21 Application of C N D O / 2 Calculations and X-Ray Crystallographic Analysis to the Design of
Downloaded via TUFTS UNIV on July 11, 2018 at 12:45:51 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Conformationally Defined Analogs of Methamphetamine GARY L. GRUNEWALD, MARY WEIR CREESE, and D. ERIC WALTERS Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045 A major objective of our research program is to elucidate the molecular events involved i n the i n t e r action of sympathomimetic amines with the adrenergic neuroeffector complex. A major portion of t h i s work i s aimed at the delineation of the conformational r e q u i r e ments for optimal i n t e r a c t i o n of sympathomimetic amines with t h e i r various p h y s i o l o g i c a l l y s i g n i f i c a n t i n t e r active s i t e s within the synaptic area (pre- and post-synaptic receptors, presynaptic uptake and storage s i t e s and metabolic enzymes). Such knowledge would be p r e r e q u i s i t e for r a t i o n a l design of s p e c i f i c chemical agents to s e l e c t i v e l y modify neurotransmitter-receptor interactions and to eventually replace drugs of less specificity. Any discussion of s t r u c t u r e - a c t i v i t y r e l a t i o n s h i p s among sympathomimetic amines must be undertaken i n terms of the m u l t i p l i c i t y of p h y s i o l o g i c a l l y important s i t e s within the noradrenergic synapse with which such amines can p o t e n t i a l l y i n t e r a c t . A generalized synapse of t h i s type i s depicted i n Figure 1, and consists of the following generally accepted points of molecular physiology. Consider first the presynaptic events. Depolarization of the nerve ending r e s u l t s i n elevated i n t r a neuronal Ca l e v e l s and concomitant exocytotic release of norepinephrine from the storage granule (1,2,3) where norepinephrine i s stored i n high concentrations as an osmotically i n e r t complex with ATP (4,5). ++
A l t h o u g h most n e u r o n a l n o r e p i n e p h r i n e e x i s t s i n t h i s v e s i c u l a r pool, there i s also a small e x t r a v e s i c u l a r p o o l which has been i n t e r p r e t e d i n terms o f n o r e p i n e p h r i n e i o n i c a l l y bound t o s o l u b l e c y t o p l a s m i c c o n s t i t u e n t s ((5) . The c y t o p l a s m i c p o o l o f n o r e p i n e p h r i n e i n f a c t i s m a i n t a i n e d a t i t s low l e v e l by v e s i c u l a r s t o r a g e o f n o r e p i n e p h r i n e and by o x i d a t i v e d e a m i n a t i o n 0-8412-0521-3/79/47-112-439$ 12.25/0 © 1979 A m e r i c a n C h e m i c a l Society
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COMPUTER-ASSISTED DRUG DESIGN
Figure 1.
The noradrenergic nerve ending
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
21.
GRUNEWALD E T A L .
Analogs
of
Methamphetamine
441
of n o r e p i n e p h r i n e v i a m i t o c h o n d r i a l monoamine o x i d a s e (MAO). Thus, i n h i b i t i o n o f MAO (pargyline) provides a means o f s w e l l i n g the e x t r a v e s i c u l a r n o r e p i n e p h r i n e compartment (7). The v e s i c u l a r p o o l can be o b l a t e d a l t o g e t h e r by t r e a t m e n t w i t h r e s e r p i n e which i r r e v e r s i b l y i n h i b i t s the v e s i c u l a r uptake o f n o r e p i n e p h r i n e (*L'D · While d e p o l a r i z a t i o n r e l e a s e s o n l y v e s i c u l a r n o r e p i n e p h r i n e i n a C a - d e p e n d e n t manner (10), i n d i r e c t l y a c t i n g sympathomimetic agents w i l l d i s p l a c e n o r e p i n e p h r i n e from both s t o r a g e forms i n a Ca independent manner (11,12). Norepinephrine r e l e a s e d i n t o the s y n a p t i c area i s r e n d e r e d i n a c t i v e e i t h e r by O - m e t h y l a t i o n (primarily meta but some para) v i a c a t e c h o l O - m e t h y l t r a n s f e r a s e (13) o r by uptake by the n e u r o n a l amine uptake system. U t i l i z i n g the i n w a r d l y - d i r e c t e d N a c o n c e n t r a t i o n g r a d i e n t m a i n t a i n e d by the n e u r o n a l membrane ( N a + K ) ATPase, n o r e p i n e p h r i n e i s c o - t r a n s p o r t e d w i t h N a in a f a c i l i t a t e d d i f f u s i o n p r o c e s s which appears t o be c a r r i e r - m e d i a t e d (14 ,l!p) . I n h i b i t o r s o f (Na + Κ )-ATPase w i l l a n t a g o n i z e n o r e p i n e p h r i n e a c c u m u l a t i o n as w i l l sympathomimetic amines which c o m p e t i t i v e l y b i n d t o the uptake c a r r i e r (15). C o c a i n e and d e s i p r a m i n e (DMI) b o t h d i s p l a y a h i g h a f f i n i t y f o r the c a r r i e r system, thus i n h i b i t i n g the uptake o f n o r e p i n e p h r i n e . P o s t s y n a p t i c a l l y n o r e p i n e p h r i n e may i n t e r a c t w i t h a- o r β-receptors, which c o u p l e w i t h an a d e n y l a t e (or guanylate) c y c l a s e t o i n i t i a t e p o s t s y n a p t i c events (16,17). P r e s y n a p t i c a- and β-receptors have a l s o been i m p l i c a t e d i n the m o d u l a t i o n o f t r a n s m i t t e r r e l e a s e . While an a d e n y l a t e c y c l a s e has been a s s o c i a t e d w i t h the p r e s y n a p t i c β-receptor, the p r e s y n a p t i c α-receptor appears t o be i n v o l v e d o n l y w i t h m o d u l a t i o n o f C a f l u x e s (18,19). S t r u c t u r e - a c t i v i t y r e l a t i o n s h i p s (SAR) i n sympa thomimetic amines must then d e a l w i t h t h e e f f e c t o f m o l e c u l a r s t r u c t u r e on: 1) The i n h i b i t i o n o f n e u r o n a l t r a n s m i t t e r uptake. 2) The uptake and r e t e n t i o n o f the agents them selves . 3) The r e l e a s e o f t r a n s m i t t e r from i t s s t o r a g e sites. 4) D i r e c t r e c e p t o r a c t i v i t y o f the amines. 5) C o m p e t i t i v e b i n d i n g t o the a c t i v e s i t e s o f m e t a b o l i c enzymes. Unless these e f f e c t s are c a r e f u l l y s o r t e d out, e f f o r t s to d e s i g n s e l e c t i v e agents a r e thwarted from the outset. A r e v i e w o f SAR w i t h i n each d i v i s i o n o f a c t i o n would be i m p o s s i b l e w i t h i n the c o n f i n e s o f the p r e s e n t ++
+
+
+
+
+
+ +
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
442
COMPUTER-ASSISTED
DRUG DESIGN
discussion. The r e a d e r i s r e f e r r e d elsewhere f o r t h e g e n e r a l c o n c l u s i o n s o f SAR on t h e c o m p e t i t i v e i n h i b i t i o n o f t h e n e u r o n a l uptake o f n o r e p i n e p h r i n e (20,21, 221,23) , t r a n s p o r t o f n o r e p i n e p h r i n e by t h e c a r r i e r (24TT r e l e a s e o f p r e v i o u s l y accumulated n o r e p i n e p h r i n e (25), i n t e r a c t i o n o f d i r e c t l y - a c t i n g sympathomimetic a g o n i s t s on t h e a - and 3 - r e c e p t o r s (26) and t h e subs t r a t e s p e c i f i c i t y f o r catechol O-methyltransferase (2J_,20). These c o n c l u s i o n s o f SAR i l l u s t r a t e t h a t s e l e c t i v i t y o f p h a r m a c o l o g i c a l a c t i o n i s n o t always p o s s i b l e through gross s t r u c t u r a l manipulation alone. S e v e r a l i n t e r a c t i v e s i t e s can d i s p l a y s i m i l a r s t r u c t u r a l preference. D e s p i t e t h e d e t a i l o f t h e s e SAR s t u d i e s , t h e e x a c t n a t u r e o f t h e n e u r o t r a n s m i t t e r (or d r u g ) r e c e p t o r complex remains unknown. The p o s s i b i l i t y t h a t d i f f e r e n t s i t e s o f drug a c t i o n r e q u i r e d i f f e r e n t c o n f o r m a t i o n a l arrangements o f t h e a g o n i s t , t h e r e b y u n c o v e r i n g a new dimension o f drug s e l e c t i v i t y n o t p o s s i b l e through g r o s s s t r u c t u r a l m a n i p u l a t i o n a l o n e , w i l l be d i s c u s s e d below. Techniques f o r A s s e s s i n g C o n f o r m a t i o n - A c t i v i t y Relationships Conformation-activity r e l a t i o n s h i p s are c o n s i d e r a b l y more d i f f i c u l t t o d e l i n e a t e than a r e structure-activity relationships. In the l a t t e r case, one needs o n l y t o modify t h e s t r u c t u r e o f an a c t i v e s u b s t a n c e and t o d e t e r m i n e t h e p h a r m a c o l o g i c a l e f f e c t s i n d u c e d by t h e s t r u c t u r a l change. Most a c t i v e a d r e n e r g i c a g e n t s , however, a r e c o n f o r m a t i o n a l l y m o b i l e ; r o t a t i o n about s i n g l e bonds i s u s u a l l y f a c i l e and r a p i d . F o r t h i s r e a s o n , most a d r e n e r g i c agents provide very l i t t l e d i r e c t information regarding conformational e f f e c t s . A number o f t e c h n i q u e s have been a p p l i e d t o t h e study o f c o n f o r m a t i o n - a c t i v i t y r e l a t i o n s h i p s : x-ray c r y s t a l structure determination, molecular o r b i t a l c a l c u l a t i o n s o f low-energy c o n f o r m a t i o n s , n u c l e a r magnetic resonance d e t e r m i n a t i o n s o f s o l u t i o n c o n f o r m a t i o n s , and t h e p r e p a r a t i o n o f c o n f o r m a t i o n a l l y r e s t r i c t e d analogs. The f i r s t t h r e e methods a r e d i r e c t e d toward d e t e r m i n i n g which c o n f o r m a t i o n (or which c o n f o r m a t i o n s ) i s (are) most f a v o r a b l e ; t h e assumption i s made t h a t an e n e r g e t i c a l l y p r e f e r r e d c o n f o r m a t i o n w i l l be t h e b i o l o g i c a l l y a c t i v e c o n f o r mation. T h i s need n o t be t h e c a s e ; P o r t o g h e s e ' s s u g g e s t i o n (29) r e g a r d i n g a " h i g h - e n e r g y " c o n f o r m a t i o n would n o t be c o n s i s t e n t w i t h such an assumption. Nevertheless, the p o s s i b i l i t y that a favorable
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
21.
