95Mo NMR Studies of cis -Dinitrosylmolybdenum Complexes

F.; Hambley, T. W.; Traill, P. R.; Brownlee, R. T. C.; OConnor, M. J.; Snow, M. R.; Wedd, A. G. Aust. J. Chem. 1982, 35, 2183. (x). Gheller, S. F.; Ha...
1 downloads 0 Views 518KB Size
Inorg. Chem. 1984, 23, 970-973

970

Contribution from the Department of Chemistry, University of Arizona, Tucson, Arizona 85721

95MoNMR Studies of cis -Dinitrosylmolybdenum Complexes Containing the [Mo( NO)#' Unit1 MARTIN MINELLI, J O H N L. HUBBARD, and J O H N H. ENEMARK*

Received June 14, 1983 The g5Mo N M R spectra of a wide variety of six-coordinate complexes containing the c i ~ - [ M o ( N 0 ) , ] ~unit + have been studied at 16.3 MHz. The chemical shifts range from +200 to -1000 ppm and do not correlate with the N O stretching frequency or the energy of the first electronic transition (12 500-16 260 cm-'). The chemical shifts generally decrease with the increasing ability of the ancillary ligands to delocalize electrons from the metal atom. The line widths range from 20 to 440 H z and depend on the viscosity of the solvent. The pattern of chemical shifts for [MO(NO),]~' complexes is different from that observed for [Mo0212+complexes for the same ligands. The electronic spectra for the [Mo(N0),l2+ complexes are consistent with an (Mo(NO),)~electron configuration that is only slightly perturbed by the other ligands coordinated to the metal. The two major absorptions in the visible spectrum (12 500-16 260 cm-' and 20 800-28 250 cm-I) are assigned to transitions within the (Mo(N0)d6 group.

Introduction The availability of sensitive multinuclear NMR spectrometers and the growing interest in molybdenum chemistry have resulted in several reports on the application of 95MoNMR to a wide variety of chemical systems in the past few yearsS2 This study of ~ i s - [ M o ( N 0 ) ~complexes ]~+ is part of our investigation of the 95MoNMR spectra of six-coordinate lowsymmetry molybdenum complexes containing a cis- [Mo(X),Iz+ unit where X = 0, CO, or NO. We and others have previously reported2gJ-w,aa that six-coordinate complexes containing the cis-[Mo0212+core show a chemical shift range of about 800 ppm. The chemical shifts are sensitive to the donor atoms in the coordination sphere of the molybdenum, and the chemical shifts are large relative to the line widths. Although (1) Presented in part at the 183rd National Meeting of the American Chemical Society, Las Vegas, NV, March 28-April 3, 1982; see Abstracts, No. INOR 90. (2) (a) Vold, R. R.; Vold, R. L. J. Mugn. Reson. 1975, 19, 365. (b) Kautt, W. D.; Kruger, H.; Lutz, 0.;Maier, H.; Nolle, A. 2.Nuturforsch., A 1976, 31A, 351. (c) Lutz, 0.; Nolle, A,; Kroneck, P. Ibid. 1976, 31A, 454; 1977, 32A, 505. (d) Masters, A. F.; Gheller, S. F.; Brownlee, R. T. C.; OConnor, M. J.; Wedd, A. G. Inorg. Chem. 1980,19, 3866. ( e ) Masters, A. F.; Brownlee, R. T. C.; O'Connor, M. J.; Wedd, A. G.; Cotton, J. D. J . Orgunomet. Chem. 1980, 195, C17. (f) Gheller, S. F.; Gazzana, P. A.; Masters, A. F.; Brownlee, R. T. C.; OConnor, M. J.; Wedd, A. G.; Rcdgers, J. R.; Snow, M. R. Inorg. Chem. Acta 1981,54, L131. (9) Christensen, K. A,; Miller, P. E.; Minelli, M.; Rockway, T. W.; Enemark, J. H. Ibid. 1981, 56, L27. (h) Dysart, S.; Georgii, I.; Mann, B. E.; J . Orgunomet. Chem. 1981, 213, C10. (i) LeGall, J. Y.; Kubicki, M. M.; Petillon, F. Y. Ibid. 1981, 221, 287. 6 ) Masters, A. F.; Brownlee, R. T. C. OConnor, M. J.; Wedd, A. G. Inorg. Chem. 1981, 20, 4183. (k) Minelli, M.; Rockway, T. W. Enemark, J. H.; Brunner, H.; Muschiol, M. J . Organomet. Chem. 1981, 217, C34. (1) Enemark, J. H. In 'Nitrogen Fixation: The Chemical-BiochemicalGenetic Interface"; Newton, W. E., Muller, A., Eds.; Plenum Press: New York, 1983; p 329. (m) Alyea, E. C.; Lenkinski, R. E.; Somogyvari, A. Polyhedron 1982, 1, 130. (n) Freeman, M. A,; Shultz, F. A,; Reilley, C. N. Inorg. Chem. 1982, 21, 567. (0)Bailey, J. T.; Clark, R. J.; Levy, G. C. Ibid. 1982, 21, 2085. (p) Gheller, S. F.; Brownlee, R. T. C.; OConnor, M. J.; Wedd, A. G. Chem. Uses Molybdenum, Proc. Int. Conf., 4th, 1982, 1983, 67. (9) Alyea, E. C.; Somogyvari, A. Ibid. 1983, 46. (r) Brownlee, R. T. C.; Masters, A. F.; OConnor, M. J.; Wedd. A. G.; Kimlin, H. A.; Cotton, J. D. Org. Mugn. Reson. 1982, 20, 73. (s) Jaitner, P.; Wohlgenannt, M. Monutsh. Chem. 1982, 1133699. (t) Alyea, E. C.; Topich, J. Inorg. Chim. Acto 1982.65, L95. (u) Kubicki, M. M.; Kergoat, R.; LeGall, J. Y.; Guerchais, J. E.; Douglade, J.; Mecier, R. Aust. J . Chem. 1982, 35, 1543. (v) Donovan-Mtunzi, S.; Hughes, M.; Leigh, G. J.; Mason, J.; Ali, H. M.; Richards, R. L. J . Orgunomet. Chem. 1983, 246, C1. (w) Gheller, S. F.; Hambley, T. W.; Traill, P. R.; Brownlee, R. T. C.; OConnor, M. J.; Snow, M. R.; Wedd, A. G. Aust. J . Chem. 1982, 35, 2183. (x) Gheller, S. F.; Hambley, T. W.; Brownlee, R. T. C.; O'Connor, M. J.; Snow, M. R.; Wedd, A. G. J. Am. Chem. SOC.1983, 105, 1527. (y) Masters, A. F.; Bossard, G. E.; George, T. A,; Brownlee, R. T. C.; OConnor, M. J.; Wedd, A. G. Inorg. Chem. 1983, 22, 908. (z) Minelli, M.; Hubbard, J. L.; Christensen, K. A.; Enemark, J. H. Ibid. 1983.22, 2652. (aa) Minelli, M.; Enemark, J. H.; Wieghardt, K.; Hahn, M. Ibid. 1983. 22, 3952.

