A Mixed-Valence Fluorido-Bridged FeIIFeIII Complex - ACS Publications

Jan 27, 2017 - *E-mail: [email protected]. ... ZimmermannThomas LimpkeAnja StammlerHartmut BöggeStephan WalleckThorsten Glaser...
0 downloads 0 Views 644KB Size
Communication pubs.acs.org/IC

A Mixed-Valence Fluorido-Bridged FeIIFeIII Complex Susanne Dammers,† Thomas Philipp Zimmermann,† Stephan Walleck,† Anja Stammler,† Hartmut Bögge,† Eckhard Bill,‡ and Thorsten Glaser*,† †

Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany Max-Planck-Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany



S Supporting Information *

ABSTRACT: The reaction of the new dinucleating ligand susan6‑Me with Fe(BF4)2·6H2O results in formation of the homovalent Fe II Fe II complex [(susan 6‑Me ){Fe II (μF)2FeII}]2+ and the mixed-valence FeIIFeIII complex [(susan6‑Me){FeIIF(μ-F)FeIIIF}]2+ depending on the absence or presence of dioxygen, respectively. Complex [(susan6‑Me){FeIIF(μ-F)FeIIIF}]2+ is the first molecular mixed-valence complex with a fluorido bridge. The short FeIII−μ-F bond of 1.87 Å causes a large reorganization energy, resulting in a localized class II system with an intervalence charge-transfer band of high energy at 10000 cm−1. erein, we report the first molecular fluorido-bridged mixed-valence FeIIFeIII complex. Mixed-valence complexes have been extensively investigated in the last decades for the fundamental study of electron transfer and electronic structure in general.1−3 Mixed-valence compounds of iron, in particular, have attracted interest because of their presence in the active site of metalloproteins4 and their interesting properties like double exchange.5,6 The coordination chemistry of complexes with Fe−F bonds is less well explored than that with other donor atoms, but complexes with Fe−F bonds have recently received increased attention in the field of magnetic materials7−9 and catalysis.10 Three-dimensional (3D) network structures of mixed-valence iron fluorides have been explored11−14 and are of relevance for cathode materials for rechargeable lithium batteries.15−17 We have developed a new class of dinucleating ligands that possess various terminal donor groups but provide no bridging donors to stabilize dinuclear complexes with external bridging ligands.18,19 The ligand susan was prepared by the reductive amination of pyridine aldehyde 2 with tetramine 1 (Figure 1a). As a slight variation of the ligand susan, we have prepared the ligand susan6‑Me by using the methyl-substituted pyridine carbaldehyde 3 (Figure 1a). The reaction of susan6‑Me with Fe(BF4)2·6H2O and NEt3 under an argon-blanketing atmosphere resulted in the formation of green crystals of [(susan6‑Me){FeII(μ-F)2FeII}](BF4)2 (4), indicating fluoride abstraction from BF4−.20 Upon crystallization under oxygen, green crystals of 4 deposited, followed by brown crystals, which were analyzed by single-crystal X-ray diffraction as [(susan6‑Me){FeIIF(μ-F)FeIIIF}](BF4)2 (5). Optimization of the reaction conditions allowed the isolation of pure samples of both complexes 4 and 5 (see the Supporting Information for details).

H

© XXXX American Chemical Society

Figure 1. (a) Synthesis of the ligand susan6‑Me. Molecular structures of (b) [(susan6‑Me){FeII(μ-F)2FeII}]2+ in crystals of 4 and (c) [(susan6‑Me){FeIIF(μ-F)FeIIIF}]2+ in crystals of 5. Selected interatomic distances for 4 [5]: Fe1−N1 2.281(5) [2.2944(16)], Fe1−N2 2.172(5) [2.2343(16)], Fe1−N3 2.157(4) [2.2279(17)], Fe1−N4 2.208(5) [2.2276(17)], Fe1−F1 2.287(3) [1.8939(11)], Fe1−F2 1.930(3), Fe1− F3 [2.1624(10)], Fe2−N41 2.340(5) [2.2078(16)], Fe2−N42 2.163(5) [2.1988(16)], Fe2−N43 2.192(5) [2.1639(15)], Fe2−N44 2.220(5) [2.2196(16)], Fe2−F1 1.917(3), Fe2−F2 2.241(3) [1.8175(11)], Fe2− F3 [1.8704(10)], Fe1···Fe2 3.2757(10) [4.0031(4)].

