13%-Efficiency Quaternary Polymer Solar Cell with Nonfullerene and

Dec 10, 2018 - In this article, we report 13%-efficiency quaternary polymer solar cell. By introducing bis-PC71BM:PC71BM into a known nonfullerene ...
34 downloads 0 Views 801KB Size
Subscriber access provided by TULANE UNIVERSITY

Energy, Environmental, and Catalysis Applications

13%-Efficiency Quaternary Polymer Solar Cell with Nonfullerene and Fullerene as Mixed Electron Acceptor Materials Dong Yan, Jingming Xin, Weiping Li, Sha Liu, Hongbin Wu, Wei Ma, Jiannian Yao, and Chuanlang Zhan ACS Appl. Mater. Interfaces, Just Accepted Manuscript • DOI: 10.1021/acsami.8b17246 • Publication Date (Web): 10 Dec 2018 Downloaded from http://pubs.acs.org on December 12, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

13%-Efficiency Quaternary Polymer Solar Cell with Nonfullerene and Fullerene as Mixed Electron Acceptor Materials Dong Yan,a,d Jingming Xin,b Weiping Li,a,d Sha Liu,c Hongbin Wu,c Wei Ma,b* Jiannian Yaoa,d and Chuanlang Zhana,d* iD a

Beijing National Laboratory for Molecular Sciences, CAS key Laboratory of Photochemistry,

Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China b

State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an

710049, China. c

Institute of Polymer Optoelectronic Materials and Devices, South China University of

Technology, Guangzhou 510640, China. d

College of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049,

China.

Key words: Bulk-heterojunction, polymer solar sell, small-molecule acceptor, non-fullerene, quaternary solar cell

ACS Paragon Plus Environment

1

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 23

Use for ToC only

ABSTRACT In this article, we report 13%-efficiency quaternary polymer solar cell. By introducing bisPC71BM:PC71BM into a known nonfullerene systemPBDB-T:IT-M, the quaternary solar cell significantly outperforms the nonfullerene binary and the ternary (PBDB-T:IT-M:fullerene) devices with the significant increase in short-circuit current-density (18.2 vs 16.5 and 16.8-17.5 mA/cm2) and fill-factor (0.73 vs. 0.67 and 0.707-0.726), and hence, large power conversion efficiency (13% for quaternary vs. 11% for the binary and 12% for the ternary). Grazing incidence wide-angle X-ray scattering (GIWAXS) data indicate that both the polymer and IT-M phase crystallinity becomes greater upon introduction of PC71BM as the forth additive into the host ternary PBDB-T:IT-M:bis-PC71BM, which results in the increase in the electron and hole mobilities both, contributing to the Jsc enhancement. Our results indicate that the use of the forth fullerene component provides more choices and more mechanisms than the ternary systems for tuning the photon-to-electron conversion; therefore, sheds light on the realizations of highefficiency polymer solar cells by designing the multi-acceptor components with aligned energy levels, complementary absorption spectra, and improved film-morphologies.

ACS Paragon Plus Environment

2

Page 3 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

 INTRODUCTION Bulk-heterojunction (BHJ) polymer solar cells (PSCs) have several merits such as semitransparency, light-weight, low-cost, and flexibility at the same time, which endow PSCs with potentials to meet the future demands on the sustainable and green energy sources. With the invention of the fused-ring nonfullerene acceptors such as ITIC (3,9-bis(2-methylene-(3-(1,1dicyanomethylene)

indanone))-5,5,11,11-tetrakis(4-n-hexylphenyl)-dithieno[2,3d:2′,3′d′]-s-

indaceno[1,2b:5,6b’]dithiophene),1 the studies on organic photovoltaic cells (OPVs) has been greatly progressing in the past 3 years and the power conversion efficiencies (PCEs) of the fullerene-free binary devices have reached over 13%, 2-12 due to the great efforts on the structure modifications on both the nonfullerene acceptors and polymer donors. Besides the design and synthesis of nonfullerene acceptors and polymer/small molecule donors, another two approaches to increase open-circuit voltage (Voc), short-circuit current-density (Jsc), and fill factor (FF) are to fabricate a ternary blended active layer13-17 and design a tandem device.18-21 Relative to the complexity in fabrication of a tandem device, the processing of a ternary blended bulk-heterojunction (T-BHJ) is as easy as fabricating a binary blended photoactive layer and the single-junction device structure is kept. The T-BHJs allow for the use of one more donor (D) or one more acceptor (A) to resolve the narrow absorption of organic blend films and give rise to a larger Jsc. 22-25 Moreover, as the third component forms alloy with the parent D/A component,

