Distribution, Transport, Adsorption, and Precipitation of Inorganic

Mar 19, 1979 - Typical results for Genesee River watershed bottom sediment phosphorus contents are: (phosphorus analysis, x (ug/g), σ (ug/g), n) tota...
1 downloads 0 Views 2MB Size
32

D i s t r i b u t i o n , Transport, A d s o r p t i o n , a n d Precipitation of I n o r g a n i c P h o s p h o r u s in t h e G e n e s e e

River

M. M. REDDY

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

State of New York, Department of Health, Albany, NY 12201

Understanding the f a t e of phosphorus i n a watershed i s c r i t i c a l f o r t h e development o f s t r a t e g i e s t o cope e f f e c t i v e l y w i t h e u t r o p h i c a t i o n ( 1 ) · Sediment-bound phosphorus i s c o n t r i b u t e d b y sewage, e r o d e d s o i l , p l a n t m e t e r i a l , and u r b a n r u n o f f . These s o l i d s a r e t r a n s p o r t e d as suspended sediment and as b e d l o a d . T r a n s p o r t o f phosphorus a s s o c i a t e d w i t h l a r g e r p a r t i c l e s i z e s e d iment o c c u r s o n l y d u r i n g p e r i o d s o f h i g h r i v e r d i s c h a r g e . Soluble phosphorus e n t e r i n g a watershed as r u n o f f or wastewater i n p u t s , on t h e o t h e r h a n d , i s a p p a r e n t l y s o r b e d on suspended p a r t i c l e s a n d / o r r e a c t s w i t h o t h e r water column c o n s t i t u t e n t s to form i n s o l u b l e s u b s t a n c e s w h i c h a r e t r a n s p o r t e d by w a t e r and e v e n t u a l l y d e p o s i t e d i n g r e a t e r abundance i n f i n e g r a i n e d s e d i m e n t . In l a k e s s o l u b l e phosphorus i n p u t s a r e t y p i c a l l y converted to b i o mass, r e c y c l e d through t h e water column, and e v e n t u a l l y d e p o s i t e d i n bottom sediments. E s t a b l i s h m e n t of r e a l i s t i c and s u c c e s s f u l s t r a t e g i e s f o r c o n t r o l l i n g phosphorus i n p u t s to the North American Great Lakes r e q u i r e s that p e r i o d s of i n t e n s e h y d r o l o g i c a l a c t i v i t y i n a b a s i n be c a r e f u l l y s t u d i e d and c h a r a c t e r i z e d . In t h i s paper , we s h a l l e x a m i n e s e v e r a l m o d e l c h e m i c a l r e a c t i o n s i n h a r d w a t e r s w h i c h may i n f l u e n c e p h o s p h o r u s c o n c e n t r a t i o n s i n t h e w a t e r c o l u m n and s e d i m e n t . Chemical r e a c t i o n s i n f l u e n c i n g phosphate d i s t r i b u t i o n i n t h e G e n e s e e R i v e r were i d e n t i f i e d u s i n g t h r e e s e p a r a t e techniques: 1) s e d i m e n t s a m p l e s c o l l e c t e d d u r i n g s y n o p t i c s u r v e y s were a n a l y z e d u s i n g a v a r i e t y o f s e l e c t i v e p h o s p h o r u s e x t r a c t i o n p r o c e d u r e s t o c h a r a c t e r i z e sedimenfebound p h o s p h o r u s ; 2) w a t e r column c h e m i c a l c o n c e n t r a t i o n s from samples o b t a i n e d c o n c u r r e n t l y w i t h t h e sediment samples were used t o c a l c u l a t e e q u i l i b r i a f o r the determination of i o n a c t i v i t y products of s e v e r a l mineral p h a s e s w h i c h may remove p h o s p h o r u s f r o m t h e w a t e r c o l u m n ; a n d 3) a s e e d e d c r y s t a l l i z a t i o n p r o c e d u r e was u s e d t o m o n i t o r t h e d i s t r i b u t i o n o f i n o r g a n i c phosphate between s o l u t i o n and s o l i d phases d u r i n g c a l c i t e p r e c i p i t a t i o n i n simulated n a t u r a l water. G e n e s e e R i v e r s a m p l i n g s i t e s a r e l i s t e d i n T a b l e I a n d a r e shown i n F i g u r e 1.

0-8412-0479-9/79/47-093-737$05.75/0 © 1979 American Chemical Society Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

Figure 1. Genesee River sampling sites

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

32.