GRUNEWALD E T A L .
Analogs
of
Methamphetamitie
443
c o n f o r m a t i o n might c o r r e s p o n d t o an a c t i v e one has s e r v e d as a s t a r t i n g p o i n t f o r a l a r g e amount o f research. The use o f c o n f o r m a t i o n a l l y - r e s t r i c t e d a n a l o g s p r e c l u d e s t h e n e c e s s i t y o f such an assumption, but t h i s method a l s o has i t s l i m i t a t i o n s . We w i s h t o combine a number o f t h e s e t e c h n i q u e s i n a s i n g l e l a b o r a t o r y w i t h t h e hope t h a t t h e advantages o f each approach w i l l be m a g n i f i e d and t h e d i s a d v a n t a g e s minimized. X-Ray C r y s t a l l o g r a p h y . T h i s approach i s based on the assumption t h a t a low-energy c o n f o r m a t i o n s h o u l d be the c o n f o r m a t i o n r e c o g n i z e d by t h e r e c e p t o r . (Receptor i s here used l o o s e l y t o r e f e r t o any s i t e o f i n t e r a c t i o n w i t h t h e a g o n i s t o r a n t a g o n i s t m o l e c u l e ) . The c r y s t a l l i n e form o f a s u b s t a n c e s h o u l d c e r t a i n l y be a r e l a t i v e l y low-energy and s t a b l e c o n f o r m a t i o n . I n a d d i t i o n , s t r u c t u r a l and c o n f o r m a t i o n a l f e a t u r e s a r e d e l i n e a t e d w i t h a h i g h degree o f a c c u r a c y by x - r a y diffraction. S e v e r a l n e g a t i v e f a c t o r s s h o u l d be p o i n t e d o u t , however. F i r s t , t h e m o l e c u l e i n t h e s o l i d s t a t e has a much d i f f e r e n t environment from t h a t in dilute solution. A l s o , i f a s u b s t a n c e has two o r more r e l a t i v e l y s t a b l e c o n f o r m a t i o n s , o n l y one o f t h e s e i s l i k e l y t o e x i s t i n the c r y s t a l , while the other(s) would go u n d e t e c t e d . F i n a l l y , c r y s t a l packing forces may cause d i s t o r t i o n s o f t h e m o l e c u l e whenever t h e i n c r e a s e d s t r a i n energy i s compensated f o r by enhanced intermolecular interactions. A t l e a s t e i g h t e e n p h e n y l e t h y l a m i n e s have been examined by x - r a y c r y s t a l l o g r a p h y . Among t h e s e a r e p h e n y l e t h y l a m i n e h y d r o c h l o r i d e (30) , e p h e d r i n e h y d r o c h l o r i d e (31), e p h e d r i n e monohydrogen phosphate monohydrate (32) , e p h e d r i n e d i h y d r o g e n phosphate (33) , dopamine h y d r o c h l o r i d e (34) , 5-hydroxydopamine h y d r o c h l o r i d e (35,) , 6-hydroxydopamine h y d r o c h l o r i d e (36.) / e p i n e p h r i n e hydrogen t a r t r a t e (37) , n o r e p i n e p h r i n e h y d r o c h l o r i d e (38), i s o p r o t e r e n o l s u l f a t e (39) , 2,4,5trimethoxyamphetamine h y d r o c h l o r i d e (40), 4 - e t h y l - 2 , 5 dimethoxyamphetamine (41) , m e s c a l i n e hydrobromide ( 4 2 ) , and m e s c a l i n e h y d r o c h l o r i d e ( 4 3 ) . U s i n g t h e c o n v e n t i o n s shown i n F i g u r e 2, s e v e r a l o b s e r v a t i o n s may be made r e g a r d i n g t h e s o l i d s t a t e conformations o f these phenylethylamines. First, f i f t e e n o f t h e e i g h t e e n compounds have t h e n i t r o g e n atom and t h e a r o m a t i c r i n g i n an extended c o n f o r m a t i o n (ΤΛ = 180°). I t i s i n t e r e s t i n g t o note t h a t m e s c a l i n e h y d r o c h l o r i d e e x i s t s i n an extended c o n f o r m a t i o n , w h i l e t h e hydrobromide has a gauche c o n f o r m a t i o n . S i n c e t h e i o n i c r a d i i o f t h e a n i o n s (44) a r e v e r y
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COMPUTER-ASSISTED DRUG DESIGN
444
Figure 2. 2-Phenylethyhmine (unless otherwise stated, the numbering system shown is used throughout most of this paper in describing phenylethylamines)
6'
t
2 t
2
N u m b e r of observations 3η
2H
0
30
Figure 3.
60
90
120
150
Distribution of values of TJ (see text)
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
180
21.
GRUNEWALD E T A L . —
Analogs
of Ο
Methamphetamine _
445
Ο
n e a r l y e q u a l ( C l = 1 . 8 0 A; Br = 1 . 9 5 A ) , i t would appear t h a t b o t h c o n f o r m a t i o n s a r e r e a s o n a b l y s t a b l e and might e x i s t i n d i l u t e s o l u t i o n . Among t h e t h r e e compounds e x i s t i n g i n a gauche c o n f o r m a t i o n ( τ ^ = 6 0 ° ) , m e s c a l i n e hydrobromide and 2 , 4 , 5 - t r i methoxyamphetamine h y d r o c h l o r i d e a r e p o t e n t h a l l u cinogens , while 4-ethyl-2,5-dimethoxyamphetamine i s r e p o r t e d t o cause e u p h o r i a and a f e e l i n g o f enhanced self-awareness ( 4 5 ) . In F i g u r e 3 , t h e T]_ v a l u e s a r e r e p r e s e n t e d graphically. I t may be seen t h a t most o f t h e s e v a l u e s f a l l i n t h e range o f 6 7 ° t o 9 7 ° , i n d i c a t i n g t h a t t h e s i d e c h a i n i s u s u a l l y d i r e c t e d away from the p l a n e o f t h e a r o m a t i c r i n g . The two e x c e p t i o n s a r e 5-hydroxydopamine ( 5 9 ° ) and e p i n e p h r i n e hydrogen tartrate ( 1 7 9 ° ) . In the l a t t e r case, the authors ( 3 7 ) suggest t h a t t h e e x t r e m e l y dense p a c k i n g o f the s t r u c t u r e and t h e numerous hydrogen bonds may cause t h e m o l e c u l e t o assume t h i s u n u s u a l c o n f o r m a t i o n . Molecular O r b i t a l Calculations. Theoretical c a l c u l a t i o n s o f m o l e c u l a r p r o p e r t i e s have become r e a s o n a b l y a c c u r a t e and r e l a t i v e l y easy t o c a r r y o u t i n r e c e n t y e a r s . Atomic c o o r d i n a t e s from x - r a y s t r u c t u r e d e t e r m i n a t i o n s o r s t a n d a r d bond l e n g t h s and a n g l e s can s e r v e as t h e i n p u t , and a wide range o f p r o p e r t i e s may be d e t e r m i n e d . Of p a r t i c u l a r i n t e r e s t t o us i s t h e d e t e r m i n a t i o n o f t h e r e l a t i v e e n e r g i e s of v a r i o u s conformations o f a molecule, or the r e l a t i v e p o p u l a t i o n s o f a s e r i e s o f conformers. Rotational b a r r i e r s , which can a f f e c t i n t e r c o n v e r s i o n among c o n f o r m e r s , can a l s o be e s t i m a t e d . The assumption i s a g a i n made t h a t a c o n f o r m a t i o n which predominates i n s o l u t i o n s h o u l d be b i o l o g i c a l l y a c t i v e . Other parameters (such as charge d i s t r i b u t i o n ) which r e f l e c t the c a p a c i t y f o r e l e c t r o s t a t i c i n t e r a c t i o n s a t v a r i o u s p o i n t s on t h e m o l e c u l e can be c a l c u l a t e d . F i v e c o m p u t a t i o n a l methods have been a p p l i e d t o conformational studies of phenylethylamines. These a r e Extended Hiickel Theory (EHT) ( £ 6 ) , Complete N e g l e c t o f D i f f e r e n t i a l O v e r l a p (CNDO) ( 4 7 ) , I n t e r m e d i a t e N e g l e c t o f D i f f e r e n t i a l O v e r l a p (INDOl ( £ 8 ) , P e r t u r b a t i v e Configuration Interactions using Localized Orbitals (PCILO) ( £ 9 ) , and some ab i n i t i o (ΑΙ) ( 5 Ό ) p r o c e d u r e s . EHT i s r e l a t i v e l y easy and i n e x p e n s i v e t o u s e , b u t i t tends t o d i s t o r t e l e c t r o n d i s t r i b u t i o n i n systems c o n t a i n i n g heteroatoms. I n EHT, e l e c t r o n - r e p u l s i o n terms a r e n e g l e c t e d , c a u s i n g a tendency t o p r e d i c t u n r e a l i s t i c a l l y low e n e r g i e s f o r gauche and e c l i p s e d conformations. CNDO and INDO t a k e i n t o account some