26-29

the resulting ternary system can behave like a pseudo-binary

one. More importantly, formation of the electronic alloy state allow for (1) the tuning of the interfacial charge transfer (CT) state energy level between the parent two-components’ extreme values, which associates with the adjustment of the Voc between the two binary devices’ extremes,27,28 and (2) the tuning of the film-morphology for the out-of-plane (OOP) charge

ACS Paragon Plus Environment

3

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 23

transport and for the reduction of the recombination losses,29 leading to a higher FF. Together, a larger VocJscFF product is available with the ternary BHJ than with the binary blend by judiciously designing the ternary systems. A T-BHJ is normally consisted of two donors plus one acceptor, D1:D2:A, or one donor and two acceptors, D:A1:A2. The big challenge in fabricating a successful ternary device is to obtain ideal film-morphologies so as to get improved optical and electric properties. However, due to the weak intermolecular interactions and lack of entropic force30 between polymers and/or small molecules, obtaining the ideal film-morphologies and crystallinity31,32 requires the two polymer/small molecule donors to be of the structure similarity so as to achieve ideal filmmorphologies requiring for efficient charge separation and transport.33-36 In the case of D:A1:A2 type in which the mixture of two nonfullerene acceptors is used, use of two miscible nonfullerene acceptors enables outperformed electric performance.

37-44

Again, the excellent

film-forming ability of the fullerene acceptor helps to achieve good film morphologies and improved electric properties when a mixture of fullerene and nonfullerene acceptors is employed. Therefore, the nonfullerene:fullerene based T-BHJ integrates the merits of both the nonfullerene and fullerene acceptor together: better film-morphology and complementary absorption spectra can be obtained from this type of ternary systems and the ternary device’s Voc can be adjusted between the binary nonfullerene and binary fullerene devices’ extreme values and a larger Jsc can be available, which affords PCEs of >11%.45-53 Distinct to the mixture of two nonfullerene or the nonfullerne:fullerene blend, the structure similarity, the small energy difference (10. Adv. Mater. 