A Strategy for the Synthesis of Anthraquinone-Based Aryl‑C‑glycosides

Apr 25, 2013 - ABSTRACT: An efficient and simple strategy for the synthesis of .... DABCO. 10. 70 nr. 5. MsCl. TEA. 4. 40. 90d. 6. MsCl. DBU. 4. 40. 5...
0 downloads 0 Views 982KB Size
Subscriber access provided by MONASH UNIVERSITY

Article

A Strategy for the Synthesis of Anthraquinone based Aryl-C-Glycosides Namrata Anand, Kapil Upadhyaya, Arya Ajay, Rohit Mahar, Sanjeev K. Shukla, Brijesh Kumar, and Rama Pati Tripathi J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/jo302589t • Publication Date (Web): 25 Apr 2013 Downloaded from http://pubs.acs.org on April 28, 2013

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 47

The Journal of Organic Chemistry

1 2 3

A Strategy for the Synthesis of Anthraquinone based Aryl-C-Glycosides 4 5 6 7

Namrata Anand†, Kapil Upadhyaya†, Arya Ajay†, Rohit Mahar ‡, Sanjeev K. Shukla‡, Brijesh Kumar‡, and Rama Pati Tripathi*† 8 10

9 †

12

Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226001, India

13



15

14

1

Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow 226001, India

16 17

rpt.cdri @gmail.com 19

18

ABSTRACT: 20 21 2 23 24 25 26 28

27

An efficient and simple strategy for the synthesis of diverse range of anthraquinone based aryl30

29

C-glycosides has been developed. It involves the sequential Diels-Alder reaction and oxidative 32

31

aromatization with the preformed glycosyl diene and dienophiles. The glycosyl dienes were 3 35

34

obtained from simple sugars by tandem one pot substitution and elimination reaction. 36 37 38 39 40 41 42 43 4 45 46 47 48 49 50 51 52 53 54 5 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

1 3

2

INTRODUCTION: 5

4

Secondary metabolites, frequently available as glycosides, produced by plants and 6 8

7

microorganisms have been the most important chemical entities till date as bioactives. The aryl10

9

C-glycosides, both of synthetic and natural origins, are of great significance1 in medicinal 1 12

chemistry owing to their stability towards the enzymatic and chemical hydrolysis as compared to 13 14

the O-glycosides.2 They are well known antibiotics, potent enzyme inhibitors and possess a wide 17

16

15

range of biological activities.3 Currently several aryl-C-glycosides as SGLT2 inhibitors are 19

18

undergoing clinical trials for the treatment of diabetes and related complications. 4 The 20 2

21

angucycline group of glycosides with anthraquinone as aglycon part are endowed with 24

23

anticancer, antibacterial, antiviral, enzyme inhibitory, and platelet aggregation inhibition 25 26

activities.3 27 29

28

Synthesis of anthraquinone based aryl-C-glycosides has been the focus of several leading 31

30

research groups for quite some time.5 In view of the structural complexity of aglycones, the 32 34

3

control of regiochemistry in glycosylation of a polysubstituted aromatic precursor to get the 36

35

desired aryl-C-glycosides is a crucial issue. To overcome this, the benzannulation or 38

37

cycloaddition strategies for glycosylated aromatics have played key roles.6 Suzuki’s group has 39 41

40

developed elegant methods for the total synthesis of gilvocarcin and ravidomycin using 43

42

cycloaddition reaction of sugar bearing benzyne and substituted furans7. Later on furan-benzyne 4 45

cycloaddition to get aryl-C-glycosides was extended by Martin’s group with benzyne precursors 46 48

47

as quinone equivalents to get the aryl-C-glycosides.8 A sequential intermolecular enyne 50

49

metathesis of C-alkynyl glycosides with ethylene and subsequent Diels-Alder reaction followed 51 52

by aromatization reaction9, and Diels-Alder reactions of preformed C-pentadienyl glycosides 53 5

54

with quinones10 were also used for the synthesis of aryl-C-glycosides. Thus, the direct Diels56 57 58 59 60 ACS Paragon Plus Environment

Page 2 of 47

Page 3 of 47

The Journal of Organic Chemistry

1 3

2

Alder reaction of dienyl glycosides with quinones has rarely been used to get aryl-C-glycosides 5

4

possibly due to (i) difficulties to access dienyl glycosides, (ii) the drastic conditions required for 6 8

7

the cycloaddition between dienyl glycosides and quinones, (iii) cost of Grubbs’ second 10

9

generation catalyst used in metathesis reactions, and (iv) difficulty in deprotection of the 1 12

protecting groups to get the glycosides with free hydroxyl groups. Therefore, an economical, 13 15

14

environmently benign and high yield synthesis of aryl-C-glycosides is still a priority area of 17

16

research. In continuation of our ongoing research on aryl-C-glycosides11 and glycoconjugates12 18 19

as chemotherapeutics, we reported herein a robust, eco-friendly, and economical viable 20 2

21

stereoselective synthesis of anthraquinone C-glycosides involving a simple synthesis of glycosyl 24

23

dienes via Et3N catalyzed sequential O-methanesulfonylation and elimination reactions of 25 27

26

glycosyl butenols followed by sequential Diels-Alder reaction of these dienes with dienophiles 29

28

and oxidative aromatization. 30 31 32

RESULTS AND DISCUSSION: 3 35

34

The required butadienyl glycoside (3a-3o) substrates for Diels-Alder reaction were prepared 37

36

(Scheme 1) in good yields (82-93 %) with EE-stereoselectivity from preformed butenoyl 39

38

glycosides (1a-1o)13. 40 41 42 43 4 45 46 47 48 49 50 51 52 53 54

Scheme 1. Synthesis of glycosylated dienes 5 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

1 3

2

*(purely isolated (EE) diene was used for deacetylation and this deacetylated diene was directly used in 5

4

cycloaddition reaction) 6 8

7

Luche reduction14 of butenoyl-C-glycosides (1a-1o) with NaBH4/CeCl3.6H2O in methanol 10

9

yielded the glycosides (2a-2o) as (1:1) diastereoisomeric mixtures in excellent yields (89-97 %). 1 13

12

The latter on Et3N catalysed tandem one pot in situ methanesulfonylation and elimination 15

14

reaction provided respective dienyl glycosides (3a-3o) (Scheme 1). Optimization of this step 16 17

was made using two different sulfonylating agents tosyl chloride (TsCl) or mesyl chloride 18 20

19

(MsCl) and organic bases (DBU, DABCO or Et3N) with a model glycosyl butenol substrate 2a, 2

21

where MsCl (2 eq.)-Et3N (1.2 eq.) combination proved to be the optimum for the synthesis of 23 24

dienyl glycoside 3a (entry 5, Table 1). 25 26 28

27

Table 1 Optimization of reaction conditions for glycosyl diene 29 30 31 32 3 34 35

38

37

36

entry

alkylating agent

base

time (h)

tempb (°C)

Yield (%)

51

50

49

48

47

46

45

4

43

42

41

40

1

TsCl

TEA

4

40

nrc

2

TsCl

DBU

10

40

nr

3

TsCl

TEA

10

70

nr

4

TsCl

DABCO

10

70

nr

5

MsCl

TEA

4

40

90d

6

MsCl

DBU

4

40

50

7

MsCl

DABCO

10

40

nr

8

MsCl

DABCO

8

70

20

39

53

52

5

54

57

56

8. 58 59 60 ACS Paragon Plus Environment

Page 4 of 47

Page 5 of 47

The Journal of Organic Chemistry

1 3

2

a = all reactions were carried out in CH2Cl2( 0.4 M), b = high temperature reactions were performed in sealed tube, c 5

4

= no reaction, d = isolated yield. 6 8

7

Following the optimized reaction conditions, 3a-3o were obtained as a mixture of EE (major, 10