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COMPUTER-ASSISTED
446
DRUG DESIGN
i m p o r t a n t e l e c t r o n - r e p u l s i o n terms, b u t gauche and e c l i p s e d c o n f o r m a t i o n s a r e a g a i n p r e d i c t e d t o be t o o stable r e l a t i v e t o staggered conformations. CNDO and INDO a r e r e f e r r e d t o as " s e m i - e m p i r i c a l " because t h e y can be " p a r a m e t e r i z e d " ; c e r t a i n v a r i a b l e s i n t h e computation a r e a s s i g n e d v a l u e s which w i l l g i v e good r e s u l t s f o r a g i v e n c l a s s o f compounds o r f o r a g i v e n c h e m i c a l p r o p e r t y . A l l o f t h e above methods e x c e p t PCILO employ t h e H a r t r e e - F o c k a p p r o x i m a t i o n i n t h e i r c a l c u l a t i o n s ; t h i s approximation i s v a l i d only a t o r near low-energy s t a t e s o f t h e m o l e c u l e . For this reason, r o t a t i o n a l b a r r i e r s are often overestimated. PCILO, on t h e o t h e r hand, p r e d i c t s s l i g h t l y l o w e r - t h a n normal r o t a t i o n a l b a r r i e r s . AI methods use much more s o p h i s t i c a t e d c o m p u t a t i o n s , b u t t h e b a s i s s e t s from which m o l e c u l e s a r e c o n s t r u c t e d a r e o f t e n e i t h e r t o o s m a l l t o g i v e good r e s u l t s o r t o o e x p e n s i v e t o use f o r m o l e c u l e s o f more t h a n a few atoms. A more mathe m a t i c a l comparison o f methods has been p r e s e n t e d by Hoyland (51.) . T a b l e I l i s t s t h e compounds which have been s t u d i e d by m o l e c u l a r o r b i t a l methods. T h i s l i s t i n c l u d e s d i r e c t l y and i n d i r e c t l y a c t i n g a g o n i s t s as w e l l as a n t a g o n i s t s . A l t h o u g h t h e e n e r g i e s d e t e r m i n e d by t h e s e methods a r e n o t f r e e e n e r g i e s s i n c e e n t r o p i e e f f e c t s a r e n o t t a k e n i n t o c o n s i d e r a t i o n , energy d i f f e r e n c e s among c l o s e l y r e l a t e d compounds appear t o be q u i t e a c c u r a t e l y d e t e r m i n e d . Conformational r e s u l t s are often s e n s i t i v e t o the i n p u t geometry used. F o r i n s t a n c e , Pullman at at. (68) c a r r i e d o u t two PCILO c a l c u l a t i o n s f o r m e s c a l i n e , u s i n g the x-ray c r y s t a l geometries obtained f o r t h e hydrobromide and h y d r o c h l o r i d e s a l t s ; t h e s e s a l t s e x i s t i n gauche and extended c o n f o r m a t i o n s , r e s p e c t i v e l y . In b o t h c a s e s t h e c a l c u l a t i o n s showed r e l a t i v e minima f o r b o t h c o n f o r m a t i o n s , and t h e s e minima d i f f e r e d by l e s s than one k c a l / m o l . I n each c a s e , however, t h e g l o b a l ( o v e r a l l ) minimum c o r r e s p o n d e d t o t h e c r y s t a l geometry. M a r t i n zt at. (70) have p u b l i s h e d a d e t a i l e d s t u d y o f p h e n y l e t h y l a m i n e , u t i l i z i n g EHT, CNDO, INDO, PCILO and A I . These a u t h o r s used s e m i - e m p i r i c a l methods t o g e n e r a t e a s e r i e s o f c o n f o r m a t i o n a l energy s u r f a c e s and then used an AI p r o c e d u r e w i t h a l a r g e b a s i s s e t f o r a few s e l e c t e d p o i n t s . EHT, CNDO and INDO a l l i n d i c a t e d a minimum f o r T± a t 9 0 ° ; EHT p r e d i c t s a r o t a t i o n a l b a r r i e r o f 7 k c a l / m o l , w h i l e CNDO and INDO show a b a r r i e r o f about 2 k c a l / m o l . PCILO g i v e s a r o t a t i o n a l b a r r i e r o f about 2 k c a l / m o l , b u t i t shows a v e r y broad minimum f o r τ ι , r a n g i n g from 4 5 ° t o 1 3 5 ° . With r e s p e c t t o r o t a t i o n about τ , t h e s e a u t h o r s found t h e extended 9
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
21.
GRUNEWALD E T A L .
Analogs
of
Methamphetamine
447
form t o be about 1 k c a l / m o l more s t a b l e than t h e gauche u s i n g EHT and Α Ι , w h i l e t h e gauche form appeard t o be about 1 k c a l / m o l more s t a b l e u s i n g CNDO, INDO and PCILO. The most e x t e n s i v e s t u d i e s o f p h e n y l e t h y l a m i n e s have been done by Pullman and coworkers (5>9,6J5,6T7,68) . T h e i r PCILO c a l c u l a t i o n s i n d i c a t e d t h a t gauche and t r a n s conformers have n e a r l y i d e n t i c a l e n e r g i e s i n t h e m a j o r i t y o f p h e n y l e t h y l a m i n e s and p h e n y l e t h a n o l a m i n e s studied. AI s t u d i e d were c a r r i e d o u t u s i n g t h r e e d i f f e r e n t b a s i s s e t s (67); t h e s e a l l i n d i c a t e d a s l i g h t b u t d e f i n i t e p r e f e r e n c e f o r gauche c o n f o r m e r s . These a u t h o r s n o t e d t h e preponderance o f extended conformers i n c r y s t a l s t r u c t u r e s and i n s o l u t i o n ; t h e y a t t r i b u t e d t h i s t o environmental f o r c e s . To t e s t t h i s h y p o t h e s i s , computations were r e p e a t e d w i t h t h e i n c l u s i o n o f water m o l e c u l e s , and a tendency toward the extended c o n f o r m a t i o n was i n d e e d o b s e r v e d . Thus, most o f t h e e v i d e n c e a v a i l a b l e from molecular o r b i t a l c a l c u l a t i o n s suggests t h a t both the extended and gauche c o n f o r m a t i o n s a r e r e a s o n a b l y s t a b l e . I t would appear unwise t o deduce t h a t one o f t h e s e c o n f o r m a t i o n s c a n be r e c o g n i z e d i n v i v o and t h e o t h e r n o t , s o l e l y on t h e b a s i s o f such c o m p u t a t i o n s . N u c l e a r M a g n e t i c Resonance. Through a c a r e f u l a n a l y s i s o f c o u p l i n g c o n s t a n t s , i t has sometimes been p o s s i b l e t o d e r i v e c o n f o r m a t i o n a l i n f o r m a t i o n from n u c l e a r magnetic resonance (NMR) s p e c t r a . This offers the advantage o f d i r e c t l y d e t e r m i n i n g s o l u t i o n c o n f o r m a t i o n s , which s h o u l d be more r e l e v a n t t o t h e b i o l o g i c a l s i t u a t i o n than would be s o l i d s t a t e o r i n vacuo c o n f o r m a t i o n s . Once a g a i n , t h e u n d e r l y i n g assumption i s t h a t a h i g h l y p o p u l a t e d conformer i s the a c t i v e s p e c i e s . T a b l e I I summarizes t h e c o n f o r m a t i o n a l s t u d i e s o f p h e n y l e t h y l a m i n e s which have been c a r r i e d o u t u s i n g NMR. In d e s c r i b i n g conformations, we w i l l use t h e f o l l o w i n g c o n v e n t i o n s (see F i g u r e 4 ) : 1) 1^ w i l l d e s i g n a t e t h a t c o n f o r m a t i o n i n which the n i t r o g e n atom i s a n t i p e r i p l a n a r w i t h respect t o the aromatic r i n g . 2) II_ w i l l d e s i g n a t e t h a t c o n f o r m a t i o n i n which the a r o m a t i c r i n g and t h e n i t r o g e n atom a r e i n a gauche r e l a t i o n s h i p ; i n compounds b e a r i n g a h y d r o x y l group on C-2, 11^ w i l l a l s o have t h e n i t r o g e n and oxygen atoms gauche t o each o t h e r , and i n amphetamines, I_I w i l l have t h e C - l methyl group a n t i p e r i p l a n a r w i t h r e s p e c t t o the a r o m a t i c r i n g . 3) I I I w i l l d e s i g n a t e a gauche r e l a t i o n s h i p
American Chemical Society Library 1155 f6th St. N. W. Olson and Christoffersen; Computer-Assisted Drug Design Washington, D. C. Society: 20036 ACS Symposium Series; American Chemical Washington, DC, 1979.
