4th (2013) Sino-Australian Symposium on ... - ACS Publications

Nov 25, 2013 - This article is part of the 4th (2013) Sino-Australian Symposium on Advanced Coal and Biomass Utilisation Technologies special issue. N...
0 downloads 0 Views 145KB Size
Editorial pubs.acs.org/EF

4th (2013) Sino-Australian Symposium on Advanced Coal and Biomass Utilisation Technologies Oxy-fuel. This special section publishes four papers on oxyfuel technology. Spörl et al.16 (10.1021/ef4014604) evaluate key process parameters that influence the Hg emissions of an oxy-fuel combustion process using a 20 kW once-through combustion rig. Chen et al.17 (10.1021/ef401527g) compare the evolution of particle size during pulverized coal combustion in O2/CO2 and O2/N2 atmospheres. Zhan et al.18 (10.1021/ ef4014899) report the development of an innovative temperature-controlled ash deposition probe system for oxy-coal combustion. Li et al.19 (10.1021/ef401499g) present a mathematical model of oxy-fuel combustion in a refractorylined down-flame furnace. Chemical Looping. There are four papers on chemical looping technology. The two papers by Song et al.20,21 (10.1021/ef401485p and 10.1021/ef401487x) report the development and kinetic analysis of CuO/SiO2 oxygen carriers that are potentially long-term stable for chemical looping air separation. Huang et al.22 (10.1021/ef401528k) present a fundamental study into chemical looping gasification of biochar using NiO-modified iron ore as an oxygen carrier. Zhang et al.23 (10.1021/ef4015718) introduce a novel method combining chemical looping combustion and Hg continuous emissions monitor for measuring the Hg concentration in fuel gas. Ash-Related Issues. Wu et al.24 (10.1021/ef4015108) present a detailed chemical kinetic model for KCl sulfation in a combustion atmosphere, considering various sulfate additives. Wang et al.25 (10.1021/ef401521c) evaluate the effects of sewage sludge, marble sludge, and clay sludge as additives in abating sintering of biomass ash. Li et al.26 (10.1021/ ef401530a) investigate the dynamic ash deposition process during the combustion of various biomass fuels in a 25 kW onedimensional down-fired furnace. Pyrolysis. In this special section, Kan et al.27 (10.1021/ ef401511u) report the distribution and properties of products from the catalytic pyrolysis of coffee grounds using NiCuimpregnated catalysts. Zhang et al.28 (10.1021/ef401546n) discuss a new fixed-bed coal pyrolysis reactor with designed internals for enhanced performance. Yu et al.29 (10.1021/ ef401483u) show that impregnation of NaCl or MgCl2 can significantly influence the reaction intermediate formation and characteristics during cellulose fast pyrolysis. Wang et al.30 (10.1021/ef401424p) report the effects of various experimental parameters on the yield and properties of coal microwave pyrolysis products. Gasification/Char Reactivity. There are four papers on this topic. Wang et al.31 (10.1021/ef401281h) explore the relationships between the char structure and intrinsic reactivity using deployed Raman spectroscopy. Yang et al.32 (10.1021/ ef401497a) report the gasification behavior of an upgraded