9

85-90 %) and ZE (minor, 10-15 %) isomers in excellent yields (Table 2). The structures of the 1 13

12

two isomers were well established by detailed NMR studies (See Supporting Information). 14 16

15

Table 2. Synthesized glycosylated dienesa (3b-3o, 4a and 4b) 17 18 20

19

entry

product

Ar

R1

R2

R3

yieldb (%)

25

24

23

2

1

3b

phenyl

H

OAc

CH2OAc

91

2

3c

4-Br-phenyl

H

OAc

CH2OAc

89

3

3d

4-Cl-phenyl

H

OAc

CH2OAc

84

4

3e

2-Cl-phenyl

H

OAc

CH2OAc

87

5

3f

4-iPr-phenyl

H

OAc

CH2OAc

92

6

3g

4-OMe-phenyl

H

OAc

CH2OAc

92

7

3h

2-naphthyl

H

OAc

CH2OAc

82

8

3i

phenyl

H

OAc

H

90

9

3j

4-Cl-phenyl

H

OAc

H

86

10

3k

4-F-phenyl

H

OAc

H

85

11

3l

4-Me-phenyl

H

OAc

H

92

12

3m

4-OMe-phenyl

H

OAc

H

91

13

3n

4-Me-phenyl

OAc

H

CH2OAc

92

14

3o

4-OMe-phenyl

OAc

H

CH2OAc

93

15

4a

4-F-phenyl

H

OH

H

97c

21

30

29

28

27

26

32

31

37

36

35

34

3

39

38

4

43

42

41

40

46

45

49

48

47

51

50

56

5

54

53

52

57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 6 of 47

1 3

2

16 4

4b

4-OMe-phenyl

H

OH

96c

H

5 7

6

a = The dienes were synthesized from respective glycosyl butenols using MsCl (2 eq)-Et3N (1.2 eq) in CH2Cl2 at 9

8

40° C, b = yields were calculated for the mixture of isomers, c = yields for purely isolated acetylated (EE) dienes 10 12

1

Zemplen deacetylation of dienyl glycosides 3k (EE) and 3m (EE) resulted in predominantly (EE) 14

13

isomer of deacetylated glycosyl dienes 4a and 4b respectively in good yields (Scheme 1, Table 15 16

2). 17 19

18

The optimization of cycloaddition reaction of (EE) dienyl-1-β-D-xylopyranoside 3l was carried 21

20

out with naphthoquinone under different conditions (Table 3). The reaction was unsuccessful up 2 24

23

to 40 °C in presence or absence of any catalyst. Heating the reaction mixture in presence of 26

25

different Lewis acid catalysts at 80 °C in different solvents led to the formation of desired C27 28

(1,4-dihydroanthraquinon-1-yl-)-xylopyranoside (5'l) in varying yields. 29 31

30

Table 3. Optimization of reaction conditions for Diels-Alder reaction 32 3 34 35 36 37 38 39 41

40

4

1

catalyst (mol %) No catalyst

45

2

AlCl3 (5)

5

toluene

100

nr

3

ZnCl2 (5)

5

toluene

80

40

4

SnCl2 (5)

6

toluene

80

50

51

5

CuCl2 (5)

6

toluene

100

nr

52

6

CoCl2 (5)

6

toluene

100

nr

7

FeCl3.6H2O (5)

3

toluene

80

95

8

InCl3.4H2O (5)

3

toluene

80

99

entry

47

46

43

42

56

5

54

53

50

49

48

Time (h) 10

solventa toluene

temperature (°C) 110

yield (%) nrb

57 58 59 60 ACS Paragon Plus Environment

Page 7 of 47

The Journal of Organic Chemistry

1 3

2

9

Anhyd. InCl3 (5)

3

dry toluene

80

96

5

10

InCl3.4H2O (5)

8

ethanol

80

nr

11

InCl3.4H2O (5)

8

DMF

80

30

12

InCl3.4H2O (5)

5

acetonitrile

80

85

1

13

InCl3.4H2O (5)

8

dioxane

80

30

12

14

InCl3.4H2O (5)

8

water

80

nr

15

InCl3.4H2O (2)

5

toluene

80

67

16

InCl3.4H2O (10)

3

toluene

80

63c

16

15

14

13

10

9

8

7

6

4

17 18

a = 0.25 M solvents used, b = no reaction, c = complex mixture therefore low yield. 19 20

Among the different catalysts screened, AlCl3, CuCl2, and CoCl2 were found to be ineffective, 21 23

2

while ZnCl2 and SnCl2 were moderetly effective with 40-50 % yields of desired product. 25

24

However, FeCl3.6H2O and InCl3.4H2O were the most effective to give the maximum yields of 5'l 26 27

(entries 7 and 8, Table 3). The reaction proceeded equally well with anhydrous InCl3 in dry 28 30

29

toluene, indicating no significant role of water during reaction (entry 9, Table 3). The effect of 32

31

solvents were also examined (Table 3), while the polar protic solvents were almost ineffective 3 35

34

(entries 10 and 14, Table 3) the aprotic polar solvents were somewhat effective (entries 11-13, 37

36

Table 3) and aprotic nonpolar solvent (toluene) was found to be the most effective (entries 7 and 38 39

8, Table 3) with >95 % conversion of 3l into product 5'l, (Scheme 2). Therefore, for Diels-Alder 40 42

41

reaction 0.25 M toluene as solvent, InCl3.4H2O as catalyst at 80 °C heating was chosen as the 4

43

optimum reaction condition for subsequent reactions. Compound 5'l was isolated, characterized, 45 46

and was found to be an inseparable diastereoisomeric mixture (NMR). Finally, oxidation of 5'l 47 49

48

with molecular O2/Et3N allows us to get the aryl-C- xylopyranoside 5l in 98 % yield. 50 51 52 53 54 5 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

1 2 3 4 5 6 7 8 9 10 1 12 13 15

14

Scheme 2: Synthesis of aryl-C-glycoside 16 17 18

The above two steps transformation of dienyl glycoside 3l to aryl C-glycoside 5l was also carried 19 20

out without the purification of the intermediate dihydro product 5’l in 95 % yield (Scheme 2). 23

2

21

Since the diastereomeric centres were lost during oxidative aromatization, the presence of the 24 25

isomeric mixture of dienes did not affect the sequential reactions and therefore these mixtures 26 28

27

were used as such for subsequent cycloaddition and oxidative aromatization reactions (Table 4). 30

29

Based on the above observations, we have extended the scope of this cycloadditive oxidation 31 32

reaction to other dienyl glycosides derived from D-glucose, D-xylose and D-mannose with 3 35

34

naphthoquinone as a dienophiles to get structurally diverse aryl-C-β-D-glycosides (Table 4). 37

36

Table 4 Synthesized aryl-C-β-D-glycosidesa 38 39 40 41 42 43 4 45 47

46

1

3a

yieldb (%) 92

2

3b

91

entry 48

dienes

50

49

aryl-C-glycosides

51

54

53

52

5 56 57 58 59 60 ACS Paragon Plus Environment

Page 8 of 47

Page 9 of 47

The Journal of Organic Chemistry

1

4

3

2

3

3c

90

4

3d

91

5

3e

90

6

3f

93

7

3g

95

8

3h

88

9

3i

93

10

3j

92

11

3k

93

12

3l

95

13

3m

94

14

3n

93

15

3o

96

5

8

7

6

9 1

10 12 13 15

14 16 17

20

19

18

21 23

2 24 25

28

27

26

29 30 32

31 3 34 36

35 37

40

39

38

41

4

43

42

45

48

47

46

49

52

51

50

53 54 5 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 10 of 47

1

4

3

2

16

4a

83

17

4b

80

5 6

9

8

7

10 1 12

a = for reaction molarity see the experimental section, b = isolated yield 13 14 15