COMPUTER-ASSISTED DRUG DESIGN
448
T a b l e I . Summary o f m o l e c u l a r o r b i t a l
studies of
phenylethylamines. Compound(s)
Method
Ref.
1.
Ephedrine Pseudoephedrine
EHT
52
2.
Norepinephrine
EHT
53
3. Dopamine
EHT
54
4. Dopamine
EHT
55
Norepinephrine Epinephrine N-Ethylnorepinephrine Isoproterenol
EHT, CNDO
56
Norepinephrine Norepinephrine·Li-H20
INDO
57
7. Dopamine
EHT
58
8.
PCILO
59
PCILO
60
10. P r a c t o l o l 1-(4 -methylphenyl)-2-isopropylaminoethanol 1-(4'-methylphenyl)-2-isopropylaminopropanol
CNDO
61
11.
Dopamine
EHT
62
12.
Norepinephrine Dopamine ( i n c l u d i n g meta- and para-anions)
CNDO
63
Phenylethylamine Norepinephrine Ephedrine Dopamine Tyramine Norephedrine Epinephrine Amphetamine
9. P h e n o x y e t h y l a m i n e
1
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
21.
GRUNEWALD E T A L .
Analogs of
Methamphetamine
449
T a b l e I (cont'd.) 13.
2,5-Dihydroxyphenylethylamine 2.3.4- T r i h y d r o x y p h e n y l e t h y l a m i n e 3.4.5- T r i h y d r o x y p h e n y l e t h y l a m i n e 2.3.6- T r i h y d r o x y p h e n y l e t h y l a m i n e 2,4,6-Trihydroxyphenylethylamine
CNDO
64
14.
2,4,5-Trimethoxyamphetamine 2,4,6-Trimethoxyamphetamine
PCILO
65
15.
Norepinephrine
CNDO
66
16.
Norepinephrine Amphetamine Epinephrine Isoproterenol Ephedrine
AI, PCILO
67
17. M e s c a l i n e 2.3.4- Trimethoxyamphetamine 2.4.5- Trimethoxyamphetamine 2.4.6- Trimethoxyamphetamine 2,4,5-Trihydroxyphenylethylamine 3,4,5-Trihydroxyphenylethylamine
PCILO
68
18.
CNDO
69
AI EHT CNDO INDO PCILO
70
Isoproterenol INPEA
19.
Phenylethylamine
2 0.
Phenylethylamine Amphetamine
AI
71
21.
Dopamine
INDO
72
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COMPUTER-ASSISTED
450
DRUG
DESIGN
T a b l e I I . NMR c o n f o r m a t i o n a l s t u d i e s o f a d r e n e r g i c agents. Compound(s)
Solvent
Studied
Ref.
1. E p h e d r i n e Pseudoephedrine ( f r e e bases)
CDCI3
2. E p h e d r i n e Pseudoephedrine ( f r e e bases and HC1 s a l t s )
C C l ^ C ^ CDCl3,DMSO CF3COOH,D20
3. I s o p r o t e r e n o l Epinephrine (TMS e t h e r s )
CCI4
4. Dopamine HC1
D 0
5. Amphetamine ( f r e e base and HC1) Methamphetamine HC1 o-Methoxy-methamphetamine HC1 Benzphetamine HC1
D 0
6. F i v e dimethoxyamphetamines ( f r e e bases)
CDCI3
77
7. E i g h t e e n a r y l - s u b s t i t u t e d amphetamines ( f r e e bases) Nine a r y l - s u b s t i t u t e d amphetamines (HC1 s a l t s )
CDCI3
78
73
75
2
55
2
76
79
8. N - I s o p r o p y l - p - n i t r o p h e n y l e t h y l amine 9. Amphetamine
(free
base)
10. E l e v e n a d r e n e r g i c agents (HC1 s a l t s )
(HO)\^AH Ν Figure 4.
CDCI3
80
D 0
81
2
Ar
Ar
I
74
(HO)^P^H (CHJ
(HO}^P^H Η HI
Newman projections of the major conformations of phenylethylamines
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
21.
GRUNEWALD E T A L .
Analogs
of
Methamphetamine
451
between t h e a r o m a t i c r i n g and t h e n i t r o g e n atom; f u r t h e r , i n compounds b e a r i n g a hydroxy1 group on C-2, I I I w i l l have t h e oxygen atom a n t i p e r i p l a n a r with respect to the nitrogen atom, w h i l e f o r amphetamines, I I I w i l l i n d i c a t e t h a t t h e C - l methyl group i s a l s o gauche w i t h respect t o the aromatic r i n g . Hyne (73) i n v e s t i g a t e d t h e c o n f o r m a t i o n s o f e p h e d r i n e and pseudoephedrine as t h e f r e e bases i n d e u t e r i o c h l o r o f o r m (CDCI3). For ephedrine, the r a t i o o f c o n f o r m a t i o n s I_ ΓΙ and I I I was found t o be 40:40: 20, w h i l e f o r pseudoephedrine t h e r a t i o was 62:30:8. P o r t o g h e s e (74) s u b s e q u e n t l y r e i n v e s t i g a t e d t h e ephedrines. F o r e p h e d r i n e h y d r o c h l o r i d e i n D 0 , he found 90% o f t h e m a t e r i a l t o be i n c o n f o r m a t i o n s which p e r m i t t e d hydrogen bonding between t h e h y d r o x y l and amino groups (-i.e., 90% i n c o n f o r m a t i o n s ,1 and I I ) ; pseudoephedrine h y d r o c h l o r i d e was r e p o r t e d t o have 84% o f t h e extended c o n f o r m a t i o n !E and 16% gauche c o n f o r mers (ΓΙ and I I I ) . These r e s u l t s a r e a c c o u n t e d f o r by two f a c t o r s . F i r s t , hydrogen bonding i n t e r a c t i o n s f a v o r c o n f o r m a t i o n s I^ and I_I f o r b o t h e p h e d r i n e and pseudoephedrine. S e c o n d l y , t h e methyl s u b s t i t u e n t α t o t h e n i t r o g e n atom causes conformers 1^ and I I t o be s t e r i c a l l y l e s s f a v o r a b l e i n e p h e d r i n e , w h i l e T t makes I I and I I I l e s s f a v o r a b l e i n pseudoephedrine. A l a r g e number o f s u b s t i t u t e d amphetamines have been s t u d i e d by NMR. These r e s u l t s a r e summarized i n T a b l e I I I . I n a l l c a s e s , t h e extended c o n f o r m a t i o n (.1) predominated, making up 47-76% o f t h e conformer population. Conformer I_I, i n which t h e m e t h y l group on C - l i s d i r e c t e d away from t h e p h e n y l r i n g , i s a l s o p r e s e n t t o a s i g n i f i c a n t e x t e n t i n a l l c a s e s , making up 21-45% o f t h e sample. C o n f o r m a t i o n I I I , i n which the a r o m a t i c r i n g has gauche i n t e r a c t i o n s w i t h b o t h the m e t h y l group and t h e n i t r o g e n atom, makes up t h e r e m a i n i n g 0-12%. R e s u l t s f o r a v a r i e t y o f o t h e r a d r e n e r g i c agents have been c o m p i l e d i n T a b l e IV. As was t h e case f o r the amphetamines, t h e extended c o n f o r m a t i o n i s by f a r t h e predominant one, w i t h conformer ICI making a sub s t a n t i a l c o n t r i b u t i o n i n compounds b e a r i n g a h y d r o x y l group on C-2. The n o t a b l e e x c e p t i o n i s dopamine h y d r o c h l o r i d e , i n which 43% o f t h e extended c o n f o r m a t i o n and 57% o f t h e gauche c o n f o r m a t i o n were o b s e r v e d . In g e n e r a l , NMR experiments have been i n agreement with molecular o r b i t a l c a l c u l a t i o n s . Both extended and gauche conformers a r e u s u a l l y p r e s e n t t o a s i g n i f i c a n t e x t e n t , w i t h t h e extended conformer p r e d o m i n a t i n g . Again, the evidence a v a i l a b l e i s not s u f f i c i e n t t o f
2
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
/
/
2
2
2
2
3
3
3
3
3
3
2
3
2
2
3
3
HC1 HC1 HC1 HC1 HC1 HC1 HC1 fb
2
2,3-(OCH ) 2,4-(OCH ) 2,5-(OCH ) 3,4-(OCH ) 3,5-(OCH ) 2, 3,4-(OCH )3 3 4 5-(OCH )3
3
11. 12. 13. 14. 15. 16. 17. 18.