Inorganic Phosphorus in the Genesee River

REDDY

Table

I.

Sampling

Si t e

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

location

Sites

739

on t h e G e n e s e e R i v e r , N . Y .

U.S.G.S. Miles st a t i ο η from mouth o f number Genesee

Latitude

Longi tude

Wei 1 s v i 11 e

137

04 - 2 2 1 0 - 0 0

42°07'20"

77°57'27"

Transit Br.

117

04 - 2 2 1 4 - 2 3

42°19'46"

78°04« 3 6 "

Portagevi11e

85

04 - 2 2 3 0 - 0 0

42°34'13"

78°02'33"

Mt.

62

04 - 2 2 7 5 - 0 0

42 44'00"

77°50'21"

35

04 - 2 2 8 5 - 0 0

42°55 04"

77°45'27"

5

04 - 2 3 2 0 - 0 0

43°10'50"

77°37'40"

Morris

Avon Rochester

o

,

P u b l i s h e d r e p o r t s d i s c u s s i n g the i n f l u e n c e of calcium c a r ­ bonate s o l i d s u r f a c e s on the phosphate i o n c o n c e n t r a t i o n i n n a t u r a l water (2, 3) i n c l u d e : 1 ) s o l u b i l i t y product-based c a l c u ­ l a t i o n s (4j 5) ; ΪΤ spontaneous p r e c i p i t a t i o n experiments from h i g h l y supersaturated s o l u t i o n s (6^ Ij 8, 9) ; 3) a d s o r p t i o n of phosphate onto calcium carbonate (10, 11, 12, 13). These exper­ iments have provided u s e f u l i n f o r m a t i o n , but s e v e r a l have not i n c l u d e d a c t i v i t y c o e f f i c i e n t or i o n p a i r c o r r e c t i o n s i n t h e i r analyses, s e r i o u s l y l i m i t i n g the a p p l i c a b i l i t y of the r e s u l t s . In other s t u d i e s , s o l u t i o n s of h i g h s u p e r s a t u r a t i o n were employed which y i e l d e d complex, p o o r l y defined s o l i d phases. The m u l t i p i c i t y o f complex c r y s t a l polymorphs and hydrates i n the calcium phosphate system i s now w e l l recognized and must be considered i n the i n t e r p r e t a t i o n o f experiments i n v o l v i n g the removal of phosphate from n a t u r a l waters (14, 15). Experimental Procedures Sample C o l l e c t i o n , Pretreatment, and A n a l y s i s . Sedimentbound phosphorus i n the Genesee R i v e r was s t u d i e d by sampling bottom sediment, f i n e - m a t e r i a l washed from bottom sediment, sus­ pended sediment, and water column p a r t i c u l a t e m a t e r i a l a t s i x s t a t i o n s on the r i v e r . The sampling program was planned to be s y n o p t i c w i t h complete chemical and h y d r o l o g i c a l parameters r e ­ corded a t each s i t e . One k i l o g r a m s u r f i c i a l sediment samples were c o l l e c t e d i n midstream at most s i t e s during s i x f i e l d t r i p s