The molecular structures of both complexes are shown in Figure 1b,c. Thermal ellipsoid plots and more bond lengths and angles are provided in the Supporting Information. From charge considerations, the iron ions in 4 are both FeII, which is supported by bond-valence-sum calculations (Fe1, 2.27; Fe2, 2.32). The angles Fe1−F1−F2 and Fe1−F2−Fe2 are 102.0° and 103.3°, respectively. Although the ligand susan6‑Me prohibits inversion symmetry, the central {Fe2(μ-F)2} core of 4 is almost planar (torsion angles 10000 cm−1 because of the strong electronic coupling matrix element HAB,5,32−35 the high IVCT energy in the valencelocalized complex 5 arises from the strong reorganization energy λ.3 This can be assigned to the presence of the strong short FeIII−μ-F and weak long FeII−μ-F bonds, providing a strong localization force. In summary, the complex [(susan6‑Me){FeIIF(μ-F)FeIIIF}]2+ is the first mixed-valence FeIIFeIII complex with a fluorido bridge. The bond-length distribution in the {FeII(μ-F)FeIII} core is highly asymmetric with a short FeIII−μ-F bond and a long FeIII−μ-F bond. This results in a large reorganization energy barrier and a valence-localized nature. This study shows the ability of our new bis(tetradentate) dinucleating ligand system to support and stabilize unusual dinuclear core structures, and the flexibility of the ligand backbone allows rearrangement for monoand dibridged core structures.

Figure 3. (a) Temperature-dependent magnetic measurements of 4 (black) and 5 (red) at 1 T. Solid lines correspond to simulations using the parameters provided in the text. (b) X-band EPR spectrum of 5 recorded in frozen CH3CN at 7.9 K. Experimental conditions: ν = 9.42886 GHz; microwave power = 0.1 mW; field modulation = 10 G; powder simulation with S = 1/2; g = [1.868, 1.861, 1816]; Lorentzian lines with 16 mT full width at half-maximum with a 36% Gaussian contribution. (c) Electronic absorption spectra of solutions of complexes 4 and 5 and the free ligand susan6‑Me in CH3CN.



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.6b03093. Experimental details, Figures S1−S4, and Tables S1 and S2 (PDF) CIF file (CIF) CIF file (CIF)

Because 5 is the first molecular mixed-valence FeIIFeIII complex with a fluorido bridge, a comparison of its coupling constant is not straightforward. In the class II mixed-valence 3D solid Fe2F5·2H2O, a ferrimagnetic order at TC = 48 K indicates also antiferromagnetic coupling.13 In a FeIIFeII complex of trigonal-bipyramidal coordination with a linear fluorido bridge, the exchange is even stronger (J = −16.3 cm−1) than that in 5 because of a shorter FeII−μ-F bond length of 2.02 Å.9 To the best of our knowledge, an analogous FeIIIFeIII with a single fluorido bridge has not been reported. Interestingly, in the triple-fluoridobridged complex [F3Fe(μ-F)3FeF3]3−, a weak ferromagnetic interaction (J = 0.7 cm−1) was reported.29 In this respect, the coupling constant of J = −10.1 cm−1 is relatively large for fluorido-bridged systems despite the long FeII−μ-F bond. The UV−vis spectra (Figure 3c) provide intense absorption features above 35000 cm−1 assigned mainly to π−π* transitions of the pyridine ligands. The diferrous complex 4 exhibits an



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. ORCID

Thorsten Glaser: 0000-0003-2056-7701 Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This work was supported by a grant from the Deutsche Forschungsgemeinschaft. C