/
3
3
CH CH3 CH3, CH2C6H5 fb fb fb fb fb
3
fb HC1 HC1 HC1 HC1
Salt
2,3-(OCH )2 2,4-(OCH ) 2 5-(OCH3)2 3,4-(OCH ) 3,5-(OCH )
2-OCH
N-Alkyl
6. 7. 8. 9. 10.
1. 2. 3. 4. 5.
Aromatic Substitution a
CDCI3 CDCI3 CDCI3 CDCI3 CDCI3 CDCI3 CDCI3 CDCI3
CDCI3 CDCI3 CDCI3 CDCI3 CDCI3
2
2
D2O D2O D 0 D2O D 0
Solvent
68 66 65 76 75 65 72 72
67 62 64 64 65
50 50 55 47 64
32 34 35 23 25 35 28 28
21 26 24 25 23
39 45 39 36 35
78 78 78 78 78 78 78 80
77 77 77 77 77 12 12 12 11 12 0 0 0 1 0 0 0 0
76 76 76 76 76
Reference
11 5 6 17 1
Ratio of conformers^ I : II : III
T a b l e I I I . Amphetamine conformer d i s t r i b u t i o n s as d e t e r m i n e d by N.MR. (a) f b = f r e e base. (b) See F i g u r e 4 and t h e t e x t f o r c o n v e n t i o n s used i n s p e c i f y i n g conformations,
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
0
0
3 9 4 21
10 0 f
16
7 9 — 79 — 72
81 81 96
2
D 0 2
D 0 2
D 0 2
D 0 2
D2O D 0 2
D 0 2
D 0
HC1 HC1 HC1 HC1 HC1 HC1 HC1 HC1
8. P h e n y l e t h a n o l a m i n e
9. P h e n y l e p h r i n e
10. S y n e p h r i n e 11. N,N-Dimethyl-o-bromophenylethanolamine
12. N o r e p h e d r i n e
13. M e t a r a m i n o l
14. B u t a n e p h r i n e
15. P h e n y l e t h y l a m i n e
56
6
10 84
D 0
HC1
7. I s o p r o t e r e n o l
2
6
11 83
2
f
28 e
21
6
17
77
D 0
HC1
6. E p i n e p h r i n e
f
10
14
76
D2O
HC1
2
44
57
43
D 0
81
81
81
81
81
81
81
81
81
81
81
79
55 d
HC1
75 d
30
70
CCI4
fb
75
d
50
50
CCI4
fb
5. N o r e p i n e p h r i n e
4. N-Isopropyl-£-nitrophenylethylamine
3. Dopamine
2. E p i n e p h r i n e
1. I s o p r o t e r e n o l
b
T a b l e IV. NMR c o n f o r m a t i o n a l a n a l y s i s o f some p h e n y l e t h y l a m i n e s . (a) f b = f r e e base. (b) See F i g u r e 4 and t h e t e x t f o r c o n v e n t i o n s used i n s p e c i f y i n g c o n f o r m a t i o n . (c) Determined as t h e TMS e t h e r , (d) Sum o f conformers I I and I I I . (e) I I and I l l are e q u i v a l e n t ; sum o f I I and I I I . (f) Sum o f c o n f o r m e r s I_ and I I . Ratio of conformers Ref. I : II : III Compound Salta Solvent
i'
1
>»
•
6
Î
0 w
to
COMPUTER-ASSISTED DRUG DESIGN
454 a s s e s s which c o n f o r m a t i o n
is biologically
active.
C o n f o r m a t i o n a l l y - R e s t r i c t e d Analogs. In p r e p a r i n g c o n f o r m a t i o n a l l y - r e s t r i c t e d analogs of a b i o l o g i c a l l y a c t i v e s u b s t a n c e , the e s s e n t i a l s t r u c t u r a l f e a t u r e s o f the a g o n i s t a r e b u i l t i n t o a m o l e c u l a r framework which has l i m i t e d c o n f o r m a t i o n a l m o b i l i t y . With t h i s approach i t i s no l o n g e r n e c e s s a r y t o assume t h a t a p r e d o m i n a t i n g c o n f o r m a t i o n i s a c t i v e , s i n c e the conf o r m a t i o n o f the message m o l e c u l e i s r e s t r i c t e d . When a c o n f o r m a t i o n a l l y - r e s t r i c t e d a n a l o g e x h i b i t s an a c t i v i t y , the c o n f o r m a t i o n a l possibilités r e s p o n s i b l e f o r t h a t a c t i v i t y are w e l l d e f i n e d . Unfortunately, the c o n v e r s e i s not t r u e — when such a n a l o g s a r e i n a c t i v e , t h e r e may be a number o f r e a s o n s o t h e r than i n c o r r e c t conformation. The e x t r a atoms n e c e s s a r y t o make the m o l e c u l e l e s s f l e x i b l e may s t e r i c a l l y i n t e r f e r e w i t h the d r u g - r e c e p t o r r e c o g n i t i o n p r o c e s s . In a d d i t i o n , the e x t r a atoms may a l t e r a b s o r p t i o n , t i s s u e d i s t r i b u t i o n , m e t a b o l i s m and o t h e r c e l l u l a r p r o c e s s e s . The i d e a l c o n f o r m a t i o n a l l y - r e s t r i c t e d a n a l o g s h o u l d p r o v i d e w e l l - d e f i n e d and u n d i s t o r t e d geometry w i t h as few e x t r a atoms as p o s s i b l e . Although a p l e t h o r a of r i g i d and s e m i - r i g i d a n a l o g s o f a d r e n e r g i c agents has appeared i n r e c e n t y e a r s , few have approached t h i s i d e a l ; most have shown l i t t l e o r no b i o l o g i c a l a c t i v i t y e x c e p t a t h i g h c o n c e n t r a t i o n s , and few show pronounced c o n f o r m a t i o n a l s e l e c t i v i t y . Comparisons a r e o f t e n d i f f i c u l t because t h e p h a r m a c o l o g i c a l t e s t i n g performed on t h e s e compounds ranges from s i m p l i s t i c to h i g h l y s o p h i s t i c a t e d . Some compounds would be e x p e c t e d t o show d i r e c t a c t i v i t y ( r e c e p t o r a c t i v a t i o n ) , some i n d i r e c t a c t i v i t y ( r e l e a s e o f n e u r o t r a n s m i t t e r ) , and some might have b o t h k i n d s o f a c t i v i t y . Table V i s a c o m p i l a t i o n o f t h e s e r i n g systems and t h e i r a p p l i cations. A d e t a i l e d r e v i e w i s beyond the scope o f t h i s d i s c u s s i o n , but some comments on the a n a l o g s o f amphetamine a r e p e r t i n e n t . Smissman and coworkers p r e p a r e d a l a r g e number o f t r a n s - d e c a l i n compounds (82-90). The t r a n s - d e c a l i n system i s r e a s o n a b l y r i g i d and may be e x p e c t e d t o p r o v i d e n e a r l y i d e a l d i h e d r a l a n g l e s ; however, the v e r y l a r g e number o f e x t r a atoms makes t h e s e compounds h i g h l y l i p o p h i l i c and c r e a t e s a g r e a t d e a l o f s t e r i c b u l k . The d e c a l i n amphetamine a n a l o g s ( s k e l e t o n 1 i n T a b l e V) were t e s t e d f o r t h e i r e f f e c t on motor a c t i v i t y (06), s i n c e amphetamine i t s e l f i s known t o i n c r e a s e motor activity. P a r a d o x i c a l l y , a l l f o u r compounds d e c r e a s e d motor a c t i v i t y . In a d d i t i o n , the extended conformer caused l a c h r y m a t i o n . L a t e r s t u d i e s (87,88,89) on
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
GRUNEWALD E T A L .
Analogs
of
Methamphetamine
455
T a b l e V. R i n g systems w h i c h have been u t l i z e d i n p r e p a r i n g c o n f o r m a t i o n a l l y - r e s t r i c t e d analogs of adrenergic agents.
S t r u c t u r a l Skeleton
Analogs
Number o f o f ; e x t r a atoms
Ref.
Ar , . Norephedrine ( On ; Anphetamine r*NHR Dopamine trans-decalin Norepinephrine
7-8
8290
Ph OH
Phenylethanol- 7 amine
91
Norephedrine Amphetamine
92 93
Amphetamine
94
•Mi'
trans-decahvdrnquinoline f
octahydrophenanthrene
'h NHR cyclohexane
HO. Norephedrine Norepinephrine
2-3
95, 96, 97
N-Isopropylnorephedrine
7
98
benzocycloheptene
-(CH )g. 2
[10]-paracyclophane
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COMPUTER-ASSISTED
456
Table V
(cont'd.)
Ephedrine Isoproterenol
(0H)
DRUG DESIGN
I
2
1-2
99
NHR
R' chromane
8.
OH 100, 101
N-Methyldopamine
HO
NH
octahydrobenzo[f1quinoline
9-
(OH)
OCX 2
NHR £ t 2-aminotetralin R ^
102119
Phenylethylamine Dopamine Norepinephrine Epinephrine
NH
11.
Norephedrine Dopamine Norepinephrine Epinephrine
1
106 120127
tetrahydroisoquinoline R'
(OH),
NHR
Norephedrine Amphetamine Dopamine
103, 105, 123, 128130
2 - aminoindane Ph
12.