We were also successful in synthesizing unprotected aryl-C-glycosides 6a and 6b by reacting the 16 18

17

polar unprotected dienyl glycosides 4a and 4b respectively with naphthoquinone in water: 20

19

toluene (9:1) at 80 °C followed by oxidative aromatization in very good yields (entries 16 and 21 23

2

17, Table 4). 25

24

The scope of the Diels-Alder reaction of dienyl glycosides was extended by reacting dienyl 27

26

glycoside 3m with N-phenyl maleimide as dienophile to give the cycloaddition endo product 428 30

29

(2',3',4',6'-tetra-O-acetyl-β-D-xylopyranosyl)-7-(4-methoxyphenyl)-2-phenyl 32

31

tetrahydro-1H-

isoindole-1,3(2H)-dione (7) exclusively in good yield (81 %) (Scheme 3). The structure of the 3 34

latter was established on the basis of detailed NMR experiments (SI). However, the product 7 35 37

36

could not be aromatized under the oxidative aromatization reaction conditions. 38 39 40 41 42 43 4 45

Scheme 3: Synthesis of maleimide adduct 7 46 47 49

48

CONCLUSIONS: 51

50

We have reported a simple but efficient strategy to get aryl-C-β-D-glycosides with increasing 52 53

opportunities for diversity generation. This strategy holds potential to access a library of 54 56

5

anthraquinone based C-glycosides and related analogues of great medicinal values. The method 57 58 59 60 ACS Paragon Plus Environment

Page 11 of 47

The Journal of Organic Chemistry

1 3

2

involved is economical and eco-friendly with no sophistication. The extended scope of this 5

4

strategy may lead to cycloaddition products with different functional groups on the glycosides. 6 7

EXPERIMENTAL SECTION 10

9

8

General Chemistry: 1 12

Commercially available reagent grade chemicals were used as received. Reactions were 13 15

14

monitored by TLC, with detection by UV light, spraying a 5 % H2SO4 ethanolic solution and 17

16

applying heat. Column chromatography was performed on silica gel (60-120 mesh). IR spectra 19

18

were recorded as thin films or in KBr solution. 1H and 20

13

C NMR spectra were recorded on

2

21

Bruker 200, 300 and 400 MHz spectrometer in CDCl3 or DMSOd6. Chemical shift values were 24

23

reported in ppm relative to TMS (tetramethylsilane) as internal reference, unless otherwise 25 27

26

stated; s (singlet), d (doublet), t (triplet), dd (doublet of doublet), m (multiplet); J in hertz. The 29

28

chemical shift assignments of prototypes were carried out with the help of 2D NMR experiments 31

30

as COSY, HSQC, HMBC and NOESY. HRMS spectra were performed using a mass 32 34

3

spectrometer Q-TOF. Optical rotation was recorded on Autopol III, S. No. 301, manufactured by 36

35

Rudolph Research Analytical, USA. 37 38

General procedure for the synthesis of 1-glycosyl-4-phenyl butene-2-ols (2a-2o) 39 41

40

(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(443

42

fluorophenyl)but-3-ene (2a): To a magnetically stirred solution of E-butenoyl-C-glycoside 1a 4 45

(2.00 g, 4.04 mmol) in methanol (5 mL, 0.81 M) at 0 °C, CeCl3.6H2O (1.32 g, 4.04 mmol) and 46 48

47

NaBH4 (0.15 g, 4.04 mmol) were sequentially added. The solution was allowed to stir for 0.5 h at 50

49

0 °C, till the completion of reaction (TLC). Excess of NaBH 4 was quenched by saturated 51 53

52

aqueous solution of NH4Cl (10 mL), reaction mixture was filtered and washed with methanol. 5

54

The filtrate was evaporated under reduced pressure to get a crude mass which was extracted with 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 12 of 47

1 3

2

ethyl acetate and water. Ethyl acetate layer was dried (anhyd. Na 2SO4) and concentrated under 5

4

reduced pressure to afford a crude residue, which was purified by column chromatography (SiO2, 6 8

7

60-120 mesh) using a gradient of hexane: ethyl acetate (15:7) as eluent to give (1:1) 10

9

diastereoisomeric mixture of the above compound 2a in 95 % yield (1.88 g) as white solid: mp 12

1

135-137 °C; IR (KBr) νmax cm-1: 3420, 3302, 1749, 1640, 776; [α]25D –28.16° (c 0.1, CHCl3); 1H 13 14

NMR (300 MHz, CDCl3 + CCl4) δ 7.37-7.31 (m, 2H, ArH), 7.04-6.98 (m, 2H, ArH), 6.63 (d, J3,4 17

16

15

= 15.9 Hz, 1H, H-4), 6.16-6.05 (m, 1H, H-3), 5.21-5.15 (m, 1H, H-3´), 5.11-5.03 (m, 1H, H-2´), 18 19

5.00-4.92 (m, 1H, H-4´), 4.56-4.52 (m, 1H, H-2), 4.26-4.13 (m, 2H, H-6´a, H-6´b), 3.74-3.66 (m, 20 2

21

2H, H-1´, H-5´), 3.09 (s, 1H, OH), 2.11 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.01 24

23

(s, 3H, OAc), 1.82-1.76 (m, 2H, CH2); 13C NMR (75 MHz, CDCl3) δ 170.8, 170.2, 169.4 (2C), 25 26

164.0 (d, 1JCF = 248.8 Hz), 132.8, 130.7, 129.5, 128.8 (2C, d, 3JCF = 8.0 Hz), 115.7 (2C, d, 2JCF = 29

28

27

21.6 Hz), 75.9, 74.9, 74.0, 71.9, 71.4, 68.6, 62.5, 38.6, 20.7 (4C); ESI-HRMS calcd for 31

30

C24H29FO10Na ([M+Na]+) 519.1637 found 519.1637. 32 34

3

(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-phenyl 36

35

but-3-ene

(2b): It was obtained by the reaction of E-butenoyl-C-glycoside 1b (2.0 g, 4.20 mmol) in 37 38

methanol (5 mL, 0.84 M) with CeCl3.6H2O (1.37 g, 4.20 mmol) and NaBH4 (0.16 g, 4.20 mmol) 39 40

at 0 °C in 94 % yield (1.88 g) as white solid: mp 108-110 °C; IR (KBr) νmax cm-1: 3356, 1748, 43

42

41

1640, 1219, 771; [α]25D –80.53° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.37-7.21 4 45

(m, 5H, ArH), 6.65-6.57 (m, 1H, H-4), 6.24-6.12 (m, 1H, H-3), 5.20-5.08 (m, 1H, H-3´), 5.04 (t, 46 48

47

J = 9.8 Hz, 1H, H-2´), 4.96 (t, J = 9.5 Hz, 1H, H-4´), 4.55-4.53 (m, 1H, H-2), 4.24- 4.10 (m, 2H, 50

49

H-6´a, H-6´b), 3.68-3.65 (m, 2H, H-1´, H-5´), 2.90 (s, 1H, OH), 2.10 (s, 3H, OAc), 2.05 (s, 3H, 51 52

OAc), 2.03 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.88-1.76 (m, 2H, CH2); 13C NMR (50 MHz, CDCl3 5

54

53

+ CCl4) δ 170.3, 170.0, 169.2, 169.1, 136.5, 131.0, 130.5, 128.5, 127.7 (2C), 126.4, 126.4, 76.3, 56 57 58 59 60 ACS Paragon Plus Environment

Page 13 of 47

The Journal of Organic Chemistry

1 3

2

75.9, 73.9, 71.8, 71.2, 68.5, 62.3, 38.4, 20.7 (2C), 20.5 (2C); ESI-HRMS calcd for C24H30O10Na 5

