ribavirin
y =1.67+1.17x
0.9945
694
Ningnanmycin
y =1.00+1.73x
0.9803
203
37
ACS Paragon Plus Environment
EC50 (µg/mL)
Journal of Agricultural and Food Chemistry
Page 38 of 44
Table 3. Fungicidal Activities of Chlorothalonil, Carbendazim and Compounds 5a–5l, 6aa, 6ab, 7, 9a–9u and 10a–10j Against 14 Kinds of Fungi. Fungicidal activitya (%)/ 50 µg/mL compd F.Cb
C.Hb
P.Pb
R.Cb
B.Mb
W.Ab
F.Mb
A.Sb
F.Gb
P.Ib
P.Cb
S.Sb
R.Sb
B.Cb
5a
22±1
32±2
14±1
22±2
25±2
38±1
32±2
35±3
48±2
27±2
16±1
28±2
45±1
48±2
5b
18±2
20±3
57±2
23±1
25±2
27±1
18±2
28±2
56±1
35±2
27±2
20±3
37±2
44±1
5c
24±1
37±2
0
12±2
33±1
34±2
36±1
30±2
64±2
27±1
12±2
27±1
30±2
64±1
5d
31±2
57±1
46±2
60±1
36±2
46±3
27±2
34±1
56±2
35±2
32±1
38±2
27±1
27±2
5e
17±2
23±2
32±2
18±2
23±2
39±2
21±2
23±2
66±2
8±2
15±2
23±1
23±2
49±2
5f
30±2
16±2
11±1
33±3
29±2
27±1
30±1
33±2
55±2
12±2
33±1
22±2
41±2
39±3
5g
37±2
27±1
47±2
47±1
55±2
33±3
22±2
49±1
58±2
18±2
23±1
37±2
50±2
58±1
5h
27±1
32±2
20±1
20±2
28±2
28±1
19±2
35±2
48±1
12±2
13±2
13±2
21±3
31±2
5i
14±2
10±3
4±2
23±2
23±3
28±2
22±2
13±1
32±2
8±1
9±2
9±1
14±2
28±3
38
ACS Paragon Plus Environment
Page 39 of 44
Journal of Agricultural and Food Chemistry
5j
26±2
41±3
20±1
52±2
31±2
30±3
46±2
19±2
45±3
10±2
15±2
28±3
14±2
28±2
5k
20±2
33±1
54±2
48±2
33±1
33±2
41±1
29±2
44±2
18±1
32±2
35±1
37±2
44±2
5l
15±1
46±2
0
41±3
23±2
25±1
15±2
38±1
42±2
14±2
25±1
46±2
37±1
43±2
6aa
22±2
67±1
26±2
72±2
33±3
44±2
30±2
48±1
76±2
55±1
24±2
53±1
40±2
52±1
6ab
22±1
63±2
22±1
73±2
33±3
47±2
30±1
58±2
72±1
68±2
34±2
67±1
37±2
76±1
7
22±2
30±1
22±2
25±1
20±2
42±2
22±1
11±2
10±2
17±1
4±2
25±2
20±3
21±2
9a
7±1
27±2
28±3
56±2
15±1
45±2
15±1
53±1
12±2
17±1
50±3
19±2
19±3
14±1
9b
23±2
23±3
11±2
30±1
15±2
28±1
11±2
33±2
12±1
5±2
35±1
13±2
15±1
25±4
9c
17±1
37±2
27±2
42±3
25±2
25±1
15±2
6±2
23±1
6±2
14±1
42±2
12±1
6±2
9d
10±2
23±3
33±2
14±2
15±2
14±2
15±1
40±1
26±3
6±1
36±2
22±2
27±1
0
9e
12±1
27±2
4±1
14±2
10±1
25±2
22±2
20±1
10±1
6±2
29±2
19±2
8±1
15±1
9f
15±2