DOI: 10.1021/acs.inorgchem.6b03093 Inorg. Chem. XXXX, XXX, XXX−XXX

Communication

Inorganic Chemistry



donor and its application to the synthesis of a series of FeIII−μ-O−FeIII complexes. Dalton Trans. 2016, 45, 3340−3361. (19) Strautmann, J. B. H.; Walleck, S.; Bögge, H.; Stammler, A.; Glaser, T. A tailor-made ligand to mimic the active site of diiron enzymes: an airoxidized high-valent FeIII h.s. (μ-O)2 FeIV h.s. species. Chem. Commun. 2011, 47, 695−697. (20) Reedijk, J. Formation of fluoride-containing coordination compounds by decomposition of transition-metal tetrafluoroborates. Comments Inorg. Chem. 1982, 1, 379−389. (21) Zang, Y.; Jang, H. G.; Chiou, Y. M.; Hendrich, M. P.; Que, L. Structures and properties of ferromagnetically coupled bis(μ-halo)diiron(II) complexes. Inorg. Chim. Acta 1993, 213, 41−48. (22) Allen, F. H.; Kennard, O. 3D search and research using the Cambridge Structural Database. Chem. Des. Automat. News 1993, 8, 31− 37. (23) Egdal, R. K.; Hazell, A.; Larsen, F. B.; McKenzie, C. J.; Scarrow, R. C. A dihydroxo-bridged Fe(II)-Fe(III) complex: a new member of the diiron diamond core family. J. Am. Chem. Soc. 2003, 125, 32−33. (24) Sano, Y.; Weitz, A. C.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S. Unsymmetrical bimetallic complexes with M(II)-(μ-OH)-M(III) cores (M(II)M(III) = Fe(II)Fe(III), Mn(II)Fe(III), Mn(II)Mn(III)): structural, magnetic, and redox properties. Inorg. Chem. 2013, 52, 10229−10231. (25) Liu, Q.; Pan, S.; Wang, D. Di-μ-hydroxido-bis-({2,2′-propane-1,3diylbis(nitrilo-methyl-idyne)diphenolato}iron(III)) dimethyl-formamide disolvate. Acta Crystallogr., Sect. E: Struct. Rep. Online 2009, 65, m305. (26) Bossek, U.; Hummel, H.; Weyhermüller, T.; Bill, E.; Wieghardt, K. The First μ-OH-Bridged Model Complex For the Mixed-Valent FeIIFeIII Form of Hemerythrin. Angew. Chem., Int. Ed. Engl. 1996, 34, 2642−2645. (27) Bencini, A.; Gatteschi, D. Electron Paramagnetic Resonance of Exchanged Coupled Systems; Springer-Verlag: Berlin, 1990. (28) Rodriguez, J. H.; Ok, H. N.; Xia, Y.-M.; Debrunner, P. G.; Hinrichs, B. E.; Meyer, T.; Packard, N. H. Mössbauer spectroscopy of the spin-coupled Fe3+−Fe2+ center of reduced uteroferrin. J. Phys. Chem. 1996, 100, 6849−6862. (29) Dance, J. M.; Mur, J.; Darriet, J.; Hagenmuller, P.; Massa, W.; Kummer, S.; Babel, D. Magnetic Properties of the Dimeric Iron(III) Fluoride: Cs3Fe2F9. J. Solid State Chem. 1986, 63, 446−451. (30) Neidig, M. L.; Solomon, E. I. Structure-function correlations in oxygen activating non-heme iron enzymes. Chem. Commun. 2005, 5843−5863. (31) Snyder, B. S.; Patterson, G. S.; Abrahamson, A. J.; Holm, R. H. Binuclear Iron System Ferromagnetic in 3 Oxidation-States: Synthesis, Structures, and Electronic Aspects of Molecules With a Fe2(OR)2 Bridge Unit Containing Fe(III ;III) ; Fe(III ;II) ; and Fe(II ;II). J. Am. Chem. Soc. 1989, 111, 5214−5223. (32) Lee, D.; DuBois, J. L.; Pierce, B.; Hedman, B.; Hodgson, K. O.; Hendrich, M. P.; Lippard, S. J. Structural and spectroscopic studies of valence-delocalized diiron(II,III) complexes supported by carboxylateonly bridging ligands. Inorg. Chem. 2002, 41, 3172−3182. (33) Stubna, A.; Jo, D.-H.; Costas, M.; Brenessel, W. W.; Andres, H.; Bominaar, E. L.; Munck, E.; Que, L. JR. A structural and Mossbauer study of complexes with Fe(II)(μ-O(H))2 cores: stepwise oxidation from Fe(II)(μ-OH)2Fe(II) through Fe(II)(μ-OH)2Fe(III) to Fe(III)(μ-O)(μ-OH)Fe(III). Inorg. Chem. 2004, 43, 3067−3079. (34) Lee, D.; Krebs, C.; Huynh, B. H.; Hendrich, M. P.; Lippard, S. J. Valence-delocalized diiron(II,III) cores supported by carboxylate-only bridging ligands. J. Am. Chem. Soc. 2000, 122, 5000−5001. (35) Hagadorn, J. R.; Que, L.; Tolman, W. B.; Prisecaru, I.; Münck, E. Conformational tuning of valence delocalization in carboxylate-rich diiron complexes. J. Am. Chem. Soc. 1999, 121, 9760−9761.