4

([M+Na]+) 501.1731 found 501.1730. 6 8

7

(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(410

9

bromophenyl)but-3-ene (2c): It was obtained by the reaction of E-butenoyl-C-glycoside 1c (2.0 1 12

g, 3.61 mmol) in methanol (5 mL, 0.72 M) with CeCl3.6H2O (1.18 g, 3.61 mmol) and NaBH4 13 15

14

(0.135 g, 3.61 mmol) at 0 °C in 96 % yield (1.92 g) as white solid: mp 155-157 °C; IR (KBr) 17

16

νmax cm-1: 3412, 1748, 1640, 1278, 776; [α]25D –69.13° (c 0.1, CHCl3); 1H NMR (300 MHz, 19

18

CDCl3) δ 7.46 (d, J = 8.2 Hz, 2H, ArH), 7.26 (d, J = 8.3 Hz, 2H, ArH), 6.60 (d, J = 15.8 Hz, 1H, 20 2

21

H-4), 6.18 (dd, J2,3 = 3.3 Hz, J3,4 = 15.8 Hz, 1H, H-3), 5.19 (t, J = 9.3 Hz, 1H, H-3´), 5.04 (t, J = 24

23

9.7 Hz, 1H, H-2´), 4.94 (t, J = 9.5 Hz, 1H, H-4´), 4.54-4.52 (m, 1H, H-2), 4.26 (dd, J 6´a,6´b = 12.2 25 27

26

Hz, J5´,6´b = 2.0 Hz, 1H, H-6´a), 4.16-4.10 (m, 1H, H-6´b), 3.72-3.69 (m, 2H, H-1´, H-5´), 3.01 (s, 29

28

1H, OH), 2.11 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.01 (s, 3H, OAc), 1.85-1.80 31

30

(m, 2H, CH2); 13C NMR (50 MHz, CDCl3) δ 170.6, 170.3, 169.4 (2C), 135.5, 131.7 (2C), 129.2 32 34

3

(2C), 128.0 (2C), 121.5, 75.9(2C), 73.9, 71.8, 71.4, 68.6, 62.4, 38.4, 20.7 (2C), 20.6 (2C); ESI36

35

HRMS calcd for C24H29BrO10Na ([M+Na]+) 579.0836 found 579.0835. 37 38

(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(439 41

40

chlorophenyl)but-3-ene (2d): It was obtained by the reaction of E-butenoyl-C-glycoside 1d (2.0 43

42

g, 3.92 mmol) in methanol (5 mL, 0.78 M) with CeCl3.6H2O (1.28 g, 3.92 mmol) and NaBH4 45

4

(0.14 g, 3.92 mmol) at 0 °C in 93% yield (1.86 g) as white solid: mp 145-147 °C; IR (KBr) νmax 46 48

47

cm-1: 3421, 1748, 1637, 1234, 778; [α]25D –65.13° (c 0.1, CHCl3); 1H NMR (400 MHz, CDCl3 + 50

49

CCl4) δ 7.28 (bs, 4H, ArH), 6.61 (d, J = 15.8 Hz, 1H, H-4), 6.21-6.12 (m, 1H, H-3), 5.22-5.15 51 53

52

(m, 1H, H-3´), 5.09-5.00 (m, 1H, H-2´), 4.97-4.91 (m, 1H, H-4´), 4.58-4.52 (m, 1H, H-2), 4.11 5

54

(dd, J 6´a,6´b = 12.2 Hz, J5´,6´a = 2.0 Hz, 1H, H-6´a) 4.24 (m, 1H, H-6´b), 3.73-3.65 (m, 2H, H-1´, 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 14 of 47

1 3

2

H-5´), 3.00 (s, 1H, OH), 2.09 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.02 (s, 3H, 5

4

OAc), 1.83-1.77 (m, 2H, CH2); 13C NMR (100 MHz, CDCl3) δ 170.9, 170.5, 169.8, 169.6, 135.3, 6 8

7

133.5, 132.5, 131.9, 129.4, 128.9, 127.9, 127.8, 76.14, 75.2, 74.1, 72.1, 71.5, 68.8, 62.6, 38.6, 10

9

20.9, 20.8, 20.8, 20.7; ESI-HRMS calcd for C24H29ClO10Na ([M+Na]+) 535.1341 found 1 12

535.1341. 13 15

14

(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(217

16

chlorophenyl)but-3-ene (2e): It was obtained by the reaction of E-butenoyl-C-glycosides 1e 18 19

(2.0 g, 3.92 mmol) in methanol (5 mL, 0.78 M) with CeCl3.6H2O (1.28 g, 3.92 mmol) and 20 2

21

NaBH4 (0.14 g, 3.92 mmol) at 0 °C in 91 % yield (1.82 g) as white solid: mp 152-155 °C; IR 24

23

(KBr) νmax cm-1: 3425, 1752, 1648, 1234, 776; [α]25D –57.99° (c 0.1, CHCl3); 1H NMR (300 25 26

MHz, CDCl3) δ 7.51 (d, J = 8.2 Hz, 2H, ArH), 7.33-7.31 (m, 2H, ArH), 6.65 (d, J = 15.6 Hz, 1H, 29

28

27

H-4), 6.30-6.19 (m, 1H, H-3), 5.29-5.21 (m, 1H, H-3´), 5.12-4.96 (m, 2H, H-2´, H-4´), 4.61-4.57 31

30

(m, 1H, H-2), 4.31-4.09 (m, 2H, H-6´a, H-6´b), 3.79-3.72 (m, 2H, H-1´, H-5´), 3.08 (s, 1H, OH), 32 34

3

2.16 (s, 3H, OAc), 2.11 (s, 3H, OAc), 2.10 (s, 3H, OAc), 2.05 (s, 3H, OAc), 1.90-1.85 (m, 2H, 36

35

CH2); 13C NMR (75 MHz, CDCl3) δ 170.7, 170.3, 169.6, 169.5, 135.6, 131.8 (2C), 131.7, 129.3, 37 38

128.0 (2C), 121.6, 75.9, 73.9, 71.9, 71.4, 68.6 (2C), 62.4, 38.4, 20.7 (2C), 20.6 (2C); ESI-HRMS 39 40

calcd for C24H29ClO10Na ([M+Na]+) 535.1341 found 535.1342. 43

42

41

(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(44 45

isopropylphenyl)but-3-ene (2f): It was obtained by the reaction of E-butenoyl-C-glycoside 1f 46 48

47

(2.0 g, 3.84 mmol) in methanol (5 mL, 0.77 M) with CeCl3.6H2O (1.26 g, 3.84 mmol) and 50

49

NaBH4 (0.14 g, 3.84 mmol) at 0 °C in 94 % yield (1.88 g) as white solid: mp 103-105 °C; IR 51 52

(KBr) νmax cm-1: 3331, 1746, 1613, 1228, 689; [α]25D –85.70° (c 0.1, CHCl3); 1H NMR (300 5

54

53

MHz, CDCl3 + CCl4) δ 7.30 (d, J = 2.5 Hz, 2H, ArH), 7.17 (d, J = 7.0 Hz, 2H, ArH), 6.68-6.54 56 57 58 59 60 ACS Paragon Plus Environment

Page 15 of 47

The Journal of Organic Chemistry

1 3

2

(m, 1H, H-4), 6.19-6.07 (m, 1H, H-3), 5.13 (t, J = 9.4 Hz, 1H, H-3´), 5.04 (t, J = 9.8 Hz, 1H, H5

4

2´), 4.94 (t, J = 9.5 Hz, 1H, H-4´), 4.54-4.50 (m, 1H, H-2), 4.22-4.10 (m, 2H, H-6´a, H-6´b), 6 8

7

3.68-3.60 (m, 2H, H-1´, H-5´), 2.94-2.85 (m, 1H, CH), 2.82 (s, 1H, OH), 2.11 (s, 3H, OAc), 2.04 10

9

(s, 3H, OAc), 2.03 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.79-1.74 (m, 2H, CH2), 1.26 (s, 3H, CH3), 12