2016, 1602570, DOI: 10.1002/adma.201602570. (38) Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Rohr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; Emmott, C. J. M.; Nelson, J.; Brabec, C. J.; Amassian, A.; Salleo, A.; Kirchartz, T.; Durrant, J. R.; McCulloch, I. Reducing the Efficiency-Stability-Cost Gap of Organic Photovoltaics with Highly Efficient and Stable Small Molecule Acceptor Ternary Solar Cells. Nat. Mater. 2017, 16, 363-370, DOI: 10.1038/nmat4797. (39) Ma, X.; Gao, W.; Yu, J.; An, Q.; Zhang, M.; Hu, Z.; Wang, J.; Tang, W.; Yang, C.; Zhang, F. Ternary Nonfullerene Polymer Solar Cells with Efficiency > 13.7% by Integrating the Advantages of the Materials and Two Binary Cells. Energy & Environ. Sci. 2018, 11 (8), 21342141, DOI: 10.1039/c8ee01107a. (40) Zhang, M.; Gao, W.; Zhang, F.; Mi, Y.; Wang, W.; An, Q.; Wang, J.; Ma, X.; Miao, J.; Hu, Z.; Liu, X.; Zhang, J.; Yang, C. Efficient Ternary Non-Fullerene Polymer Solar Cells with PCE of 11.92% and FF of 76.5%. Energy & Environ. Sci. 2018, 11 (4), 841-849, DOI: 10.1039/c8ee00215k. (41) Zhan, L.; Li, S.; Zhang, H.; Gao, F.; Lau, T.-K.; Lu, X.; Sun, D.; Wang, P.; Shi, M.; Li, C.Z.; Chen, H. A Near-Infrared Photoactive Morphology Modifier Leads to Significant Current Improvement and Energy Loss Mitigation for Ternary Organic Solar Cells. Adv. Sci. 2018, 5 (8), 1800755, DOI: 10.1002/advs.201800755. (42) Cheng, P.; Wang, J.; Zhang, Q.; Huang, W.; Zhu, J.; Wang, R.; Chang, S.-Y.; Sun, P.; Meng, L.; Zhao, H.; Cheng, H.-W.; Huang, T.; Liu, Y.; Wang, C.; Zhu, C.; You, W.; Zhan, X.; Yang, Y. Unique Energy Alignments of a Ternary Material System toward High-Performance Organic Photovoltaics. Adv. Mater. 2018, 30, e1801501, DOI: 10.1002/adma.201801501. (43) Jiang, W.; Yu, R.; Liu, Z.; Peng, R.; Mi, D.; Hong, L.; Wei, Q.; Hou, J.; Kuang, Y.; Ge, Z. Ternary Nonfullerene Polymer Solar Cells with 12.16% Efficiency by Introducing One Acceptor with Cascading Energy Level and Complementary Absorption. Adv. Mater. 2018, 30 (1), 1703005, DOI: 10.1002/adma.201703005. (44) Wu, W.; Zhang, G.; Xu, X.; Wang, S.; Li, Y.; Peng, Q. Wide Bandgap Molecular Acceptors with a Truxene Core for Efficient Nonfullerene Polymer Solar Cells: Linkage Position on Molecular Configuration and Photovoltaic Properties. Adv. Function. Mater. 2018, 28 (18), 1707493, DOI: 10.1002/adfm.201707493. (45) Lu, H.; Zhang, J.; Chen, J.; Liu, Q.; Gong, X.; Feng, S.; Xu, X.; Ma, W.; Bo, Z. TernaryBlend Polymer Solar Cells Combining Fullerene and Nonfullerene Acceptors to Synergistically