0020-1669/84/1323-0970$01.50/0

Table I. "Mo NMR Data

compd

solvent

Mo(NO),(1)' -C Hi ) I Mo(NO), (qS-C,H, )BI Mo(NO), ( 7 j -C H IC1 Mo(NO),(05-Me,C,)C1 Mo(NO), C12 (P(C, H5 ) 3 ) 2 Mo(NO), (Me, dtc),

CH,CI, CH,CI, CH,Cl, CH,CN DMF DMF CH,CN acetone Me,SO Mo(NO),(Et,dtc), DMF CH,CN acetone Me,SO Mo(N0),(HB(3,5-Me2Pz),)C1 CH,Cl, Mo(N0) ,(acac), DMF CH,CN acetone Me,SO methanol CH,Cl, CH,CICH,CI benzene toluene isopentyl alcohol Mo (NO),CI, (0-phen) DM F CH ,CN acetone Mo(NO),Cl,(bpy) DMF CH,CN acetone [Et,N] [ Mo(NO),(CN),] DMF CH,CN H,O Cs,[Mo(NO),CI,] HCl [Et,Nl ,[Mo(NO),(ox),] DMF A

chem shift: PPm

line width, Hz

-985 -883 -852 -800 -500 -438 -437 -438 -435 -430 -430 -43 1 -425 -384 -298 -298 -296 -282 -286 -283 -285 -281 -28 1 -271

70 70 70 70 430 90 70 60 150 120 80 80 170 180 190 90 90 315 105 110 190 135 125 435

-265 -265 -265, -280 -263 -255 -264. -280 -104 -98 -105 +I52 +201

160 170 90 170 120 100 20 20

20 170 110

a Relative to external 2 M Na,MoO, in H,O at pH 1 1 and room temperature.