1

1.24 (s, 3H, CH3); 13C NMR (50 MHz, CDCl3 + CCl4) δ 170.3, 170.0, 169.2 (2C), 148.5, 134.1, 13 15

14

130.5, 130.0, 126.6 (2C), 126.4 (2C), 75.9, 74.9, 74.0, 71.8, 71.3, 68.5, 62.3, 38.4, 33.8, 23.9 17

16

(2C), 20.5 (4C); ESI-HRMS calcd for C27H36O10Na ([M+Na]+) 543.2201 found 543.2201. 18 19

(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(420 2

21

methoxyphenyl)but-3-ene (2g): It was obtained by the reaction of E-butenoyl-C-glycoside 1g 24

23

(2.0 g, 3.93 mmol) in methanol (5 mL, 0.79 M) with CeCl3.6H2O (1.28 g, 3.93 mmol) and 25 27

26

NaBH4 (0.15 g, 3.93 mmol) at 0 °C in 94 % yield (1.88 g) as white solid: mp 95-97 °C; IR (KBr) 29

28

νmax cm-1: 3556, 1745, 1640, 1278, 791; [α]25D –89.70° (c 0.1, CHCl3); 1H NMR (300 MHz, 31

30

CDCl3 + CCl4) δ 7.29-7.26 (m, 2H, ArH), 6.84 (d, J = 8.6 Hz, 2H, ArH), 6.57 (d, J = 15.5 Hz, 32 34

3

1H, H-4), 6.08-5.97 (m, 1H, H-3), 5.10 (t, J = 9.4 Hz, 1H, H-3´), 5.07-4.97 (m, 1H, H-2´), 4.91 36

35

(t, J = 9.6 Hz, 1H, H-4´), 4.51-4.46 (m, 1H, H-2), 4.23-4.09 (m, 2H, H-6´a, H-6´b), 3.80 (s, 3H, 37 38

OCH3), 3.66-3.60 (m, 2H, H-1´, H-5´), 2.80 (s, 1H, OH), 2.09 (s, 3H, OAc), 2.04 (s, 3H, OAc), 39 41

40

43

42

2.02 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.87-1.73 (m, 2H, CH2);

13

C NMR (50 MHz, CDCl3 +

CCl4) δ 170.3, 170.0, 169.1 (2C), 159.3, 131.9, 130.2, 129.2, 128.7, 127.6, 113.4 (2C), 75.8, 4 45

74.0, 71.8, 71.4, 68.5 (2C), 62.3, 55.1, 38.4, 20.5 (4C); ESI-HRMS calcd for C25H32O11Na 46 48

47

([M+Na]+) 531.1837 found 531.1836. 50

49

(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(251 53

52

naphathalenyl)but-3-ene (2h): It was obtained by the reaction of E-butenoyl-C-glycoside 1h 5

54

(2.0 g, 3.80 mmol) in methanol (5 mL, 0.76 M) with CeCl3.6H2O (1.24 g, 3.80 mmol) and 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 16 of 47

1 3

2

NaBH4 (0.14 g, 3.80 mmol) at 0 °C in 89 % yield (1.78 g) as white solid: mp 112-115 °C; IR 5

4

(KBr) νmax cm-1: 3436, 1749, 1640, 1237, 774; [α]25D –54.64° (c 0.1, CHCl3); 1H NMR (300 6 7

MHz, CDCl3 + CCl4) δ 7.87-7.78 (m, 1H, ArH), 7.61-7.57 (m, 2H, ArH), 7.52-7.38 (m, 5H, 10

9

8

ArH, H-4), 6.30-6.19 (m, 1H, H-3), 5.22-5.17 (m, 1H, H-3´), 5.12-4.95 (m, 2H, H-2´, H-4´), 1 12

4.70-4.66 (m, 1H, H-2), 4.26-4.12 (m, 2H, H-6´a, H-6´b), 3.73 (m, 2H, H-1´, H-5´), 2.97 (s, 1H, 13 15

14

OH), 2.09 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.97-1.89 (m, 17

16

2H, CH2); 18

13

C NMR (50 MHz, CDCl3 + CCl4) δ 169.5 (2C), 168.7 (2C), 135.3, 134.43, 133.7,

19

131.3, 128.5, 127.9, 127.4, 125.9, 125.6, 125.4, 123.7 (2C), 76.0, 74.9, 74.0, 71.9, 70.8, 68.5, 20 2

21

62.3, 38.6, 20.5 (2C), 20.4 (2C); ESI-HRMS calcd for C28H32O10Na ([M+Na]+) 551.1888 found 24

23

551.1886. 25 27

26

(E)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-2(R/S)-hydroxy-4-phenyl but-3-ene (2i): It 29

28

was obtained by the reaction of E-butenoyl-C-glycoside 1i (2.0 g, 4.95 mmol) in methanol (5 31

30

mL, 1 M) with CeCl3.6H2O (1.61 g, 4.95 mmol) and NaBH4 (0.18 g, 4.95 mmol) at 0 °C in 95 % 32 3

yield (1.90 g) as white solid: mp 122-125 °C; IR (KBr) νmax cm-1: 3438, 1748, 1642, 1220, 773; 36

35

34

[α]25D –75.82° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.35-7.23 (m, 5H, ArH), 37 38

6.63 (d, J = 15.8 Hz, 1H, H-4), 6.23-6.13 (m, 1H, H-3), 5.20-5.10 (m, 1H, H-3´), 5.02-4.94 (m, 39 41

40

1H, H-4´), 4.92-4.84 (m, 1H, H-2´), 4.57-4.49 (m, 1H, H-2), 4.18-4.10 (m, 1H, H-5´a), 3.72-3.33 43

42

(m, 1H, H-1´), 3.31-3.24 (m, 1H, H-5´b), 2.75 (s, 1H, OH), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 45

4

2.03 (s, 3H, OAc), 1.83-1.71 (m, 2H CH2); 13C NMR (50 MHz, CDCl3 + CCl4) δ 169.9, 169.4, 46 48

47

169.3, 136.6, 131.9, 130.6, 127.7, 126.4 (2C), 128.5 (2C), 75.2, 73.9, 71.9, 69.4, 68.6, 66.9, 38.7, 50

49

20.7 (3C); ESI-HRMS calcd for C21H26O8Na ([M+Na]+) 429.1520 found 429.1520. 51 53

52

(E)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-2(R/S)-hydroxy-4-(4-chlorophenyl)but-35

54

ene (2j): It was obtained by the reaction of E-butenoyl-C-glycoside 1j (2.0 g, 4.73 mmol) in 56 57 58 59 60 ACS Paragon Plus Environment

Page 17 of 47

The Journal of Organic Chemistry

1 3

2

methanol (5 mL, 0.91 M) with CeCl3.6H2O (1.55 g, 4.73 mmol) and NaBH4 (0.18 g, 4.73 mmol) 5

4

at 0 °C in 96 % yield (1.92 g) as white solid: mp 122-125 °C; IR (KBr) νmax cm-1: 3330, 1746, 6 7

1627, 1226, 698; [α]25D –69.78° (c 0.1, CHCl3); 1 H NMR (300 MHz, CDCl3 + CCl4) δ 7.16 (bs, 10

9

8

4H, ArH), 6.58 (d, J = 15.0 Hz, 1H, H-4), 6.19-6.08 (m, 1H, H-3), 5.19-5.09 (m, 1H, H-3´), 5.011 12

4.84 (m, 2H, H-4´, H-2´), 4.55-4.51 (m, 1H, H-2), 4.18-4.11 (m, 1H, H-5´a), 3.70-3.57 (m, 1H, 13 15

14

H-1´), 3.31-3.24 (m, 1H, H-5´b), 2.82 (s, 1H, OH), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.03 (s, 17