ACS Paragon Plus Environment

21

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 23

Boost the Photovoltaic Performance. Adv. Mater. 2016, 28 (43), 9559-9566, DOI: 10.1002/adma.201603588. (46) Li, W.; Yan, D.; Liu, W.; Chen, J.; Xu, W.; Zhan, C.; Yao, J. A New Function of N719: N719 Based Solution-Processible Binary Cathode Buffer Layer Enables High-Efficiency SingleJunction Polymer Solar Cells. Solar RRL 2017, 1, 1700014, DOI: 10.1002/solr.201700014. (47) Zhao, W.; Li, S.; Zhang, S.; Liu, X.; Hou, J. Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency. Adv. Mater. 2016, 29 (2), 1604059, DOI: 10.1002/adma.201604059. (48) Huang, G.; Zhang, J.; Uranbileg, N.; Chen, W.; Jiang, H.; Tan, H.; Zhu, W.; Yang, R. Significantly Enhancing the Efficiency of a New Light-Harvesting Polymer with Alkylthio naphthyl Substituents Compared to Their Alkoxyl Analogs. Adv. Energy Mater. 2018, 8 (10), 1702489, DOI: 10.1002/aenm.201702489. (49) Chen, Y.; Qin, Y.; Wu, Y.; Li, C.; Yao, H.; Liang, N.; Wang, X.; Li, W.; Ma, W.; Hou, J. From Binary to Ternary: Improving the External Quantum Efficiency of Small-Molecule Acceptor-Based Polymer Solar Cells with a Minute Amount of Fullerene Sensitization. Adv. Energy Mater. 2017, 7 (17), 1700328, DOI: 10.1002/aenm.201700328. (50) An, M.; Xie, F.; Geng, X.; Zhang, J.; Jiang, J.; Lei, Z.; He, D.; Xiao, Z.; Ding, L. A HighPerformance D-A Copolymer Based on Dithieno 3,2-b:2 ',3 '-d Pyridin-5(4H)-One Unit Compatible with Fullerene and Nonfullerene Acceptors in Solar Cells. Adv. Energy Mater. 2017, 7 (14), 1602509, DOI: 10.1002/aenm.201602509. (51) Fan, B.; Zhong, W.; Jiang, X.-F.; Yin, Q.; Ying, L.; Huang, F.; Cao, Y. Improved Performance of Ternary Polymer Solar Cells Based on A Nonfullerene Electron Cascade Acceptor. Adv. Energy Mater. 2017, 7 (11), 1602127, DOI: 10.1002/aenm.201602127. (52) Zhang, H.; Wang, X.; Yang, L.; Zhang, S.; Zhang, Y.; He, C.; Ma, W.; Hou, J. Improved Domain Size and Purity Enables Efficient All-Small-Molecule Ternary Solar Cells. Adv. Mater. 2017, 29 (42), 1703777, DOI: 10.1002/adma.201703777. (53) Zhu, N.; Zhang, W.; Yin, Q.; Liu, L.; Jiang, X.; Xie, Z.; Ma, Y. Layer-by-Layer-Processed Ternary Organic Solar Cells Using Perylene Bisimide as a Morphology-Inducing Component. Acs Appl. Mater. & Interfaces 2017, 9 (20), 17265-17270, DOI: 10.1021/acsami.7b01427. (54) Mendaza, A. D. d. Z.; Melianas, A.; Rossbauer, S.; Backe, O.; Nordstierna, L.; Erhart, P.; Olsson, E.; Anthopoulos, T. D.; Inganas, O.; Muller, C. High-Entropy Mixtures of Pristine Fullerenes for Solution-Processed Transistors and Solar Cells. Adv. Mater. 2015, 27 (45), 73257331, DOI: 10.1002/adma.201503530. (55) Kang, H.; Kim, K.-H.; Kang, T. E.; Cho, C.-H.; Park, S.; Yoon, S. C.; Kim, B. J. Effect of Fullerene Tris-adducts on the Photovoltaic Performance of P3HT:Fullerene Ternary Blends. Acs Appl. Mater. & Interfaces 2013, 5 (10), 4401-4408, DOI: 10.1021/am400695e. (56) Ko, S.-J.; Lee, W.; Choi, H.; Walker, B.; Yum, S.; Kim, S.; Shin, T. J.; Woo, H. Y.; Kim, J. Y. Improved Performance in Polymer Solar Cells Using Mixed PC61BM/PC71 BM Acceptors. Adv. Energy Mater. 2015, 5 (5), 1401687, DOI: 10.1002/aenm.201401687. (57) Liu, H.-W.; Chang, D.-Y.; Chiu, W.-Y.; Rwei, S.-P.; Wang, L. Fullerene Bisadduct as an Effective Phase-Separation Inhibitor in Preparing Poly(3-hexylthiophene)-6,6-Phenyl-C-61Butyric Acid Methyl Ester Blends with Highly Stable Morphology. J. Mater. Chem. 2012, 22 (31), 15586-15591, DOI: 10.1039/c2jm32444j. (58) Schroeder, B. C.; Li, Z.; Brady, M. A.; Faria, G. C.; Ashraf, R. S.; Takacs, C. J.; Cowart, J. S.; Duong, D. T.; Chiu, K. H.; Tan, C.-H.; Cabral, J. T.; Salleo, A.; Chabinyc, M. L.; Durrant, J.