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

740

CHEMICAL

MODELING IN AQUEOUS SYSTEMS

f r o m J u n e 1975 t o M a r c h 1 9 7 7 . B o t t o m s e d i m e n t s a m p l e s w e r e o b t a i n e d w i t h n o n m e t a l l i c e q u i p m e n t a n d most w e r e w e t - s i e v e d immediately through a 2-mmpolyethlyene s i e v e using r i v e r water. Sediment samples were f r o z e n on s i t e and s t o r e d f r o z e n u n t i l a n a l y s i s . Sample c o l l e c t i o n a n d p r e t r e a t m e n t p r o c e d u r e s ( 1 6 , 17) h a v e b e e n a d o p t e d f r o m t e c h n i q u e s e m p l o y e d b y t h e U. S. G e o l o g i c a l S u r v e y ( B . M a l o , U. S. G e o l o g i c a l S u r v e y , p e r s o n a l c o m m u n i c a t i o n , 1975). Suspended sediment samples were o b t a i n e d by c o n t i n u o u s h i g h - s p e e d c e n t r i f u g a t i o n o f l a r g e volumes o f r i v e r water, o r by c o l l e c t i n g t h e suspended sediment o b t a i n e d i n t h e f i e l d wets i e v i n g procedure. P a r t i c u l a t e m a t e r i a l i s defined as that which i s r e t a i n e d b y f i l t e r i n g a r i v e r w a t e r s a m p l e t h r o u g h a 0.45um M i l l i p o r e filter. T y p i c a l l y , two l i t e r s o f w a t e r w e r e f i l tered f o r particulate analysis. Suspended sediment measurements made a t t h e same t i m e , b y t h e U. S. G e o l o g i c a l S u r v e y , w e r e u s e d to c o n v e r t t h e p a r t i c u l a t e c o n c e n t r a t i o n s t o a d r y weight b a s i s . F r o z e n b o t t o m s e d i m e n t s a m p l e s w e r e thawed f o r a n a l y s i s , d r i e d a t 110*C, c r u s h e d a n d s i e v e d t h r o u g h a 100-mesh n y l o n s i e v e a n d d i g e s t e d w i t h HNO3-H2O2 a t 1 0 0 ° C f o r two h o u r s ( 1 8 ) , a n d / o r with a c i d - a l k a l i n e p e r s u l f a t e (19). Since s i l i c a t e minerals are not s o l u b i l i z e d i n these procedures the r e s u l t s a r e considered o n l y as an estimate o f t h e t o t a l a v a i l a b l e phosphorus. Suspended sediments were f r e e z e - d r i e d i n t h e l a b o r a t o r y b e f o r e a n a l y s i s . P a r t i c u l a t e m a t e r i a l was d i g e s t e d d i r e c t l y o n t h e f i l t e r u s e d f o r c o l l e c t i o n , employing t h e d i g e s t i o n t e c h n i q u e d e s c r i b e d above. F r a c t i o n a l a n a l y s i s p r o c e d u r e s were chosen f o r h i g h r e p r o d u c i b i l i t y and p r e c i s i o n . A phosphorus e x t r a c t i o n procedure e m p l o y i n g NaOH ( w i t h N a C l ) t o d e t e r m i n e o c c l u d e d p h o s p h o r u s was a d o p t e d from t h e work o f W i l l i a m s e t a l j (20, 2 1 ) . The sequence i n t h i s p r o c e d u r e was f i r s t e x t r a c t i o n w i t h NaOH a n d t h e n e x t r a c t i o n with d i l u t e hydrochloric a c i d , the residue being d i s carded. Work p e r f o r m e d i n t h i s l a b o r a t o r y (M. M. Reddy a n d E . S h p i r t , New Y o r k S t a t e D e p t . o f H e a l t h , u n p u b l i s h e d d a t a , 1976) and e l s e w h e r e ( 2 2 ) i n d i c a t e s t h a t t h e NaOH e x t r a c t a b l e p h o s p h o r u s i s a measure o f b i o a v a i l a b l e sediment phosphorus. Hydrochloric a c i d e x t r a c t a b l e p h o s p h o r u s , f o l l o w i n g NaOH e x t r a c t i o n , m e a s u r e s a p a t i t e p l u s phosphorus i n c o r p o r a t e d i n i r o n o x i d e s . T h e NaOH e x t r a c t o b t a i n e d i n t h i s s t u d y was n o t d i g e s t e d a n d r e f l e c t s o n l y i n o r g a n i c f o r m s o f p h o s p h o r u s . A d d i t i o n a l f r a c t i o n a t i o n m e t h o d s we u s e d t o i d e n t i f y e l e m e n t a l a s s o c i a t i o n between p h o s p h o r u s a n d hydrous m e t a l o x i d e s i n sediments. These e x t r a c t i o n p r o c e d u r e s are largely empirical. The p r o c e d u r e employed h e r e c o n s i s t e d o f one i n i t i a l e x t r a c t i o n b y h y d r o x y l a m i n e h y d r o c h l o r i d e - n i t r i c a c i d r e a g e n t ( 2 3 ) f o l l o w e d b y e x t r a c t i o n w i t h ammonium o x a l a t e - o x a l i c acid s o l u t i o n (24), the residue being discarded. The h y d r o x y ! a m i n e e x t r a c t i o n p r o c e d u r e was u s e d t o i d e n t i f y t h e manganese o x i d e - p h o s p h a t e r e l a t i o n s h i p , w h i l e ammonium o x a l a t e - o x a l i c a c i d removes amorphous i r o n o x i d e s a n d p h o s p h a t e a s s o c i a t e d w i t h t h e s e oxides. A d e t a i l e d d e s c r i p t i o n o f t h e procedures used i n t h i s s t u d y f o r water column a n a l y s i s has been p r e s e n t e d e l s e w h e r e (25,

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

32.