20±1
27±2
23±3
15±2
31±1
41±2
13±1
29±3
18±1
7±1
14±2
19±1
44±1
9g
17±1
20±2
37±1
28±2
13±1
18±2
16±1
20±1
16±2
6±1
7±1
11±1
19±2
4±2
9h
22±2
30±2
0
51±1
23±2
42±2
30±2
40±1
48±3
35±1
57±2
47±2
19±1
60±2
9i
32±1
37±2
65±1
32±2
35±1
39±2
37±1
47±2
16±2
18±1
14±2
42±3
62±1
69±1
9j
21±2
10±1
6±2
29±1
19±2
8±1
15±1
20±2
23±1
12±2
36±2
53±1
39±2
6±1
9k
12±2
36±2
38±1
24±2
22±1
32±1
39±2
47±1
19±2
6±1
21±1
11±2
12±1
15±2
9l
19±1
35±2
17±2
42±3
25±2
26±1
25±2
47±1
29±1
47±1
14±1
22±1
19±2
10±1
9m
28±1
33±2
30±1
20±2
28±2
28±1
19±2
33±2
19±1
18±2
7±2
14±2
31±1
10±2
9n
17±1
37±2
14±1
14±2
30±1
25±2
22±2
27±1
13±2
12±2
14±1
11±1
31±2
6±1
9o
18±2
21±1
27±2
33±3
15±2
31±1
41±2
27±1
23±1
18±1
21±1
11±3
19±1
50±1
9p
21±2
33±3
12±2
20±1
17±2
38±1
11±2
7±1
7±1
12±2
29±2
39±2
4±1
13±1
9q
25±1
27±2
19±1
34±2
28±1
28±2
30±1
27±2
32±1
12±1
7±1
14±2
27±1
4±1
9r
14±2
22±2
35±2
28±1
23±2
39±2
21±2
33±1
39±2
18±1
21±1
14±3
19±1
8±1
39
ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
Page 40 of 44
9s
24±2
13±3
21±2
30±1
25±2
28±1
11±2
33±2
26±1
18±1
14±2
22±1
19±2
10±1
9t
29±1
35±2
35±1
31±2
35±1
37±2
37±1
33±2
16±1
18±2
21±1
11±2
23±1
46±2
9u
11±1
19±2
21±2
29±1
19±2
8±1
15±1
33±2
13±1
12±2
21±1
14±2
15±1
15±1
10a
17±1
36±2
38±1
24±2
22±1
32±1
39±2
7±1
16±2
9±1
7±1
19±2
8±2
25±1
10b
22±2
33±2
19±3
37±3
24±2
29±3
23±2
16±3
33±3
18±2
9±2
36±3
12±1
45±3
10c
21±4
31±2
27±1
24±3
22±4
27±1
23±2
11±1
34±1
15±2
11±2
23±3
17±2
41±2
10d
9±1
27±2
14±1
14±2
20±1
25±2
22±2
7±1
7±1
6±1
21±2
14±1
8±1
4±1
10e
11±2
25±1
27±2
33±3
18±2
21±1
41±2
7±1
16±2
6±1
7±1
19±2
4±1
33±1
10f
19±2
33±3
12±2
22±1
17±2
48±1
11±2
27±1
48±2
12±1
14±2
44±1
15±2
46±2
10g
26±1
22±2
19±1
34±2
28±1
38±2
30±1
27±1
23±2
12±1
7±1
39±2
8±2
35±1
10h
11±2
22±2
35±2
38±2
23±2
39±2
21±2
27±2
13±2
6±1
7±1
33±2
12±2
25±2
10i
14±2
13±3
21±2
33±1
25±2
28±1
11±2
47±1
32±2
18±2
36±2
42±1
12±1
35±1
10j
16±2
30±1
44±2
48±1
33±2
42±1
33±2
27±1
19±2
12±2
21±2
42±1
8±1
29±2
chlorothalonilc
100
73±2
100
73±1