a wide variety of six-coordinate [Mo(NO)J2' complexes are ac~essible,~ this is the first study of such systems by 95Mo NMR. The 95MoNMR spectra of these complexes are also of bioinorganic interest because the NO+ ligand is formally (3) (a) Cotton, F. A.; Johnson, B. F. G. Inorg. Chem. 1964.3, 1609. (b) Feltham, R. D.; Silverthorn, W.; McPherson, G. Ibid. 1%9,8,344. (c) Subramanian, P. Dissertation, Indian Institute of Technology Kanpur, India, May 1981. (d) Hoyano, J. K.; Legzdins, P.; Malito, J. T. Inorg. Synth. 1978, 18, 126. ( e ) Kolthammer, B. W. S.; Hall, M. B.; Morris-Sherwood, B. J. Inorg. Chem. 1981,20, 2771 (technique described for W was used for Mo). (f) Trofimenko, S. Ibid. 1969, 8, 2675.

0 1984 American Chemical Society

95Mo NMR Studies of

[Mo(N0),l2'

Inorganic Chemistry, Vol. 23, No. 7, 1984 971

Complexes

Table 11. IR and UV-Vis Data for [ Mo(NO),] '+ Complexes UV-Visb 400-

1760 1655 1755 1650 1755 1655 1725 1640 1790 1670 1760 1655 1755 1645 1790 1680 1765 1650 1780 1670 1785 1675 1785 1675 1765 1620 1785 1630

12 500 22 570 12 740 22 270 12 890 22 680

60 810 80 1220 60 1030

200-

= I

100-

f 16 260 22 320 28 250 14 310 20 830 14 030 20 830

LW300[H d

50 840 1800 ll0C 2240 13OC 2260

toluene CH.CN

LI

2

Figure 1. Dependence of the line width (LW) on the viscosity of the solvent ( q ) for M ~ ( N O ) ~ ( a c a c ) , .

f 13 610 22 470 14 090 22 730 13 250 22 730 14 540 22 470 14 290 23 810 12 990 23 260

- 2 6 4 ~

70 2100 40 1800 40 1100 40 2110 5 Oe 1430 50 1100

a KBr pellet. In DMF. In CHC1,; ref 15. In DMSO; ref 17. e In aqueous 1 M HCI; ref 17. Data not available.

N2, the substrate of nitrogenase. Experimental Section

isoelectronic with

Materials. (a) Ligands. 2,2'-Bipyridyl (bpy) (Aldrich), 1,lOphenanthroline hydrate (o-phen) (Aldrich), 2,4-pentanedione (acac) (Eastman), sodium dimethyldithiocarbamate hydrate (Me2dtc) (Aldrich), sodium diethyldithiocarbamatetrihydrate (Et2dtc) (Baker), sodium cyanide (Fisher), oxalic acid dihydrate (ox) (Matheson Coleman and Bell), and triphenylphosphine (P(C6H5),) (Strem) were used as received. Hydrotris(3,5-dimethylpyrazolyl)borate, potassium salt (HB(3,5-Me2Pz),), was synthesized according to T r ~ f i m e n k o . ~ (b) Solvents were generally AR grade. Dimethylformamide (DMF) (Fisher) was distilled twice under vacuum over P2OSand then stored over molecular sieves. Acetone (Matheson Coleman and Bell), acetonitrile (Fisher), and dichloromethane (Matheson Coleman and Bell) were dried over P2OSand distilled under nitrogen immediately before use. Methanol and ethanol were dried with magnesium turnings and iodine and then distilled. Benzene, toluene, dichloroethane, and isopentyl alcohol were from Matheson Coleman and Bell and used without further purification. (c) Other Reagents. Ammonium molybdate tetrahydrate (Baker), tetraethylammonium chloride tetrahydrate (Baker), and hydroxylamine hydrochloride (ACS grade, Allied) were used as received. Syntheses. The [MO(NO),]~+ complexes were synthesized according to the methods of Johnson et al.,3aFeltham et al.,3bS ~ b r a m a n i a n , ) ~ Hoyano et al.,3d Kolthammer et al.,3c and Trofimenko.,' Physical Measurements. The infrared spectra were recorded on a Perkin-Elmer 398 spectrometer and on a Perkin-Elmer 983 spectrometer as KBr pellets. The UV-vis spectra were recorded on Perkin-Elmer 552, Cary 14, and Cary 19 spectrophotometers at room temperature. The 95Mo N M R spectra were obtained on a Bruker WM250 spectrometer. A broad-band probe (10-35 MHz) and a molybdenum probe (16.3 MHz) were used for the measurements. The 90' pulse was found to be 83 ps for the broad-band probe and 35 ps for the molybdenum probe. An acquisition delay of 200 ps was applied to reduce the effects of probe ringing. All spectra were recorded without (4) Trofimenko, S.J . Am. Chem. SOC.1967.89, 6288.