16

3H, OAc), 1.78-1.71 (m, 2H, CH2); 18

13

C NMR (75 MHz, CDCl3 + CCl4) δ 170.5, 169.6 (2C),

19

135.2, 133.5, 131.6, 129.4, 128.7 (2C), 127.8 (2C), 76.6, 73.7, 72.0, 71.0, 69.2, 66.9, 38.7, 21.1 20 2

21

(3C); ESI-HRMS calcd for C21H25ClO8Na ([M+Na]+) 463.1130 found 463.1130. 24

23

(E)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-2(R/S)-hydroxy-4-(4-flourophenyl)but-3-ene 25 27

26

(2k): It was obtained by the reaction of E-butenoyl-C-glycoside 1k (2.0 g, 4.56 mmol) in 29

28

methanol (5 mL, 0.95 M) with CeCl3.6H2O (1.49 g, 4.56 mmol) and NaBH4 (0.17 g, 4.56 mmol) 31

30

at 0 °C in 92 % yield (1.84 g) as white solid; mp 122-125 °C; IR (KBr) νmax cm-1: 3438, 1748, 32 3

1632, 1220, 769; [α]25D –93.6° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.35-7.29 36

35

34

(m, 2H, ArH), 7.02-7.96 (m, 2H, ArH), 6.58 (d, J = 15.0 Hz, 1H, H-4), 6.13-6.02 (m, 1H, H-3), 37 38

5.19-5.09 (m, 1H, H-3´), 5.01-4.83 (m, 2H, H-4´, H-2´), 4.53-4.47 (m, 1H, H-2), 4.18-4.09 (m, 39 41

40

1H, H-5´a), 3.71-3.52 (m, 1H, H-1´), 3.31-3.24 (t, J = 10.6 Hz, 1H, H-5´b), 2.81 (s, 1H, OH), 43

42

2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.81-1.69 (m, 2H, CH2); 13C NMR (75 45

4

MHz, CDCl3 + CCl4) δ 170.3, 169.4 (2C), 132.8, 131.0, 129.4, 128.8, 128.0 (2C, d, 3JCF = 8.2 46 48

47

Hz), 115.0 (2C, d, 2JCF = 22.1 Hz), 75.3, 72.1, 71.0, 68.9, 66.8, 38.4, 20.6 (3C); ESI-HRMS 50

49

calcd for C21H25FO8 ([M+H]+) 425.1790 found 425.1795. 51 53

52

(E)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-2(R/S)-hydroxy-4-(4-methylphenyl)but-35

54

ene (2l): It was obtained by the reaction of E-butenoyl-C-glycoside 1l (2.0 g, 4.60 mmol) in 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 18 of 47

1 3

2

methanol (5 mL, 0.96 M) with CeCl3.6H2O (1.50 g, 4.60 mmol) and NaBH4 (0.17 g, 4.60 mmol) 5

4

at 0 °C in 95 % yield (1.90 g) as white solid; mp 152-155 °C; IR (KBr) νmax cm-1: 3556, 1748, 6 7

1641, 1221, 668, 738; [α]25D –77.01° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.27-7.23 10

9

8

(m, 2H, ArH), 7.12-7.09 (m, 2H, ArH), 6.58 (d, J2 = 15.0 Hz, 1H, H-4), 6.17-6.10 (m, 1H, H-3), 1 12

5.16-5.09 (m, 1H, H-3´), 5.02-4.93 (m, 1H, H-4´), 4.91-4.83 (m, 1H, H-2´), 4.54-4.47 (m, 1H, H13 15

14

2), 4.16-4.10 (m, 1H, H-5´a), 3.55-3.48 (m, 1H, H-1´), 3.33-3.26 (m,1H, H-5´b), 2.68 (s, 1H, 17

16

OH), 2.35 (s, 3H, CH3), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.79-1.70 (m, 18 19

2H, CH2); 20

13

C NMR (75 MHz, CDCl3) δ 170.8, 170.2, 169.7, 138.1, 133.7, 130.2, 129.0 (2C),

2

21

126.6 (3C), 74.1, 72.3, 70.8, 69.3, 66.3, 63.1, 37.8, 21.4, 20.9 (3C); ESI-HRMS calcd for 24

23

C22H28O8Na ([M+Na]+) 443.1673 found 443.1679. 25 27

26

(E)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-2(R/S)-hydroxy-4-(4-methoxyphenyl)but-329

28

ene (2m): It was obtained by the reaction of E-butenoyl-C-glycoside 1m (2.0 g, 4.78 mmol) in 31

30

methanol (5 mL, 0.92 M) with CeCl3.6H2O (1.56 g, 4.78 mmol) and NaBH4 (0.18 g, 4.78 mmol) 32 3

at 0 °C in 97 % yield (1.94 g) as white solid; mp 105-110 °C; IR (KBr) νmax cm-1: 3556, 3420, 36

35

34

1745, 1640, 1224, 778; [α]25D –88.21° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 37 38

7.31-7.27 (m, 2H, ArH), 6.84-6.56 (m, 2H, ArH), 6.56 (dd, J1 = 2.4 Hz, J2 = 15.8 Hz, 1H, H-4), 39 41

40

6.08-6.01 (m, 1H, H-3), 5.17-5.10 (m, 1H, H-3´), 5.02-4.91 (m, 1H, H-4´), 4.90-4.83 (m, 1H, H43

42

2´), 4.53-4.46 (m, 1H, H-2), 4.18-4.10 (m, 1H, H-5´a), 3.81 (s, 3H, OCH3), 3.72-3.48 (m, 1H, H4 45

1´), 3.33-3.24 (m, 1H, H-5´b), 2.64 (s, 1H, OH), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.03 (s, 46 48

47

3H, OAc), 1.80-1.70 (m, 2H, CH2); 50

49

13

C NMR (50 MHz, CDCl3 + CCl4) δ 170.4, 169.6 (2C),

159.5, 130.1, 129.3 (2C),127.3 (2C), 114.1(2C), 73.6, 71.9, 71.2, 69.4 (2C), 66.6, 55.1, 38.9, 51 52

20.9 (3C); ESI-HRMS calcd for C22H28O9Na ([M+Na]+) 459.1626 found 459.1629. 54

53 5 56 57 58 59 60

ACS Paragon Plus Environment

Page 19 of 47

The Journal of Organic Chemistry

1 3

2

(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-mannopyranosyl)-2(R/S)-hydroxy-4-(45

4

methylphenyl)but-3-ene (2n): It was obtained by the reaction of E-butenoyl-C-glycoside 1n 6 8

7

(2.0 g, 4.08 mmol) in methanol (5 mL, 0.82 M) with CeCl3.6H2O (1.33 g, 4.08 mmol) and 10

9

NaBH4 (0.15 g, 4.08 mmol) at 0 °C in 95 % yield (1.90 g) as white solid: mp 170-173 °C; IR 12

1

(KBr) νmax cm-1: 3496, 1744, 1652, 1220, 779; [α]25D –73.42° (c 0.1, CHCl3); 1H NMR (300 13 14

MHz, CDCl3 + CCl4) δ 7.27-7.23 (m, 2H, ArH), 7.09-7.06 (d, J = 7.7 Hz, 2H, ArH), 6.57-6.48 17

16

15

(m, 1H, H-4), 6.16-6.04 (m, 1H, H-3), 5.34-5.28 (m, 1H, H-2´), 5.21-5.11 (m, 1H, H-4´), 4.0618 19

5.00 (m, 1H, H-3´), 4.42-4.40 (m, 1H, H-2), 4.25-4.06 (m, 2H, H-6´a, H-6´b), 3.97-3.83 (m, 1H, 20 2

21

H-1´), 3.64-3.61 (m, 1H, H-5´), 2.92 (s, 1H, OH), 2.32 (s, 3H, CH3), 2.16 (s, 3H, OAc), 2.08 (s, 24