741

Inorganic Phosphorus in the Genesee River

REDDY

26).

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

During each a n a l y s i s , r e p l i c a t e s of samples c o l l e c t e d i n the Genesee R i v e r were analyzed as q u a l i t y - c o n t r o l check samples. The c o e f f i c i e n t s o f v a r i a t i o n f o r t o t a l phosphorus a n a l y s i s o f three sediments used as q u a l i t y - c o n t r o l check samples were 0.12 (n = 12), 0.16 (n = 11), and 0.13 (n = 11), w i t h means of 412, 487, and 758 ug P/g, r e s p e c t i v e l y . Seeded C r y s t a l l i z a t i o n Experiments. A d e t a i l e d d e s c r i p t i o n of the seeded growth technique has been p u b l i s h e d r e c e n t l y (27). The f o l l o w i n g summarizes the experimental procedure employed. Reagent grade chemicals; d i s t i l l e d , d e i o n i z e d , f i l t e r e d (0.22-urn M i l l i p o r e f i l t e r ) water; and grade A glassware were used i n a l l experiments. Supersaturated c a l c i u m carbonate s o l u t i o n s were prepared by drop-wise a d d i t i o n of 200 ml o f 5 χ 10~^ M calcium c h l o r i d e s o l u t i o n to 200 ml of 8 χ 10~3 M sodium bicarbonate s o l u t i o n i n a thermostated double-walled Pyrex g l a s s r e a c t i o n v e s s e l . S t a b i l i t y o f the supersaturated s o l u t i o n was v e r i f i e d by the constancy of pH f o r a t l e a s t one hour before the s t a r t o f each experiment. S o l u t i o n pH changes accompanying c a l c i t e growth a f t e r i n o c u l a t i o n of the s t a b l e supersaturated s o l u t i o n w i t h seed c r y s t a l were monitored w i t h a Corning pH meter and a s t r i p chart recorder. Calcium c o n c e n t r a t i o n i n s o l u t i o n during c r y s t a l ­ l i z a t i o n was f o l l o w e d by a n a l y s i s o f s o l u t i o n f i l t r a t e s . An EDTA t i t r a t i o n procedure employing c a l c e i n i n d i c a t o r (28) w i t h a micrometer b u r e t t e was used t o determine c a l c i u m c o n c e n t r a t i o n i n the f i l t e r e d s o l u t i o n . T o t a l carbonate c o n c e n t r a t i o n was c a l ­ c u l a t e d from a t i t r i m e t r i c a n a l y s i s of the f i l t r a t e u s i n g 0.01 _N s u l f u r i c a c i d and methyl P u r p l e i n d i c a t o r (pH range 4.8 - 5.4). A Ouantachrome Monosorb s u r f a c e area a n a l y z e r was used to measure seed c r y s t a l s u r f a c e area; a P h i l l i p s powder d i f f r a c t i o n ap­ paratus w i t h copper Ka r a d i a t i o n and a n i c k e l f i l t e r was employed f o r X-ray powder d i f f r a c t i o n v e r i f i c a t i o n o f seed c r y s t a l com­ p o s i t i o n . C a l c i t e seed c r y s t a l s were prepared by r a p i d l y adding 0.5 M C a C l s o l u t i o n t o 0.5 M Na2C0 s o l u t i o n at 5 C. The v i s c o u s suspension formed was g r a d u a l l y warmed t o 25°C, s t i r r e d o v e r n i g h t , then washed w i t h d i s t i l l e d water. Seed was aged i n d i s t i l l e d , d e i o n i z e d water 6 months before use. The seed c o n s i s t e d of uniform aggregates o f f l a t c r y s t a l s shown to be c a l c i t e by X-ray d i f f r a c t i o n , w i t h a s u r f a c e area of 1.71 m^/g. Seeded c r y s t a l growth experiments were performed i n s o l u t i o n s resembling n a t u r a l waters. I o n i c s p e c i e s c o n c e n t r a t i o n s were c a l c u l a t e d from measured s o l u t i o n pH and from t o t a l c a l c i u m and carbonate c o n c e n t r a t i o n s , using the mass a c t i o n and mass balance equations i n Table I I . C a l c u l a t i o n s were performed u s i n g s u c c e s s i v e approximations f o r i o n i c s t r e n g t h , I , (34) w i t h a Wang 720 C programmable c a l c u ­ l a t o r . Ion a c t i v i t y c o e f f i c i e n t s were obtained from the m o d i f i e d Debye - Huckel equation proposed by Davies (36). Bicarbonate i o n was the predominant carbonate species i n the experimental s o l u ­ t i o n s , accounting f o r more than 95% of the t o t a l carbonate 9

2

3

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

742

CHEMICAL

MODELING IN AQUEOUS

Table II. Equations Used f o r C a l c u l a t i o n of Species at 25°C and 1 Atm Pressure Equation* Mass

Reference

_ .35

(29)

-10.33

(30)

= 10-14-00

(31)

3

1 0

6

[H C0 ] Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

constant

3

2. [H ] [ C 0 - ] 2

+

3

=

1 0

[HCO3-] 3. [H ] [OH"] +

4.