This year (2013) marks the fourth occasion of this series of Sino-Australian Symposia, jointly organized by Huazhong University of Science and Technology (HUST) in China and Curtin University (Curtin) in Australia. As an important platform for research exchange in the field of coal and biomass utilization among Australian, Chinese, and other international researchers, the first symposium,1 second symposium,2 and third symposium3 were held in Wuhan, China, in 2006, 2009, and 2011, respectively. The fourth symposium, also held in Wuhan from December 9 to 11, 2013, has received a large number of invited contributions from over 10 countries and regions. All submissions have been subjected to the journal’s regular and rigorous peer-review process. The high-quality papers that have survived the process are published in this special section, with brief summaries given below. Topic Reviews. Two review papers are included. Hayashi et al.4 (10.1021/ef401617k) discuss the essential considerations in low-temperature gasification of low-rank solid fuels with maximized performance and summarize several gasification reactor configurations for realizing these. Sun and Wang5 (10.1021/ef401426x) offer an overview of the recent advances in synthesizing nanocarbon-based photocatalysts for converting CO2 to hydrocarbon fuels. Chemical Reactions in Fuel Utilization. There are four papers on this topic. Horton and Klein6 (10.1021/ef401582c) propose a method for estimating reaction rate constants essential to developing molecular-level kinetic models of coal and biomass hydroprocessing. Lane et al. 7 (10.1021/ ef4014983) report the reaction characteristics of both microand macroalgae during combustion under practical conditions. Zhang et al.8 (10.1021/ef401458y) discuss the reaction mechanism governing the coke-depositing behavior on ZSM5 during the catalytic pyrolysis of furan. Liu et al.9 (10.1021/ ef4021153) demonstrate in situ char from coal pyrolysis (without cooling) being more active and effective than ex situ char (after cooling) in tar elimination for syngas cleaning. Hydrothermal Processing. Valdez et al.10 (10.1021/ ef401506u) prove that high yields of biocrude can be produced from the hydrothermal liquefaction of bacteria and yeast. Kudo et al.11 (10.1021/ef401557w) propose to produce substitute natural gas directly from lignin in aqueous alkaline media via catalytic hydrothermal reforming. Zhao et al.12 (10.1021/ ef401439k) explore the fundamental K-catalyzed supercriticalwater (SCW) gasification of formaldehyde. Alternative Fuels. Gong et al.13 (10.1021/ef401500z) report the yields and characteristics of gas, biochar, and bio-oil from the pyrolysis of low-lipid microalgae. Kan et al.14 (10.1021/ef401568s) compare the pyrolysis performance among various algae (freshwater, marine, micro-, and macroalgae) with a focus on the fuel properties of biochar, bio-oil, and biogas. Wang et al.15 (10.1021/ef4012615) propose a novel cracking technology based on bio-oil molecular distillation for producing biogasoline with minimized coke formation. © 2013 American Chemical Society

Special Issue: 4th (2013) Sino-Australian Symposium on Advanced Coal and Biomass Utilisation Technologies Published: November 25, 2013 1

dx.doi.org/10.1021/ef402309y | Energy Fuels 2014, 28, 1−3

Energy & Fuels



Chinese lignite. Meng et al.33 (10.1021/ef401423s) report the properties of chars from low-temperature pyrolysis of two lignite coals. Fernández et al.34 (10.1021/ef401268f) investigate the effect of blending carbon-containing waste with coal on the mineralogy and reactivity of cokes. CO2 Issues. Four papers on this topic are included. Smith et al.35 (10.1021/ef4014746) report the demonstration of a K2CO3-based solvent absorption process for CO2 capture. Yin et al.36 (10.1021/ef401399c) demonstrate a calcium looping process using CaO-based sorbent for CO2 capture, which can operate at high temperatures. Alipour et al.37 (10.1021/ef401541b) evaluate the performance of copper− aluminum oxides as sorbents for air separation at high temperatures. Qin et al.38 (10.1021/ef4012609) report the reactivity, recyclability, and attrition property of CaO-based pellets for calcium-looping-based CO2 capture. Other Topics. Padala et al.39 (10.1021/ef401479s) evaluate the effect of ethanol port-fuel-injector position on dual-fuel combustion in an automotive-size diesel engine. Zhang et al.40 (10.1021/ef401253x) demonstrate an external short-circuitassisted oxygen ionic transport membrane reactor that is highly stable for CO2 reduction coupled with CH4 partial oxidation. Yang et al.41 (10.1021/ef401473w) report the development of an advanced symmetric solid oxide fuel cell with a reducible electrode. Li et al.42 (10.1021/ef4014967) show that it is possible to replace expensive tests using a pilot-scale pulverizedcoal-injection (PCI) rig with cheap lab-scale drop-tube-furnace tests for the evaluation of PCI coals. Mei et al.43 (10.1021/ ef401509e) report the effect of reactant injection velocities on moderate or intense low-oxygen dilution coal combustion. The fourth symposium would not be a success without the strong support by the governments and institutions on both the Australian and Chinese sides. It is a core bilateral collaborative activity between Australian and Chinese researchers, supported by the Australia−China Science and Research Fund through its group mission scheme (funding agreement ACSRF06343). Additionally, this symposium is partially supported by the Ministry of Education and the State Administration of Foreign Experts Affairs in China through the Programme of Introducing Talents of Discipline to Universities (“111” project B06019) of the Chinese government. The fourth symposium is also a continuation of the joint workshops, part of collaborative activities agreed in a memorandum of understanding signed in 2009 between HUST and Curtin. We also acknowledge the partial support provided by Curtin’s School of Chemical and Petroleum Engineering and HUST’s State Key Laboratory of Coal Combustion. Last but not least, we are so grateful to a long list of contributors, including speakers, authors, reviewers, symposium organization team members, and many others who have made various contributions to make this symposium a successful event. The professional assistance from the editorial office of Energy & Fuels has been excellent and enabled the successful publication of this special section.