Amphetamine
NH
0
2
cyclopropane
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
129, 131133
21.
Analogs
GRUNEWALD E T A L .
Table V
Hi
(OH)
lk.
457
Methamphetamine
(cont'd.)
13.
NH
of
Norephedrine Amphetamine Dopamine Metaraminol
1-2
130, 132, 134, 135
Ephedrine
1
136
2
cyclobutane Ph / HN
~"Ύ\ u
OH R azetidine
Phenylethanolamine
15. NHR
Amphetamine Methamphet amine
137140
Amphetamine Methamphet-
130, 141144
benzonorbornene
16. NHR
a
m
i
n
e
b e n z o b i c y c l o [ 2 . 2 .2]]octene
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COMPUTER-ASSISTED
458
DRUG DESIGN
i n h i b i t i o n o f dopamine uptake i n t o s t r i a t a l t i s s u e showed t h a t a gauche conformer (a-amino, e-phenyl) was c o n s i d e r a b l y more p o t e n t than t h e o t h e r t h r e e i s o m e r s . B l o c k a d e o f t h e uptake o f b i o g e n i c amines i n t o p l a t e l e t s by t h e f o u r amphetamine conformers showed l i t t l e s e l e c t i v i t y (the l e a s t p o t e n t isomer b e i n g 60% as e f f e c t i v e as t h e most p o t e n t ) . Amphetamine a n a l o g s i n s k e l e t o n 3 (£2,93) showed no amphetamine-like b e h a v i o r a l e f f e c t s and no amphetamine-like hyperthermia i n animals. This skeleton i s r i g i d , but shows some d i s t o r t i o n s from normal bond a n g l e s f o r a n t i p e r i p l a n a r and gauche c o n f o r m a t i o n s . S k e l e t o n s 4, 5, 7-11 13 and 14 have v a r y i n g degrees of c o n f o r m a t i o n a l f l e x i b i l i t y which make any c o n f o r m a t i o n - a c t i v i t y r e l a t i o n s h i p s d i f f i c u l t , i f not impossible, to obtain. S k e l e t o n 6 does n o t mimic any of t h e low-energy c o n f o r m a t i o n s o f t h e p h e n y l e t h y l amine s k e l e t o n . A l t h o u g h s k e l e t o n 12 has t h e fewest p o s s i b l e number o f e x t r a atoms (one e x t r a f o r a p h e n y l e t h y l a m i n e and none f o r an amphetamine) t h e bond a n g l e s a r e so d i s t o r t e d t h a t an extended c o n f o r m a t i o n cannot be a c h i e v e d by t h e t r a n s - s u b s t i t u t e d c y c l o p r o p y l system and a gauche conformer cannot be approximated (the c i s - i s o m e r i s a c t u a l l y an e c l i p s e d c o n f o r m e r ) . f
Choice of a Conformationally-Defined Analog In our s e a r c h f o r t h e most s u i t a b l e system f o r the s t u d y o f sympathomimetic amines, we chose i n i t i a l l y t o l o o k a t a system w i t h t h e minimum o f s y n t h e t i c problems i n o b t a i n i n g s u i t a b l e q u a n t i t i e s f o r i n i t i a l pharmacol o g i c a l evaluation. To t h i s end we chose t o l o o k a t amphetamine a n a l o g s , w i t h the u l t i m a t e aim o f a d d i n g t h e 3 - h y d r o x y l and c a t e c h o l h y d r o x y l s t o produce t h e c a t e c h o l a m i n e s . We f e l t t h a t i t was e s s e n t i a l t h a t the system chosen have a minimum number o f " e x t r a " atoms n o t p r e s e n t i n amphetamine (or i t s N-methyl d e r i v a t i v e , methamphetamine). I t was a l s o n e c e s s a r y t h a t the system n o t be h i g h l y s t r a i n e d and t h a t the bond a n g l e s and bond l e n g t h s found i n the low-energy c o n f o r m a t i o n s o f amphetamine be v e r y c l o s e l y a p p r o x i mated i n t h e c o n f o r m a t i o n a l l y - d e f i n e d model. I t was d e s i r e d t h a t any system chosen would show s i m i l a r p h y s i c a l p r o p e r t i e s t o t h o s e o f amphetamine — lipop h i l i c i t y ( p a r t i t i o n c o e f f i c i e n t ) , pKa and charge distribution in particular. Examination of these p o i n t s suggested s k e l e t o n s 15 and 16 o f T a b l e V. S i n c e the b e n z o b i c y c l o [ 2 . 2 . 1 ] heptene a n a l o g s ( s k e l e t o n 15) a r e c o n s i d e r a b l y more s t r a i n e d than t h e b e n z o b i c y c l o [ 2 . 2 . 2 ] o c t e n e ( s k e l e t o n
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
21.
GRUNEWALD E T A L .
Analogs
of
Methamphetamine
459
16), t h e l a t t e r was chosen f o r o u r i n i t i a l s t u d y . However, d e r i v a t i v e s o f s k e l e t o n 15 and i t s oxob r i d g e d a n a l o g , were a l s o p l a n n e d (see F i g u r e 7 ) . F i g u r e s 5 and 6 show t h e r e l a t i o n s h i p o f t h e methamphetamine o r amphetamine a n a l o g s i n s k e l e t o n 16 t o amphetamine and methamphetamine. The b e n z o b i c y c l o [ 2 . 2 . 2 ] o c t e n e system has o n l y t h r e e " e x t r a " atoms and thus appeared t o have a number o f advantages o v e r t h e o t h e r systems i n T a b l e V and F i g u r e 7. F i r s t , t h e two low-energy c o n f o r m a t i o n s o f the p h e n y l e t h y l a m i n e s c a n be c l e a r l y f i x e d (the systems a r e almost c o m p l e t e l y r i g i d , i n c o n t r a s t t o t h e more e x t e n s i v e l y - s t u d i e d systems l i k e s k e l e t o n s 9 and 13 o f Table V). Second, m o l e c u l a r models show t h e r e i s minimal d i s t o r t i o n i n bond a n g l e s o r bond l e n g t h s from t h o s e i n t h e m o b i l e system, amphetamine. T h i s i s n o t so f o r systems I I I - V I I I o f F i g u r e 7. T h i r d , a r e l a t i v e l y s i m p l e s y n t h e t i c p r o c e d u r e would a f f o r d b o t h the endo- and exp-isomers o f amphetamine (NH-N and NHX) o r methamphetamine (NM-N and NM-X) so t h e system c o u l d be e v a l u a t e d by x - r a y c r y s t a l l o g r a p h y t o d e t e r mine t h e p r e c i s e bond a n g l e s and bond l e n g t h s i n comparison t o t h o s e o f t h e m o b i l e (amphetamine) system. U s i n g t h e atomic c o o r d i n a t e s o f t h e x - r a y s t u d y , m o l e c u l a r o r b i t a l c a l c u l a t i o n s c o u l d be c a r r i e d o u t t o compare t h e r i g i d system w i t h t h e m o b i l e system (/i.e., charge d i s t r i b u t i o n s ) . And, most i m p o r t a n t l y , i t c o u l d be e v a l u a t e d p h a r m a c o l o g i c a l l y i n comparison w i t h t h e m o b i l e drug t o see i f c o n f o r m a t i o n a l d i f f e r e n c e s i n a c t i v i t y were p r e s e n t . Any d i f f e r e n c e s c o u l d then be i n t e r p r e t e d i n terms o f p r e c i s e c o n f o r m a t i o n a l arguments. To date t h e b e n z o b i c y c l o [ 2 . 2 . 2 ] o c t e n e system has l i v e d up t o i t s e x p e c t a t i o n s . I n t h e r e m a i n i n g p a r t o f t h i s d i s c u s s i o n we w i l l a d d r e s s the above p o i n t s . E v a l u a t i o n o f Some B i c y c l i c Systems as Conformationally-Defined Phenylethylamines. X-Ray Crystallography. Perhaps t h e u l t i m a t e t e s t o f t h e s u i t a b i l i t y o f a chemical s t r u c t u r e f o r preparing c o n f o r m a t i o n a l l y - d e f i n e d a n a l o g s would be t h e i r a b i l i t y t o produce b i o l o g i c a l e f f e c t s i d e n t i c a l t o t h o s e o f t h e p a r e n t compound. S i n c e t h i s i d e a l i s r a r e l y a c h i e v e d , and s i n c e a "wrong" conformer s h o u l d be i n a c t i v e , i t i s u s e f u l t o have o t h e r c r i t e r i a w i t h which t o e v a l u a t e t h e s e systems. The b i c y c l i c molec u l e s t o be examined i n t h e p r e s e n t s t u d y a r e compounds I - V I I I ( F i g u r e 7 ) , b e n z o b i c y c l o [ 2 . 2 . 2 ] o c t e n e s , benzob i c y c l o [2.2.1]heptenes, and 1 , 2 , 3 , 4 - t e t r a h y d r o - l , 4 epoxynaphthalenes. A number o f s t r u c t u r a l parameters
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COMPUTER-ASSISTED DRUG DESIGN
460
Ο
NH
2
r CH ,HMi
3
'gauche' amphetamine
'anti' amphetamine
o
NHR
Η
exo-analog NH-X (R = H) NM-X (R=CH ) 3
NHR endo-analog NH-N
(R=H)
NM-N (R=CH ) 3
Figure 5. Relationship of the exo- and endo-2-amino- and 2-methylaminobenzobicyclo[2.2.2]octenes to the two low energy conformations of amphetamine and methamphetamine. The abbreviations shown for the conformational^ defined analogs are used throughout the text.