Ionic

action

1-[H*][HC0 -] __ 2

for

SYSTEMS

[CaC0 ] 3

103.2

(32)

1.3

(33)

[Ca2 + ] 0 2 - ] [ C

3

+

5.

[CaHC0^ ]

=

1 0

[ C a ] [HCO3-] z+

[CaQH ]

6.

= 10 · 1

+

4

(34)

[Ca ][OH"] 2+

7. ( [ C a 2 + ]

[ C

0 2-]) 3

= 10 -8.4

c a l c i t e

(35)

Mass balance"'' 8.

T

C a

=

[Ca ] f 2+

+

[CaOH ] +

+

+

[ÇaHC0-, 3

+

[CaC0 °] 3

2

9

·

T

C0 = [ 3^"] C 0

o

[HC0 "1] 3

[H C0 2

3 ]

[CaHC0 +] 3

+ (CaC0 Q) 3

fo *

Bracketed solution.

terms denote thermodynamic a c t i v i t i e s

t The term f denotes the a c t i v i t y of charge z . z

coefficient

for

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

in ion

32.

REDDY

Inorganic Phosphorus in the Genesee River

743

c o n c e n t r a t i o n . Calcium carbonate and b i c a r b o n a t e i o n - p a i r concen­ t r a t i o n s were considered i n s o l u b i l i t y c a l c u l a t i o n s . The i n ­ f l u e n c e o f phosphate i o n - p a i r formation on the c r y s t a l l i z a t i o n r e a c t i o n was examined and found t o be n e g l i g i b l e (27) a t the phosphate c o n c e n t r a t i o n l e v e l s employed.

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

R e s u l t s and D i s c u s s i o n s Phosphorus D i s t r i b u t i o n . The major sediment phosphorus f r a c t i o n i s that e x t r a c t e d by h y d r o c h l o r i c a c i d (Table I I I ) . Ammonium o x a l a t e - o x a l i c a c i d s o l u t i o n e x t r a c t s somewhat l e s s phosphorus than h y d r o c h l o r i c a c i d , w h i l e sodium hydroxide as w e l l as hydroxylamine e x t r a c t much l e s s . Phosphorus e x t r a c t e d from sediment by NaOH has been r e l a t e d to non-occluded, surface-exchangeable, b i o a v a i l a b l e forms (22). H y d r o c h l o r i c a c i d e x t r a c t i o n y i e l d s occluded phosphorus i n c o r ­ porated i n hydrous metal o x i d e s , carbonate and phosphate m i n e r a l s of sediment. Hydroxylamine reagent s p e c i f i c a l l y removes hydrous manganese o x i d e s , w h i l e amorphous hydrous oxides of i r o n and aluminum are removed by the o x a l a t e reagent. T o t a l a v a i l a b l e sediment phosphorus analyses i n c l u d e s sediment organic phosphorus components i n a d d i t i o n t o the i n o r g a n i c p o r t i o n determined by the s e l e c t i v e e x t r a c t i o n procedures. The v a r i a t i o n i n t o t a l a v a i l a b l e sediment phosphorus con­ c e n t r a t i o n among the three sediment types shown i n Table I I i s c l e a r . A s t a t i s t i c a l a n a l y s i s of t h i s data shows that both the suspended sediment and p a r t i c u l a t e t o t a l phosphorus concentra­ t i o n s are g r e a t e r than the bottom sediment v a l u e a t the 99% con­ f i d e n c e l e v e l . Phosphorus content i n c r e a s e s i n the sequence; bottom sediment, suspended sediment, and p a r t i c u l a t e m a t e r i a l i n accordance w i t h the i n c r e a s e i n surface area (M. M. Reddy, New York State Dept. of H e a l t h , unpublished data, 1977). High surface area sediment components may adsorb phosphorus-containing substances,from the water column, i n c r e a s i n g t h e i r phosphorus con­ c e n t r a t i o n . Another p o s s i b l e e x p l a n a t i o n i n c l u d e s d i l u t i o n o f bottom sediment by r e l a t i v e l y i n e r t primary m i n e r a l s i n the sand and s i l t s i z e f r a c t i o n s . Phosphorus Transport. Sediments are recognized as a major t r a n s p o r t medium f o r phosphorus to the North American Great Lakes. Phosphorus t r a n s p o r t i n watersheds such as the Genesee occurs i n l a r g e p a r t during r a i n f a l l and snow^-melt discharge events. The t r a n s p o r t o f elements from a watershed can be ex­ pressed as instantaneous u n i t l o a d . This q u a n t i t y i s defined as the amount of m a t e r i a l c a r r i e d by a r i v e r a t a given p o i n t d i v i d e d by the area drained by the r i v e r above that p o i n t . For the s y n o p t i c s t u d i e s described here, the instantaneous u n i t loads are expressed as grams o f phosphorus per second per acre (Figure 2 ) . The major component o f the phosphorus load transported by the Genesee R i v e r d u r i n g the two sampling periods discussed here