ACS Paragon Plus Environment

22

Page 23 of 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

R.; McCulloch, I. Enhancing Fullerene-Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell. Angew. Chem.-In. Ed. 2014, 53 (47), 12870-12875, DOI: 10.1002/anie.201407310. (59) Li, W.; Yan, D.; Liu, F.; Russell, T.; Zhan, C.; Yao, J. High-Efficiency Quaternary Polymer Solar Cells Enabled with Binary Fullerene Additives to Reduce Nonfullerene Acceptor Optical Band Gap and Improve Carriers Transport. Sci. Chin. Chem. 2018, 61, s11426-018-9320-3, DOI: 10.1007/s11426-018-9320-3. (60) Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. a.; Hou, J. Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State. Macromolecules 2012, 45 (24), 9611-9617, DOI: 10.1021/ma301900h. (61) Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Adv. Mater. 2016, 28 (42), 9423-9429, DOI: 10.1002/adma.201602776. (62) Li, W.; Zhang, X.; Zhang, X.; Yao, J.; Zhan, C. High-Performance Solution-Processed Single-Junction Polymer Solar Cell Achievable by Post-Treatment of PEDOT:PSS Layer with Water-Containing Methanol. Acs Appl. Mater. & Interfaces 2017, 9 (2), 1446-1452, DOI: 10.1021/acsami.6b12389. (63) Ameri, T.; Khoram, P.; Min, J.; Brabec, C. J. Organic Ternary Solar Cells: A Review. Adv. Mater. 2013, 25 (31), 4245-4266, DOI: 10.1002/adma.201300623. (64) Liu, W.; Li, W.; Yao, J.; Zhan, C. Achieving High Short-Circuit Current and Fill-Factor Via Increasing Quinoidal Character on Nonfullerene Small Molecule Acceptor. Chin. Chem. Lett. 2018, 29 (3), 381-384, DOI: https://doi.org/10.1016/j.cclet.2017.11.018. (65) Gupta, M.; Yan, D.; Xu, J.; Yao, J.; Zhan, C. Tetraphenylphosphonium Bromide as a Cathode Buffer Layer Material for Highly Efficient Polymer Solar Cells. Acs Appl. Mater. & Interfaces 2018, 10 (6), 5569-5576, DOI: 10.1021/acsami.7b17870. (66) Gupta, M.; Yan, D.; Yao, J.; Zhan, C. Organophosphorus Derivatives as Cathode Interfacial-Layer Materials For Highly Efficient Fullerene-Free Polymer Solar Cells. Acs Appl. Mater. & Interfaces 2018, 10 (42), 35896-35903, DOI: 10.1021/acsami.8b09313. (67) Li, C.-Z.; Chueh, C.-C.; Yip, H.-L.; O'Malley, K. M.; Chen, W.-C.; Jen, A. K. Y. Effective Interfacial Layer to Enhance Efficiency of Polymer Solar Cells via Solution-Processed Fullerene-Surfactants. J. Mater. Chem. 2012, 22 (17), 8574-8578, DOI: 10.1039/c2jm30755c. (68) Ruderer, M. A.; Guo, S.; Meier, R.; Chiang, H.-Y.; Koerstgens, V.; Wiedersich, J.; Perlich, J.; Roth, S. V.; Mueller-Buschbaum, P. Solvent-Induced Morphology in Polymer-Based Systems for Organic Photovoltaics. Adv. Function. Mater. 2011, 21 (17), 3382-3391, DOI: 10.1002/adfm.201100945. (69) Wang, W.; Song, L.; Magerl, D.; Gonzalez, D. M.; Koerstgens, V.; Philipp, M.; Moulin, J.F.; Mueller-Buschbaum, P. Influence of Solvent Additive 1,8-Octanedithiol on P3HT:PCBM Solar Cells. Adv. Function. Mater. 2018, 28 (20), 1800209, DOI: 10.1002/adfm.201800209. (70) Chen, Y.; Ye, P.; Zhu, Z.-G.; Wang, X.; Yang, L.; Xu, X.; Wu, X.; Dong, T.; Zhang, H.; Hou, J.; Liu, F.; Huang, H. Achieving High-Performance Ternary Organic Solar Cells through Tuning Acceptor Alloy. Adv. Mater. 2017, 29 (6), 1603154, DOI: 10.1002/adma.201603154. (71) Yan, D.; Liu, W.; Yao, J.; Zhan, C. Fused-Ring Nonfullerene Acceptor Forming Interpenetrating J-Architecture for Fullerene-Free Polymer Solar Cells. Adv. Energy Mater. 2018, 8, 1800204, DOI: 10.1002/aenm.201800204.

ACS Paragon Plus Environment

23