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
GRUNEWALD E T A L .
Analogs
of
Methamphetamine
461
€13
Figure 6. ORTEP drawings of (a) amphetamine (146) drawn in the same perspective as that for (b) 2-methylaminobenzobicyclo[ 2.2.2 Joctene ( exo-isomer NM-X) and (c) endo-isomer NM-N (145).
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COMPUTER-ASSISTED DRUG DESIGN
462
ο 0
VII(OH-X) Figure 7.
"
1
Γ1
'2
VIII(OH-N)
Conformationally defined analogs of phenylethylamines (see text)
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
21.
GRUNEWALD E T A L .
Analogs of Methamphetamine
463
( d i h e d r a l a n g l e s , bond a n g l e s and i n t e r a t o m i c d i s t a n c e s ) can be determined f o r t h e s e b i c y c l i c p h e n y l e t h y l a m i n e a n a l o g s s i n c e t h e carbon s k e l e t o n s o f t h e s e compounds have almost no f l e x i b i l i t y . These s t r u c t u r a l parameters can be compared w i t h t h e c o r r e s p o n d i n g v a l u e s d e r i v e d from x - r a y s t r u c t u r e d e t e r m i n a t i o n s and molecular o r b i t a l c a l c u l a t i o n s of phenylethylamines. The d i h e d r a l a n g l e s τ.^, T , ' , T and τ ~ ( i l l u s t r a t e d on s t r u c t u r e s I - I V o f F i g u r e 7j c o r r e s p o n d t o t h o s e i n F i g u r e 2. The s i g n i f i c a n t bond a n g l e s ( 9 w 0 ^ and θ ) a r e d e f i n e d i n s t r u c t u r e s V-VII o f F i g u r e 7. I n t e r a t o m i c d i s t a n c e s between f u n c t i o n a l groups p r o v i d e a measure o f how a c c u r a t e l y t h e r i g i d s t r u c t u r e s approximate t h e s p a t i a l placement o f t h e s e groups as o b s e r v e d i n c o n f o r m a t i o n a l l y - m o b i l e p h e n y l ethylamines. The f u n c t i o n a l groups o f i n t e r e s t (shown on s t r u c t u r e V I I I ) i n c l u d e t h e n i t r o g e n atom, t h e oxygen atom on C-2, t h e a r o m a t i c oxygen s u b s t i t u e n t s and t h e a r o m a t i c r i n g . Determination o f these d i s t a n c e s and a n g l e s was based on x - r a y s t r u c t u r e d e t e r m i n a t i o n s o f compounds h a v i n g t h e b e n z o b i c y c l o [2.2.2]octene (145) o r b e n z o b i c y c l o [ 2 . 2 . 1 ] h e p t e n e (147) r i n g systems. Where n e c e s s a r y , e x t r a atoms were added, u s i n g s t a n d a r d bond l e n g t h s and a n g l e s (44). These c a l c u l a t i o n s were c a r r i e d o u t w i t h t h e computer programs QCLM/ICOORD and QCLM/COORD (made a v a i l a b l e t o us by t h e Quantum C h e m i s t r y Group a t t h e U n i v e r s i t y o f Kansas) which c a l c u l a t e bond l e n g t h s , bond a n g l e s , d i h e d r a l a n g l e s and i n t e r a t o m i c d i s t a n c e s from atomic coordinates. The p o s i t i o n o f t h e a r o m a t i c r i n g was r e p r e s e n t e d by t h e c e n t e r o f t h e r i n g (CR), which was d e t e r m i n e d by a v e r a g i n g t h e c o o r d i n a t e s o f t h e s i x carbon atoms which make up t h e r i n g . 2
f
2
The x - r a y s t r u c t u r e d e t e r m i n a t i o n s o f exo- and endo-2-methylamino-1,2,3,4-tetrahydro-l,4-ethanonapht h a l e n e h y d r o c h l o r i d e s (145) s e r v e d as t h e b a s i s f o r c a l c u l a t i o n s o f t h e b e n z o b i c y c l o [ 2 . 2 . 2 ] o c t e n e compounds (NM-X and NM-N). The b e n z o b i c y c l o [ 2 . 2 . 1 ] h e p t e n e and 1 , 2 , 3 , 4 - t e t r a h y d r o - l ,4-epoxynaphthalene systems were c o n s t r u c t e d from t h e c o o r d i n a t e d a t a f o r b e n z o b i c y c l o [ 2 . 2 . 1 ] h e p t e n e s y n - and - a n t i - b r o m o b e n z e n e s u l f o n a t e s (147). Positions f o r t h e exo and endo amino groups were s e l e c t e d by u s i n g a s t a n d a r d C-N bond l e n g t h w i t h t h e bond a n g l e s and d i h e d r a l a n g l e s c a l c u l a t e d from a c r y s t a l l o g r a p h i c study o f 2-exo-aminonorbornane-2-carboxylic a c i d (148). The d i h e d r a l a n g l e τ , d e s c r i b e s t h e r o t a t i o n o f the a r o m a t i c r i n g w i t h r e s p e c t t o t h e e t h y l a m i n e s i d e c h a i n (see F i g u r e s 2 and 7 ) . Compared w i t h v a l u e s found i n x - r a y s t u d i e s and m o l e c u l a r o r b i t a l c a l c u l a -
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COMPUTER-ASSISTED
464
DRUG DESIGN
t i o n s , t h e benzobicyclo[2.2·1] compounds p r o v i d e a b e t t e r a p p r o x i m a t i o n o f t h i s a n g l e than do the benzo b i c y c l o [2.2.2] compounds. T h i s i s r e p r e s e n t e d g r a p h i c a l l y i n F i g u r e 8. V a l u e s o f τ, o b s e r v e d i n x - r a y s t u d i e s (see above) a r e d e p i c t e d a l o n g w i t h the r e s u l t p r e d i c t e d by m o l e c u l a r o r b i t a l (see T a b l e VII) c a l c u l a t i o n s (90°). Compounds I I I - V I I I form an a n g l e o f 6 9 ° , w h i l e t h e b i c y c l o [ 2 . 2 . 2 ] compounds form a 60° d i h e d r a l angle. The comparison of τ v a l u e s may be d i v i d e d i n t o two groups: t h o s e f o r extended conformers ( τ = 180°) and t h o s e f o r gauche conformers ( τ = 6 0 ° ) . Both groups a r e d e p i c t e d i n F i g u r e 9. The a n a l o g s h a v i n g an extended c o n f o r m a t i o n a l l g i v e τ v a l u e s w e l l w i t h i n t h e range o f o b s e r v e d v a l u e s f o r extended phenylethylamines: the exo-benzobicyclo[2.2.2]octene isomer g i v e s a n e a r l y i d e a l τ d i h e d r a l a n g l e (179°); the exo-[2.2.1] compounds a r e n e a r l y as good (176°) , w h i l e the a n t i - [ 2 . 2 . 1 ] compound forms an a n g l e o f 168°. The gauche conformers a r e more d i f f i c u l t t o e v a l u a t e , s i n c e observed τ values are a v a i l a b l e f o r only three gauche p h e n y l e t h y l a m i n e s . A l l four conformationallyd e f i n e d s t r u c t u r e s a r e w i t h i n 10° o f the o b s e r v e d and c a l c u l a t e d v a l u e s , as i l l u s t r a t e d i n F i g u r e 9. The endo- [2.2.1] s t r u c t u r e ( τ = 59°) most n e a r l y approximates t h e p r e d i c t e d v a l u e o f 60°. The endo[2.2.2] and syn-[2.2.1] compounds form a n g l e s o f 69° and 70°, r e s p e c t i v e l y . B u i l d i n g the C-2 oxygen atom i n t o t h e b i c y c l o [2.2.1] r i n g system s e r i o u s l y d i s t o r t s τ ~ , the O-C-C-N d i h e d r a l a n g l e . As shown i n F i g u r e 10, t h e benzo b i c y c l o [2 . 2 . 2 ] o c t e n e s p r o v i d e e x c e l l e n t v a l u e s f o r ~ (endo, 59°; exo, 56°), but V I I forms an 83° a n g l e . The endo isomer V I I I , which approximates an a n t i p e r i p l a n a r arrangement o f t h e oxygen and n i t r o g e n atoms, forms an a n g l e o f 160°, compared t o a p r e d i c t e d a n g l e o f 180°. The bond a n g l e s θ , , Θ , and θ p r o v i d e an i n d i c a t i o n o f t h e amount or r i n g s t r a i n i n the b i c y c l i c ring structures. I d e a l l y , Θ, and θ, s h o u l d be 120°; i n t h e [2.2.2] r i n g system, t h i s i s d i s t o r t e d by about 7 ° , and i n t h e [2.2.1] s t r u c t u r e s i t i s n e a r l y t w i c e as d i s t o r t e d (by about 1 2 ° ) . The C1 -C2-C1 a n g l e ( θ ) i s w i t h i n t h r e e degrees o f the i d e a l t e t r a h e d r a l a n g l e (109°) f o r compounds I , I I , I I I , IV, V I I and V I I I . ^ _y ~ * a n t i - [2.2.1] s t r u c t u r e s , however, have θ v a l u e s o f 100° and 96°, r e s p e c t i v e l y . The s p a t i a l arrangement o f f u n c t i o n a l groups would appear t o be p a r t i c u l a r l y i m p o r t a n t i n o r d e r f o r conf o r m a t i o n a l l y - r e s t r i c t e d analogs to e x h i b i t b i o l o g i c a l 2
2
2
2
2
2
2
1
2
1
,
2
T
e
s
n
a n
- -Ρ
σ\
I Οο ο Ο Ν ( CDI Η ι rH rH rH
1
g rd
ω
VO
0} ω
VO
VO
CD
VO
VO
rΟ HΗ ιΟ rΟ H
ο
r** ο ο
co
CO
ο ο ο •Η S rH ιΟ -Ρ •Η C M g ΙΟ G ΟUΝ ( -Ρ
σ\ in
I
HI
.1
CO
CO
CO
vo
CO VO
Ο
00
00
rH rH 00
VO
rH CO
00
rH rC M• C M H H rΟ HΟ rH rH Ο rH Ο rH rΟ H ο
rH Ο —
>ι - οI , ο ο eu αίο -Ρ m ο ο I C M G: 2-Ρ Ο ο II U (Π ο
VD
VO
rH
rH
in
C M
H I
Λ
HI
O O C T » C f t C T N C J N O N C T > v o v o v o v o v o v o v o v o
·*
•Η ·Η Ή 00> Γ>· -Γ *» VO **Η ·Η ·Η
G
β ο ο ο I
Ο
Η
Ou ε ο u
> II ω < &
.Η
u
I
G M Μ
> Η
-H
Μ >
G •Η
-Ρ -Ρ Φ
υ
ω
td
Μ-Ι Ο,ΓΗ
u
u SX
ε 3 id
ΐ
Φ
JG
id
G
ο PU i dG Φ
ο 00
G • Η rH
ε —
ω
OJ-H (I)
Χ
00
φ
u as
ο
U-ΡOCΟ N
O
rH r- σ» ο
Γ**
II
(d
Ο Ο «Η Ο
ΟΛ Γ>
00
en
id
en
Η
Λ
•idQ rdιι
11
Η
^
Φ u
ε m
Pu
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
7.66
7.25
6.03
7.66
6.17
7.79
5.03
4.74
3.69
5.03
3.85
5.10
IV
V
VI
VII
VIII
XI
X i ii iii iv
3.89
6.27
6.17
3.85
III
5.18 5.17 5.21 5.12
6.27
3.89
II
IX
7.68
Β
5.07
A
(cont'd.)