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

744

CHEMICAL

MODELING IN AQUEOUS

SYSTEMS

Table III. S t a t i s t i c s f o r Phosphorus A n a l y s e s f o r Several Sediment Types C o l l e c t e d i n the Genesee R i v e r Watershed, New Y o r k , (ug/g) Sample

x"

Range

σ

CV

Ν

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

Bottom Sediment Total A v a i l a b l e 560 NaOH E x t r a c t a b l e 58 HC1 E x t r a c t a b l e 398 NH 0H E x t r a c t a b l e 74 (NH ) C 0 Ex185 tractable 2

4

2

2

4

330 5 177 6 49

-

980 410 731 313 453

140 62 99 63 93

0.25 1.07 0.25 0.86 0.50

99 98 98 98 83

390 19 258 3 119

- 2020 360 - 1000 232 - 664 109 - 385 102 - 1110 222

0.46 1.43 0.21 1.46 0.47

46 17 17 17 17

0.70

61

Suspended Sediment* Total Available 770 NaOH E x t r a c t a b l e 163 HC1 E x t r a c t a b l e 528 NH 0H E x t r a c t a b l e 70 ( N H ) C 0 4 Ex474 tractable 2 2

4

2

2

Particulate Total

Analysis

Analysis

910

400 - 3000 640

Suspended sediment samples were o b t a i n e d by c o n t i n u o u s high-speed c e n t r i f u g a t i o n of l a r g e volumes of r i v e r w a t e r , or by c o l l e c t i n g the suspended sediment o b ­ t a i n e d in the f i e l d w e t - s i e v i n g p r o c e d u r e . P a r t i c u l a t e m a t e r i a l i s d e f i n e d as t h a t which i s r e t a i n e d by f i l t e r i n g a r i v e r water sample through a 0.45-ym M i l l i p o r e f i l t e r .

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

32.