Editorial

AUTHOR INFORMATION

Notes

Views expressed in this editorial are those of the authors and not necessarily the views of the ACS. The authors declare no competing financial interest.



REFERENCES

(1) Wu, H.; Xu, M. Energy Fuels 2007, 21, 385−386. (2) Wu, H.; Xu, M. Energy Fuels 2009, 24, 1. (3) Wu, H.; Li, C.-Z.; Xu, M. Energy Fuels 2011, 26, 1−3. (4) Hayashi, J.-i.; Kudo, S.; Kim, H.-S.; Norinaga, K.; Matsuoka, K.; Hosokai, S. Energy Fuels 2014, DOI: 10.1021/ef401617k. (5) Sun, H.; Wang, S. Energy Fuels 2014, DOI: 10.1021/ef401426x. (6) Horton, S. R.; Klein, M. T. Energy Fuels 2014, DOI: 10.1021/ ef401582c. (7) Lane, D. J.; Ashman, P. J.; Zevenhoven, M.; Hupa, M.; van Eyk, P. J.; de Nys, R.; Karlström, O.; Lewis, D. M. Energy Fuels 2014, DOI: 10.1021/ef4014983. (8) Zhang, H.; Shao, S.; Xiao, R.; Shen, D.; Zeng, J. Energy Fuels 2014, DOI: 10.1021/ef401458y. (9) Liu, S.; Wang, Y.; Wu, R.; Zeng, X.; Gao, S.; Xu, G. Energy Fuels 2014, DOI: 10.1021/ef4021153. (10) Valdez, P. J.; Nelson, M. C.; Faeth, J. L.; Wang, H. Y.; Lin, X. N.; Savage, P. E. Energy Fuels 2014, DOI: 10.1021/ef401506u. (11) Kudo, S.; Hachiyama, Y.; Takashima, Y.; Tahara, J.; Idesh, S.; Norinaga, K.; Hayashi, J.-i. Energy Fuels 2014, DOI: 10.1021/ ef401557w. (12) Zhao, L.; Zhang, J.; Zhong, H.; Sheng, C.; Ding, Q. Energy Fuels 2014, DOI: 10.1021/ef401439k. (13) Gong, X.; Zhang, B.; Zhang, Y.; Huang, Y.; Xu, M. Energy Fuels 2014, DOI: 10.1021/ef401500z. (14) Kan, T.; Grierson, S.; de Nys, R.; Strezov, V. Energy Fuels 2014, DOI: 10.1021/ef401568s. (15) Wang, S.; Cai, Q.; Wang, X.; Zhang, L.; Wang, Y.; Luo, Z. Energy Fuels 2014, DOI: 10.1021/ef4012615. (16) Spörl, R.; Belo, L.; Shah, K.; Stanger, R.; Giniyatullin, R.; Maier, J.; Wall, T.; Scheffknecht, G. Energy Fuels 2014, DOI: 10.1021/ ef4014604. (17) Chen, Y.; Wang, G.; Sheng, C. Energy Fuels 2014, DOI: 10.1021/ef401527g. (18) Zhan, Z.; Bool, L. E.; Fry, A.; Fan, W.; Xu, M.; Yu, D.; Wendt, J. O. L. Energy Fuels 2014, DOI: 10.1021/ef4014899. (19) Li, Y.; Fan, W.; Guo, Q.; Zhang, X. Energy Fuels 2014, DOI: 10.1021/ef401499g. (20) Song, H.; Shah, K.; Doroodchi, E.; Moghtaderi, B. Energy Fuels 2014, DOI: 10.1021/ef401485p. (21) Song, H.; Shah, K.; Doroodchi, E.; Wall, T.; Moghtaderi, B. Energy Fuels 2014, DOI: 10.1021/ef401487x. (22) Huang, Z.; He, F.; Feng, Y.; Zhao, K.; Zheng, A.; Chang, S.; Wei, G.; Zhao, Z.; Li, H. Energy Fuels 2014, DOI: 10.1021/ef401528k. (23) Zhang, B.; Xu, P.; Ma, J.; Wu, H.; Luo, G.; Xu, M.; Yao, H. Energy Fuels 2014, DOI: 10.1021/ef4015718. (24) Wu, H.; Pedersen, M. N.; Jespersen, J. B.; Aho, M.; Roppo, J.; Frandsen, F. J.; Glarborg, P. Energy Fuels 2014, DOI: 10.1021/ ef4015108. (25) Wang, L.; Skjevrak, G.; Hustad, J. E.; Skreiberg, Ø. Energy Fuels 2014, DOI: 10.1021/ef401521c. (26) Li, G.; Li, S.; Xu, X.; Huang, Q.; Yao, Q. Energy Fuels 2014, DOI: 10.1021/ef401530a. (27) Kan, T.; Strezov, V.; Evans, T. Energy Fuels 2014, DOI: 10.1021/ef401511u. (28) Zhang, C.; Wu, R.; Xu, G. Energy Fuels 2014, DOI: 10.1021/ ef401546n. (29) Yu, Y.; Liu, D.; Wu, H. Energy Fuels 2014, DOI: 10.1021/ ef401483u. (30) Wang, N.; Yu, J.; Tahmasebi, A.; Han, Y.; Lucas, J.; Wall, T.; Jiang, Y. Energy Fuels 2014, DOI: 10.1021/ef401424p.