I
a
Compound
TABLE VI
4.33 4.33
5.80 4.32 5.80 4.32
5.83 5.83
3.31 3.31 3.72
3.09 3.82 2.85
3.84 5.09 5.52 4.53 5.09 3.84
5.49 5.51 7.15 6.34 7. 23 5.47 5.94 4.65 7.15 6.34 5.49 5.51
5.25 5.93
(a) R e f e r e n c e 38; (b) r e f e r e n c e 146. The a u t h o r s o f t h i s r e f e r e n c e r e p o r t τι v a l u e s o f 7 2 0 , 7 7 0 , 7 0 ° and 83° f o r i - i v , r e s p e c t i v e l y ; (c) r e f e r e n c e 42. The a u t h o r s r e p o r t a τ value of 56°. 2
2.39
5.08 6.02
6.28
3.78
2.87
3.95
5.76 5.54
6.85
2.39
5.08 6.02
6.28
3.78
G
3.01
F
3
5.33
Ε
Distances
6.37 7.38
D
Interatomic
470
C O M P U T E R - A S S I S T E D D R U G DESIGN
N u m b e r of observations
H
ο
Figure 12. Comparison of the distances from the nitrogen to the para-oxygen in some conformationally defined analogs of phenylethylamines with those found from x-ray crystallographic studies reported for phenylethylamines (see text)
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
21.
GRUNEWALD E T A L .
Analogs
of
Methamphetamine
471
e t h y l a m i n e s which have such a c o n f o r m a t i o n i n the c r y s t a l s t r u c t u r e , so comparisons a r e not p o s s i b l e i n this instance. The o b s e r v e d i n t e r a t o m i c d i s t a n c e from t h e c e n t e r of the a r o m a t i c r i n g t o t h e C2-oxygen atom (CR t o C2-0£ ranges from 3.53 t o 3.76 Â, w i t h a mean v a l u e o f 3.68 A. The b e n z o b i c y c l o [ 2 . 2 . 2 ] o c t e n e system g i v e s a r e a s o n a b l y good CR t o C2-0 d i s t a n c e (3.78 A ) . As might be e x p e c t e d , compounds V I I and V I I I , i n which t h e oxygen atom i s b u i l t i n t o a somewhat s t r a i n e d s t r u c t u r e , p r o v i d e a much l e s s a c c u r a t e CR t o C2-0 d i s t a n c e , 3.31 Â. In g e n e r a l , t h e b e n z o b i c y c l o [ 2 . 2 . 2 ] o c t e n e r i n g system a f f o r d s t h e b e s t model o f gauche and extended phenylethylamine conformers. I t s main drawback would appear t o be t h e s l i g h t l y low v a l u e o f τ·^. The exo and e n d o - b e n z o b i c y c l o [ 2 . 2 . 1 ] h e p t e n e s ( s t r u c t u r e s I I I and IV)and t h e 1,2,3,4-tetrahydro-l,4-epoxynaphthalenes (VII and V I I I ) p r o v i d e m o d e r a t e l y good a p p r o x i m a t i o n s of p h e n y l e t h y l a m i n e c o n f o r m a t i o n s , a l t h o u g h t h e p l a c e ment o f t h e C2-oxygen atom i s somewhat d i s t o r t e d i n s t r u c t u r e s V I I and V I I I . The s y n - and a n t i - b e n z o b i c y c l o [ 2 . 2 . 1 ] h e p t e n e s (V and VI) seem t o be t h e l e a s t s u i t a b l e o f the s t r u c t u r e s s t u d i e d ; d i h e d r a l a n g l e s , bond a n g l e s and i n t e r a t o m i c d i s t a n c e s d i f f e r s u b s t a n t i a l l y from p r e d i c t e d and o b s e r v e d v a l u e s . A l l t h i n g s c o n s i d e r e d , the b e s t systems appear t o be I and I I (NM-X and NM-N f o r methamphetamine a n a l o g s ) . E v a l u a t i o n o f Some B i c y c l i c Systems as Conformationally-Defined Phenylethylamines. CNDO/2 C a l c u l a t i o n s on Amphetamines. Quantum m e c h a n i c a l s t u d i e s on p h e n y l e t h y l a m i n e and amphetamine have been c a r r i e d o u t p r e v i o u s l y by Pullman and coworkers (59,67) u s i n g b o t h t h e s e m i - e m p i r i c a l PCILO and an ab i n i t i o method, and by H a l l and coworkers (71) u s i n g an ab i n i t i o method. The r e s u l t s o f t h e s e two groups were quite simi1ar. Our aim b e i n g t o i n v e s t i g a t e b o t h t h e energy d i f f e r e n c e s and t h e charge d i s t r i b u t i o n s o f a v a r i e t y of p h e n y l e t h y l a m i n e s , we chose the CNDO/2 method o f P o p l e kown In VIQUKZ 13, not TlguKo, 2 ) : 5
z
and τ 7 ( C - N C -C ) ? (The uèual c o n v e n t i o n f o r t o r s i o n a n g l e s was f o l l o w e d : t h u s , τ, i s t h e a n g l e between t h e p l a n e s t h r o u g h C.C C ana C C C . The a n g l e i s p o s i t i v e f o r c l o c k w i s e r o t a t i o n s about 6 ~ 7 l o o k i n g from C t o C-). When Ν i s u n s u b s t i t u t e d , thé energy i s n e a r l y indépendent o f τ- (71.) / and so i t i s ignored. When " 2 5 ( 9 1 3 ) , τ - must be chosen with care, but reasonable values f o r are readily found from an e x a m i n a t i o n o f m o l e c u l a r models, and were v e r i f i e d by a m i n i m a l number o f t r i a l c a l c u l a t i o n s . Energy s u r f a c e s f o r amphetamine and N-ethylamphetamine have been p l o t t e d i n t h e c o n v e n t i o n a l way as f u n c t i o n s o f τ, and τ ( F i g u r e s 14 and 15). I n a d d i t i o n , t h e v a r i a t i o n o f t h e energy s u r f a c e o f Nethylamphetamine as a f u n c t i o n o f τ and τ i s presented (Figure 16). Because o f t h e r i n g symmetry, t h e maps o f amphet amine and N-ethylamphetamine ( F i g u r e s 14 and 15) a r e p e r i o d i c i n T ^ , w i t h p e r i o d 180°. The energy map o f amphetamine i s p r e s e n t e d i n F i g u r e 14. R o t a t i o n s were c a r r i e d o u t about τ, and τ i n a p p r o x i m a t e l y 30° i n c r e m e n t s , p o i n t s b e i n g added t o t h e b a s i c g r i d where i t was thought n e c e s s a r y , p a r t i c u l a r l y i n t h e a r e a 80°