REDDY

Inorganic Phosphorus in the Genesee River

745

(December 14, 1975 and March 13, 1976) i s that a s s o c i a t e d w i t h the suspended sediment. D i s s o l v e d phosphorus i n the water column during these p e r i o d s was t y p i c a l l y l e s s than h a l f o f the t o t a l water column c o n c e n t r a t i o n . U n i t loads v a r i e s w i d e l y (Figure 2 ) . A f l o o d c o n t r o l im­ poundment, l o c a t e d j u s t upstream of the Mount M o r r i s sampling s t a t i o n , markedly i n f l u e n c e s the Genesee R i v e r discharge and suspended sediment concentrations a t the downstream s t a t i o n s . Three sampling s t a t i o n s upstream of the Mount M o r r i s impoundment ( W e l l s v i l l e , T r a n s i t Br., and P o r t a g e v i l l e ) show a smooth and systematic i n c r e a s e i n the phosphorus u n i t load w i t h i n c r e a s i n g discharge. I n c o n t r a s t , u n i t loads a t the mid-basin s i t e s show much l a r g e r abolute values and f l u c t u a t i o n s than the other s t a t i o n s . These s t a t i o n s e x h i b i t l a r g e v a r i a t i o n s i n discharge and t h e r e f o r e i n suspended sediment c o n c e n t r a t i o n s . M i n e r a l S a t u r a t i o n i n the Genesee R i v e r . The importance o f heterogeneous e q u i l i b r i a i n r e g u l a t i n g d i s s o l v e d i n o r g a n i c phosphorus concentrations i n the Genesee R i v e r was examined by c a l c u l a t i n g the i o n a c t i v i t y products of s e v e r a l m i n e r a l phases using the WATEQF (37) chemical model and/or mass a c t i o n and mass balance equations w i t h a s m a l l l a b o r a t o r y computer. During h i g h discharge periods i n December and March there i s extensive unders a t u r a t i o n i n the water column w i t h respect t o calcium carbonate and phosphate phases, w h i l e during August 1976, a r e l a t i v e l y lower-flow p e r i o d , the f i r s t f o u r downstream sampling s t a t i o n s i n the Genesee showed s a t u r a t i o n o r s u p e r s a t u r a t i o n w i t h respect to c a l c i t e (Figure 3 ) . Thus, during the summer,it appears t h a t i n the lower reach o f the Genesee R i v e r c a l c i t e p r e c i p i t a t i o n l i m i t s the c o n c e n t r a t i o n o f d i s s o l v e d calcium. S a t u r a t i o n l e v e l s f o r the thermodynamically s t a b l e calcium phosphate m i n e r a l , h y d r o x y a p a t i t e , are 1 0 ^ below the e q u i l i b r i u m values f o r the Genesee R i v e r S t a t i o n s during the high f l o w sampling periods of December and March. P r e c i p i t a t i o n of hydroxyapatite o r other calcium phosphate phases does not occur so these s o l i d phases do not r e g u l a t e phos­ phate c o n c e n t r a t i o n i n the subsaturated r i v e r water. F e r t i l i z e r a p p l i e d t o calcareous s o i l s produces minerals such as hydroxyapatite (13). When such s o i l s a r e eroded, and subsequently c a r r i e d t o the Genesee R i v e r , t h i s m i n e r a l phase w i l l be i n a markedly subsaturated s o l u t i o n and w i l l tend t o d i s s o l v e , r e l e a s i n g i n o r g a n i c phosphate t o the water column. Two major sub-basins i n the Genesee R i v e r watershed have d i f f e r e n t c a l c i t e s a t u r a t i o n l e v e l s . Oataka Creek sub-basin, a predom­ i n a t e l y a g r i c u l t u r a l r e g i o n , had c a l c i t e s a t u r a t i o n values much c l o s e r t o e q u i l i b r i u m than those found f o r the Genesee R i v e r on the sampling dates. Canasaraga Creek sub-basin, an area l e s s i n t e n s i v e l y c u l t i v a t e d than Oataka Creek sub-basin, e x h i b i t e d s a t u r a t i o n o r supersaturâtion i n August but was subsaturated i n December 1975 and March 1976. From these data, i t can be hy­ pothesized that there are higher sediment phosphorus contents i n

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

746

CHEMICAL MODELING IN AQUEOUS SYSTEMS

60

• December 14, 1975

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

• March 13,1976 to Ο

50

Ω 30

CO Ζ)

tr ο χ

20

CL CO

Ο

χ

CL

10

J

140

I

ι L

J

120 100

1

1

80

l _ l

60

I

I

ι I

40

I

ι

20

ι

0

MILES ABOVE MOUTH OF GENESEE RIVER Figure 2. (a, above) Total phosphorus unit load (g Ρ/sec/acre), (B, top right) percent unit load as dissolved phosphorus, and (c, bottom right) discharge (cfs) plotted as a function of sampling point distance from Lake Ontario. Samples represent dates preceeding and following the snow melt runoff event in 1976.

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

32.

REDDY

Inorganic Phosphorus in the Genesee River

140

120 100 80

60

40

20

747

0

MILES ABOVE MOUTH OF GENESEE RIVER

140

120 IO0

80

60

40

20

0

MILES ABOVE MOUTH OF GENESEE RIVER

American Chemical Society Library

Jenne; Chemical Modeling Aqueous Systems ί 155 16thinSt. N. W. ACS Symposium Series;Mfafthinntnn American Chemical Society: Washington, DC, 1979. Π P onnoe