REFERENCES

(1) Robin, M. B.; Day, P. Mixed-valence chemistry: a survey and classification. Adv. Inorg. Chem. Radiochem. 1968, 10, 247−422. (2) D’Alessandro, D. M.; Keene, F. R. Current trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions. Chem. Soc. Rev. 2006, 35, 424−440. (3) Brunschwig, B. S.; Creutz, C.; Sutin, N. Optical transitions of symmetrical mixed-valence systems in the Class II−III transition regime. Chem. Soc. Rev. 2002, 31, 168−184. (4) Tshuva, E. Y.; Lippard, S. J. Synthetic models for non-heme carboxylate-bridged diiron metalloproteins: strategies and tactics. Chem. Rev. 2004, 104, 987−1012. (5) Gamelin, D. R.; Bominaar, E. L.; Mathoniere, C.; Kirk, M. L.; Wieghardt, K.; Girerd, J.-J.; Solomon, E. I. Excited-State Distortions and Electron Delocalization in Mixed-Valence Dimers: Vibronic Analysis of the Near-IR Absorption and Resonance Raman Profiles of [Fe2(OH)3(tmtacn)2]2+. Inorg. Chem. 1996, 35, 4323−4335. (6) Glaser, T.; Beissel, T.; Bill, E.; Weyhermüller, T.; Schünemann, V.; Meyer-Klaucke, W.; Trautwein, A. X.; Wieghardt, K. Electronic structure of linear thiophenolate-bridged heterotrinuclear complexes [LFeMFeL]n+ (M = Cr, Co, Fe; n = 1−3): Localized vs Delocalized Models. J. Am. Chem. Soc. 1999, 121, 2193−2208. (7) Pedersen, K. S.; Sørensen, M. A.; Bendix, J. Fluoride-coordination chemistry in molecular and low-dimensional magnetism. Coord. Chem. Rev. 2015, 299, 1−21. (8) Laye, R. H.; Larsen, F. K.; Overgaard, J.; Muryn, C. A.; McInnes, E. J. L.; Rentschler, E.; Sanchez, V.; Teat, S. J.; Gudel, H. U.; Waldmann, O.; Timco, G. A.; Winpenny, R. E. P. A family of heterometallic wheels containing potentially fourteen hundred siblings. Chem. Commun. 2005, 1125−1127. (9) Reger, D. L.; Pascui, A. E.; Smith, M. D.; Jezierska, J.; Ozarowski, A. Dinuclear complexes containing linear M-F-M M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) bridges: trends in structures, antiferromagnetic superexchange interactions, and spectroscopic properties. Inorg. Chem. 2012, 51, 11820−11836. (10) Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L. Synthesis and reactivity of lowcoordinate iron(II) fluoride complexes and their use in the catalytic hydrodefluorination of fluorocarbons. J. Am. Chem. Soc. 2005, 127, 7857−7870. (11) Walton, E. G.; Corvan, P. J.; Brown, D. B.; Day, P. Spectroscopic and magnetic studies of a mixed-valence iron fluoride, Fe2F5•7H2O. Inorg. Chem. 1976, 15, 1737−1739. (12) Hall, W.; Kim, S.; Zubieta, J.; Walton, E. G.; Brown, D. B. Structure of a mixed-valence iron fluoride, Fe2F5•2H2O. Inorg. Chem. 1977, 16, 1884−1887. (13) Walton, E. G.; Brown, D. B.; Wong, H.; Reiff, W. M. Moessbauer and magnetic studies of a mixed-valence ferrimagnet, pentafluorodiiron(II,III) dihydrate. Inorg. Chem. 1977, 16, 2425−2431. (14) Smida, M.; Lhoste, J.; Pimenta, V.; Hemon-Ribaud, A.; Jouffret, L.; Leblanc, M.; Dammak, M.; Greneche, J.-M.; Maisonneuve, V. New series of hybrid fluoroferrates synthesized with triazoles: various dimensionalities and Mossbauer studies. Dalton Trans. 2013, 42, 15748−15755. (15) Li, C.; Gu, L.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Lowtemperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries. Adv. Mater. 2010, 22, 3650− 3654. (16) Li, C.; Gu, L.; Tong, J.; Tsukimoto, S.; Maier, J. A Mesoporous Iron-Based Fluoride Cathode of Tunnel Structure for Rechargeable Lithium Batteries. Adv. Funct. Mater. 2011, 21, 1391−1397. (17) Li, L.; Meng, F.; Jin, S. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism. Nano Lett. 2012, 12, 6030−6037. (18) Strautmann, J. B. H.; Dammers, S.; Limpke, T.; Parthier, J.; Zimmermann, T. P.; Walleck, S.; Heinze-Brückner, G.; Stammler, A.; Bögge, H.; Glaser, T. Design and synthesis of a dinucleating ligand system with varying terminal donor functions that provides no bridging D

DOI: 10.1021/acs.inorgchem.6b03093 Inorg. Chem. XXXX, XXX, XXX−XXX