23

3H, OAc), 2.03 (s, 3H, OAc), 1.96 (s, 3H, OAc), 1.64-1.52 (m, 2H, CH2); 13C NMR (50 MHz, 25 26

CDCl3 + CCl4) δ 170.4 (2C), 169.8, 169.4, 137.4, 133.7, 130.7, 130.4, 129.6 (2C), 126.4 (2C), 29

28

27

75.7, 73.9, 72.1, 70.6, 69.8, 66.6, 62.8, 37.8, 21.1, 20.6 (4C); ESI-HRMS calcd for C25H32O10Na 31

30

([M+Na]+) 515.1888 found 515.1888. 32 34

3

(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-mannopyranosyl)-2(R/S)-hydroxy-4-(436

35

methoxyphenyl) but-3-ene (2o): It was obtained by the reaction of E-butenoyl-C-glycoside 1o 37 38

(2.0 g, 3.93 mmol) in methanol (5 mL, 0.79 M) with CeCl3.6H2O (1.28 g, 3.93 mmol) and 39 40

NaBH4 (0.14 g, 3.93 mmol) at 0 °C in 96 % yield (1.92 g) as white solid: IR (Neat) νmax cm-1: 43

42

41

3445, 1763, 1640, 1228, 779; [α]25D –91.74° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.33 4 45

(d, J = 8.8 Hz, 2H, ArH), 6.88 (d, J = 7.3 Hz, 2H, ArH), 6.85-6.51 (m, 1H, H-4), 6.12-6.02 (m, 46 48

47

1H, H-3), 5.39-5.34 (m, 1H, H-2´), 5.28-5.19 (m, 1H, H-4´), 5.10-5.05 (m, 1H, H-3´), 4.48-4.46 50

49

(m, 1H, H-2), 4.28-4.13 (m, 2H, H-6´a, H-6´b), 4.02-3.82 (m, 1H, H-1´), 3.72 (s, 3H, OCH3), 51 53

52

3.71-3.66 (m, 1H, H-5´), 2.90 (s, 1H, OH), 2.19 (s, 3H, OAc), 2.13 (s, 3H, OAc), 2.06 (s, 3H, 5

54

OAc), 2.00 (s, 3H, OAc), 1.96-1.92 (m, 2H, CH2); 56

13

C NMR (50 MHz, CDCl3) δ 170.4 (2C),

57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 20 of 47

1 3

2

169.8, 169.4, 159.3, 137.4, 133.7, 130.1, 127.6 (2C), 113.9 (2C), 75.7, 73.9, 72.1, 70.6, 69.8, 5

4

66.6, 62.8, 37.8, 21.1, 20.6 (4C); ESI-HRMS calcd for C25H32O11Na ([M+Na]+) 531.1837 found 6 8

7

531.1827. 10

9

General experimental procedure for the synthesis of 1-glycosyl 1,3-dienes (3a-3o) 1 12

(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-fluorophenyl)but-1,3-diene 13 15

14

(3a): To a stirring solution of 1-glycosyl-4-phenyl butene-2-ol 2a (1.0 g, 2.01 mmol) in 17

16

anhydrous CH2Cl2 (5 mL, 0.40 M) and Et3N (2.21 mmol) at 0 °C, methanesulfonyl chloride 18 19

(0.31 mL, 4.02 mmol) was slowly added. After 15 minutes the stirring reaction mixture was 20 2

21

brought to 40 °C and stirred for 4 hours till the reaction is completed (TLC). The reaction 24

23

mixture was evaporated under reduced pressure and extracted by ethyl acetate/water. The ethyl 25 27

26

acetate layer was dried (anhyd. Na2SO4) and evaporated under reduced pressure to give a crude 29

28

mass. The latter was purified by column chromatography (SiO 2, 60-120 mesh) using hexane: 31

30

ethyl acetate (17:3) as eluent to give compound 3a in 68% yield (0.66 g) as a white solid: mp 32 3

120-122 °C; IR (KBr) νmax cm-1: 3526, 2901, 1749, 1510, 1228, 774; [α]25D –82.83° (c 0.1, 36

35

34

MeOH); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.36-7.33 (m, 2H, ArH), 7.04-6.99 (m, 2H, ArH), 37 38

6.65 (dd, J3,4 = 15.5 Hz, J2,3 = 10.1 Hz, 1H, H-3), 6.58 (d, J = 15.5 Hz, 1H, H-4), 6.43 (dd, J1,2 = 39 41

40

15.2 Hz, J2,3 = 10.1 Hz, 1H, H-2), 5.67 (dd, J1,2 = 15.2 Hz, J1,1´ = 7.5 Hz, 1H, H-1), 5.26 (t, J = 43

42

9.4 Hz, 1H, H-3´), 5.11 (t, J = 9.7 Hz, 1H, H-4´), 4.98 (t, J = 9.6 Hz, 1H, H-2´), 4.27 (dd, J6´a,6´b 4 45

= 12.2 Hz, J5´,6´a = 4.7 Hz, 1H, H-6´a), 4.15 (dd, J 6´a,6´b = 12.2 Hz, J5´,6´b = 2.0 Hz, 1H, H-6´b), 46 48

47

3.97 (t, J = 7.7 Hz, 1H, H-1´), 3.74 (ddd, J4´,5´ = 9.8 Hz, J5´,6´a = 4.6 Hz, J5´,6´b = 2.2 Hz, 1H, H-5´), 50

49

2.10 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.99 (s, 3H, OAc); 51

13

C NMR (100

52

MHz, CDCl3 + CCl4) δ 170.6, 170.2, 169.4, 169.3, 164.60 (d, 1JCF = 248.6 Hz), 135.1, 133.1, 5

54

53

132.8, 128.08 (2C, d, 3JCF = 7.91 Hz), 127.4, 127.2, 115.8 (2C, d, 2JCF = 22.3 Hz), 79.1, 75.6, 56 57 58 59 60 ACS Paragon Plus Environment

Page 21 of 47

The Journal of Organic Chemistry

1 3

2

73.9, 71.4, 68.4, 62.2, 20.8, 20.7, 20.6, 20.5; ESI-HRMS calcd for C24H27FO9Na ([M+Na]+) 5

4

501.1531 found 501.1531. 6 8

7

(ZE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-fluorophenyl)but-1,3-diene 10

9

(3a'): White solid, 10 % yield (0.08 g); mp 118-120 °C; IR (KBr) νmax cm-1: 3481, 2896, 1753, 12

1

1620, 1228, 779; [α]25D –82.83° (c 0.1, MeOH); 1H NMR (300 MHz, CDCl3) δ 7.43-7.40 (m, 13 15

14

2H, ArH), 7.11-7.01 (m, 2H, ArH), 6.90 (dd, J3,4 = 15.4 Hz, J2,3 = 10.9 Hz, 1H, H-3), 6.60 (d, J = 17

16

15.3 Hz, 1H, H-4), 6.33 (t, J = 11.03 Hz, 1H, H-2), 5.39 (dd, J1,2 = 10.5 Hz, J1,1´ = 9.0 Hz, 1H, H18 19

1), 5.32 (t, J = 9.5 Hz, 1H, H-3´), 5.11 (t, J = 9.8 Hz, 1H, H-4´), 4.98 (t, J = 9.5 Hz, 1H, H-2´), 20 2

21

4.48 (t, J = 9.1 Hz, 1H, H-1´), 4.28 (dd, J6´a,6´b = 12.5 Hz, J5´,6´a = 5.0 Hz, 1H, H-6´a), 4.15 (dd, J 24

23

6´a,6´b =

25

12.3 Hz, J5´,6´b = 2.0 Hz, 1H, H-6´b), 3.79 (ddd, J4´,5´ = 9.8 Hz, J5´,6´a = 4.6 Hz, J5´,6´b = 2.0

27

26

Hz, 1H, H-5´), 2.07 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.98 (s, 3H, OAc);