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

748

CHEMICAL

MODELING IN

AQUEOUS

SYSTEMS

the a g r i c u l t u r a l sub-basin because of carbonate mediated phos­ phorus m i n e r a l i z a t i o n . In support of this hypotheses, Oataka b a s i n sediments are the Genesee watershed sediments w i t h the g r e a t e s t h y d r o c h l o r i c a c i d e x t r a c t a b l e phosphorus content. Release of phosphorus from a g r i c u l t u r a l l y d e r i v e d s o i l s and sediments during h i g h discharge p e r i o d s may be counteracted by r u n o f f d i l u t i o n . Data r e p o r t e d by the U. S. G e o l o g i c a l Survey f o r the S t . Lawrence and Lake Ontario b a s i n s , f o r the p e r i o d con­ s i d e r e d here,show phosphorus c o n c e n t r a t i o n i n r a i n w a t e r to be 0.010 mg P / l (38). T h i s c o n c e n t r a t i o n i s much l e s s than the s o i l water phosphorus c o n c e n t r a t i o n . Base f l o w Genesee R i v e r d i s s o l v e d i n o r g a n i c phosphorus c o n c e n t r a t i o n s are 0.004 mg P / l , w h i l e peak f l o w v a l u e s are approximately 0.011 mg P / l . Since recent e v i ­ dence (39) i n d i c a t e s that l e s s than 25% of r a i n w a t e r phosphorus i s d i s s o l v e d i n o r g a n i c phosphorus, these r e s u l t s support the suggestion t h a t some form of s o l i d d i s s o l u t i o n i s i n v o l v e d i n the r e g u l a t i o n of the water column phosphorus c o n c e n t r a t i o n . D i s s o l v e d metals other than c a l c i u m have a minor e f f e c t on the d i s t r i b u t i o n of phosphorus between the water column and sed­ iment i n t h i s f l u v i a l system. The two p r i n c i p a l metals of poten­ t i a l i n t e r e s t , i r o n and aluminum, are present i n Genesee R i v e r water almost e n t i r e l y i n the p a r t i c u l a t e phase (40). D i s s o l v e d c o n c e n t r a t i o n s of these metals are below the d e t e c t i o n l i m i t ( l e s s than 50 ug/1). I r o n and aluminum minimum d e t e c t a b l e d i s ­ s o l v e d c o n c e n t r a t i o n s were used t o estimate the s a t u r a t i o n l e v e l s of the corresponding phosphate m i n e r a l s . These c a l c u l a t i o n s suggest that both i r o n and aluminum phosphate m i n e r a l s are sub­ s t a n t i a l l y below s a t u r a t i o n l e v e l s . The s o l i d s u r f a c e s e x h i b i t e d by i r o n and aluminum hydrous oxides (as p a r t i c u l a t e m a t e r i a l i n the water column) undoubtedly serve as s i t e s f o r phosphorus a d s o r p t i o n and i n c o r p o r a t i o n i n the f l u v i a l system. Data p r e ­ sented f o r the o x a l a t e e x t r a c t i o n procedure i n Table I I I demon­ s t r a t e the importance of phosphorus b i n d i n g by hydrous metal oxides. Nriagu (Canadian Center f o r Inland Waters, unpublished d a t a , 1975) has proposed that b a s i c metal phosphates are important s i n k s f o r heavy metals i n the environment. In most n a t u r a l waters of New York S t a t e , d i s s o l v e d b a s i c metals i n c l u d i n g Pb, Cu, and Zn are a t low c o n c e n t r a t i o n s (below 10 ug/1), and these metals would not be expected to be a major f a c t o r governing phosphorus d i s t r i b u t i o n . Phosphate D i s t r i b u t i o n During C a l c i t e C r y s t a l l i z a t i o n . The c r y s t a l l i z a t i o n r a t e data i l l u s t r a t e d i n F i g u r e 4 f o l l o w a r a t e equation dN / dt = k s N

2

(1)

where Ν i s c a l c i u m carbonate (mol / 1) at time t to be p r e c i p i ­ t a t e d from s o l u t i o n before e q u i l i b r i u m i s a t t a i n e d ; k i s the

Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

32.

Inorganic Phosphorus in the Genesee River

REDDY

749

A u g u s t i , 1976

- K P = 8.34 "(t = 25 °C) P

S

M a r c h 13, 1976

_ p K = 8.05 -(t = 2 ° C ) S P

Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch032

—I

1I

L_

D e c e m b e r 14, 1975

-pK p-8.05 -(t = 2 ° C ) S

140 MILES

Figure 3.

120

100

ABOVE

80 MOUTH

60

40

20

OF GENESEE

0 RIVER

Ion activity product of calcite plotted as a function of sampling point distance from Lake Ontario

8.8 f-

8.7

-12.4 _

x

Ο

Q.

2.2



2.0

ο

8.6 1.8

_i