Hongwei Wu

School of Chemical and Petroleum Engineering, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia

Minghou Xu

State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China 2

dx.doi.org/10.1021/ef402309y | Energy Fuels 2014, 28, 1−3

Energy & Fuels

Editorial

(31) Wang, M.; Roberts, D. G.; Kochanek, M. A.; Harris, D. J.; Chang, L.; Li, C.-Z. Energy Fuels 2014, DOI: 10.1021/ef401281h. (32) Yang, X.; Zhang, C.; Tan, P.; Yang, T.; Fang, Q.; Chen, G. Energy Fuels 2014, DOI: 10.1021/ef401497a. (33) Meng, F.; Yu, J.; Tahmasebi, A.; Han, Y.; Zhao, H.; Lucas, J.; Wall, T. Energy Fuels 2014, DOI: 10.1021/ef401423s. (34) Fernández, A. M.; Barriocanal, C.; Gupta, S.; French, D. Energy Fuels 2014, DOI: 10.1021/ef401268f. (35) Smith, K.; Xiao, G.; Mumford, K.; Gouw, J.; Indrawan, I.; Thanumurthy, N.; Quyn, D.; Cuthbertson, R.; Rayer, A.; Nicholas, N.; Lee, A.; da Silva, G.; Kentish, S.; Harkin, T.; Qader, A.; Anderson, C.; Hooper, B.; Stevens, G. Energy Fuels 2014, DOI: 10.1021/ef4014746. (36) Yin, J.; Qin, C.; Feng, B.; Ge, L.; Luo, C.; Liu, W.; An, H. Energy Fuels 2014, DOI: 10.1021/ef401399c. (37) Alipour, M.; Nychka, J. A.; Gupta, R. Energy Fuels 2014, DOI: 10.1021/ef401541b. (38) Qin, C.; Du, H.; Liu, L.; Yin, J.; Feng, B. Energy Fuels 2014, DOI: 10.1021/ef4012609. (39) Padala, S.; Kook, S.; Hawkes, E. R. Energy Fuels 2014, DOI: 10.1021/ef401479s. (40) Zhang, K.; Liu, L.; Sunarso, J.; Yu, H.; Pareek, V.; Liu, S. Energy Fuels 2014, DOI: 10.1021/ef401253x. (41) Yang, G.; Su, C.; Ran, R.; Tade, M. O.; Shao, Z. Energy Fuels 2014, DOI: 10.1021/ef401473w. (42) Li, H.; Elliott, L.; Rogers, H.; Wall, T. Energy Fuels 2014, DOI: 10.1021/ef4014967. (43) Mei, Z.; Li, P.; Wang, F.; Zhang, J.; Mi, J. Energy Fuels 2014, DOI: 10.1021/ef401509e.

3

dx.doi.org/10.1021/ef402309y | Energy Fuels 2014, 28, 1−3