3

?1 Ccd

Figure 2. Chloride dissociation of the M 0 ( N 0 ) ~ C l ~ ( b p ycomplex ) in acetone at room temperature.

field-frequency lock. The external standard was 2 M Na,MoO, at pH 11. No appreciable drift of the field was observed. Solution concentrations were usually 0.1 M; less soluble complexes were measured as saturated solutions. All measurements were conducted at room temperature.

Results and Discussion 95M0NMR Spectra. Table I lists the 95MoNMR chemical shifts for 14 cis-dinitrosyl complexes of molybdenum. T a b l e I1 gives t h e two NO stretching frequencies observed for each complex and the absorption maxima in the electronic spectra. T h e 9 5 M oNMR chemical shifts range from -985 ppm for M o ( N O ) ~ ( $ - C ~ H ~ t)oI +201 ppm for [Et,N],[Mo(NO),OX)^]. M i n o r solvent dependence of t h e chemical shift was observed for most complexes. F o r example, t h e variation of the chemical shifts of M ~ ( N O ) ~ ( a c a c for ) , ten different solvents is 25 ppm. This solvent dependence of the chemical shift is less t h a n the 100 ppm variation t h a t has been found2' for MoSd2-. T h e line widths for t h e complexes were solvent dependent and varied from 20 to 435 Hz. For M o ( N O ) , ( a ~ a c )the ~ line widths increased smoothly with increasing viscosity of t h e solvent ( F i g u r e 1). T h e 9 5 M o NMR s p e c t r u m of M ~ ( N O ) ~ C l ~ ( o - p h eapn) peared as a single peak a t -265 ppm in DMF and acetonitrile, whereas in acetone two peaks were observed (Table I). A d dition of HC1 to an acetone solution produced a single peak with the same chemical shift as found in DMF and acetonitrile. Similar behavior was found for M 0 ( N 0 ) ~ C l ~ ( b p yin) these solvents ( F i g u r e 2). These results suggest that both of these complexes undergo partial dissociation in acetone (reaction 1) a n d that the addition of excess chloride shifts t h e equilibr i u m t o t h e left. Mo(NO)zClz(bpy)

Mo(NO),Cl(bpy)+

+ C1-

(1)

Several reports of 9 5 M o NMR spectra have appeared recently.2 T h e chemical shift range for the [Mo(N0),l2' complexes in Table I (1200 ppm) is to be compared to the presently

972 Inorganic Chemistry, Vol. 23, No. 7, 1984

Minelli, Hubbard, and Enemark

known chemical shift range of 7000 ppm for 95MoNMR.zp,x The chemical shift range of the [Mo(NO),]~' complexes is somewhat larger than the 800 ppm chemical shift range of the six-coordinate [ Moo2]z+ complexes.2g.t.w*aaThe observed chemical shifts for [MO(NO),]~' complexes (-985 to +201 LUMO ppm) overlap the range for MOO^]^' complexes (-220 to +650 ppm),zg*t,w,aa which formally contain Mo(VI), and the range for Mo(0) complexes (-445 to -2200 ppm).z',Y In general, the chemical shifts for heavy nuclei have been explained by the Ramsey f o r m ~ l a t i o nof ~ . diamagnetic ~ and paramagnetic contributions to the nuclear shielding. These two terms are usually of opposite sign. For transition-metal ions the variation in the paramagnetic term is the major contributor to the changes in chemical shifts.6 Low-lying excited states with substantial d-orbital character lead to deshielding of the nucleus and hence to increases in the observed chemical The substantial increases in chemical shift (decreased shielding) for the series (0 ppm) < MoSd2-(-2250 ppm) < MoSe42- ( 3500 ppm) demonstrate the increase of Figure 3. Qualitative sketch of the molecular orbitals used to explain 6(95Mo) with a decrease of the lowest energy electronic the electronic spectra of [MO(NO),]~' complexes. The bl(a*(NO)) transition (AE) for these molybdenum complexes.&$ A similar orbital is proposed to be the LUMO. The first low-intensity band correlation of 6(95Mo)with AE is found for MoXY(ONR,)~ in the visible spectrum is assigned to transitions from a2(d,, r*(NO)) compounds (X = 0, S, Se).Zw,aaFor the [Mo(N0),l2' comor bz(dy,, **