13

C

29

28

NMR (75 MHz, CDCl3) δ 171.0, 170.7, 169.8 (2C), 164.6 (d, 1JCF = 251.0 Hz), 134.7, 133.7, 31

30

133.2 , 128.5 (2C, d, 3JCF = 7.9 Hz), 126.0, 123.3, 116.0 (2C d, 2JCF = 21.9 Hz), 76.1, 74.9, 74.1, 32 3

71.9, 68.7, 62.6, 20.9 (4C); ESI-HRMS calcd for C24H27FO9 ([M+H]+) 479.1712 found 36

35

34

479.1709. 37 38

(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-phenyl but-1,3-diene (3b): It was 39 41

40

obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2b (1.00 g, 2.09 mmol) in anhydrous 43

42

CH2Cl2 (5 mL, 0.42 M) at 0-40 °C with Et 3N (2.03 mmol) and methanesulfonyl chloride (0.32 45

4

mL, 4.18 mmol) in 70 % yield (0.67 g) as white solid: mp 135-137 °C; IR (KBr) νmax cm-1: 3452, 46 48

47

1748, 1640, 1219, 783; [α]25D –7.76° (c 0.1, MeOH); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.4050

49

7.37 (m, 2H, ArH), 7.34-7.24 (m, 3H, ArH), 6.74 (dd, J3,4 = 15.1 Hz, J2,3 = 10.3 Hz, 1H, H-3), 51 53

52

6.58 (d, J = 15.4 Hz, 1H, H-4), 6.45 (dd, J1,2 = 15.0 Hz, J2,3 = 10.3 Hz, 1H, H-2), 5.67 (dd, J1,1´ = 5

54

7.2 Hz, J1,2 = 15.1 Hz, 1H, H-1), 5.23 (t, J = 9.3 Hz, 1H, H-3´), 5.10 (t, J = 9.8 Hz, 1H, H-4´), 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 22 of 47

1 3

2

4.97 (t, J = 9.5 Hz, 1H, H-2´), 4.30 (dd, J6´a,6´b = 12.4 Hz, J5´,6´a = 4.8 Hz, 1H, H-6´a), 4.15 (dd, 5

4

J6´a,6´b = 12.5 Hz, J5´,6´b = 2.0 Hz, 1H, H-6´b), 3.96 (t, J = 8.2 Hz, 1H, H-1´), 3.73-3.71 (m, 1H, H6 7

5´), 2.12 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.00 (s, 3H, OAc); 13C NMR (50 10

9

8

MHz, CDCl3 + CCl4) δ 170.3, 170.0, 169.1 (2C), 135.2, 134.4 (2C), 128.6 (2C), 128.0, 127.4 1 12

(2C), 126.5 (2C), 79.2, 75.7, 73.9, 71.4, 68.4, 62.1, 20.7, 20.6, 20.5 (2C); ESI-HRMS calcd for 13 14

C24H28O9Na ([M+Na]+) 483.1626 found 483.1624. 17

16

15

(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-bromophenyl)but-1,3-diene 18 19

(3c): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2c (1.00 g, 1.79 mmol) 20 2

21

in anhydrous CH2Cl2 (5 mL, 0.36 M) at 0-40 °C with Et3N (2.15 mmol), methanesulfonyl 24

23

chloride (0.3 mL, 3.58 mmol) in 69 % yield (0.66 g) as white solid: mp 142-145 °C; IR (KBr) 25 26

νmax cm-1: 3543, 2892, 1748, 1640, 1246, 1047, 773; [α]25D –69.70° (c 0.1, MeOH); 1H NMR 29

28

27

(300 MHz, CDCl3 + CCl4) δ 7.29 (m, 2H, ArH), 7.26 (d, J = 7.7 Hz, 2H, ArH), 6.70 (dd, J3,4 = 31

30

15.4 Hz, J2,3 = 10.4 Hz, 1H, H-3), 6.57 (d, 1H, J3,4 = 15.5 Hz, 1H, H-4), 6.43 (dd, J1,2 = 15.1 Hz, 32 34

3

J2,3 = 10.4 Hz, 1H, H-2), 5.63 (dd, J1,2 = 15.0 Hz, J1,1´ = 7.4 Hz, 1H), 5.23 (t, J = 9.4 Hz, 1H, H36

35

3´), 5.09 (t, J = 9.7 Hz, 1H, H-4´), 4.97 (t, J = 9.6 Hz, 1H, H-2´), 4.27 (dd, J6´a,6´b = 12.3 Hz, 37 38

J5´,6´a = 4.9 Hz, 1H, H-6´a), 4.12 (d, J = 12.1 Hz, 1H, H-6´b), 3.95 (t, J = 7.9 Hz, 1H, H-1´), 3.73 39 40

(m, 1H, H-5´), 2.10 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.99 (s, 3H, OAc); 13C 43

42

41

NMR (50 MHz, CDCl3 + CCl4) δ 170.4, 170.1, 169.2 (2C), 137.8, 135.5, 134.4, 133.8, 129.3 4 45

(3C), 126.7, 126.5 (2C), 79.2, 75.6, 73.9, 71.5, 68.4, 62.1, 20.6 (4C); ESI-HRMS calcd for 46 48

47

C24H27BrO9Na ([M+Na]+) 561.0836 found 561.0835. 50

49

(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-chlorophenyl)but-1,3-diene 51 53

52

(3d): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2d (1.00 g, 1.95 mmol) 5

54

in anhydrous CH2Cl2 (5 mL, 0.39 M) at 0-40 °C with Et 3N (2.15 mmol) and methanesulfonyl 56 57 58 59 60 ACS Paragon Plus Environment

Page 23 of 47

The Journal of Organic Chemistry

1 3

2

chloride (0.3 mL, 3.90 mmol) in 69 % yield (0.67 g) as white solid: mp 138-140 °C; IR (KBr) 5

4

νmax cm-1: 3410, 2889, 1743, 1680, 1238, 791; [α]25D –129.16° (c 0.1, CHCl3); 1H NMR (300 6 7

MHz, CDCl3 + CCl4) δ 7.30 (bs, 4H, ArH), 6.71 (dd, J3,4 = 15.4 Hz, J2,3 = 10.5 Hz, 1H, H-3), 10

9

8

6.53 (d, J = 15.6 Hz, 1H, H-4), 6.44 (dd, J1,2 = 15.1 Hz, J2,3 = 10.7 Hz, 1H, H-2), 5.69 (dd, J1,2 = 1 12

15.0 Hz, J1,1´ = 7.4 Hz, 1H, H-1), 5.25 (t, J = 9.3 Hz, 1H, H-3´), 5.15 (t, J = 9.7 Hz, 1H, H-4´), 13 15

14

4.98 (t, J = 9.5 Hz, 1H, H-2´), 4.27 (dd, J6´a,6´b = 12.2 Hz, J5´,6´a = 4.5 Hz, 1H, H-6´a), 4.14 (d, J = 17

16

12.2 Hz, 1H, H-6´b), 3.97 (t, J = 8.0 Hz, 1H, H-1´), 3.74 (ddd, J4´,5´ = 9.6 Hz, J5´,6´a = 4.2 Hz, 18 19

J5´,6´b = 2.3 Hz, 1H, H-5´), 2.10 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.99 (s, 3H, 20 2

21

OAc); 13C NMR (50 MHz, CDCl3 + CCl4) δ 170.3, 170.0, 169.1 (2C), 135.1, 134.7, 133.7, 133.0, 24

23

128.8 (2C), 128.0, 128.01, 127.6 (2C), 78.9, 75.7, 73.9, 71.4, 68.4, 62.1, 20.7, 20.6, 20.6, 20.5; 25 26

ESI-HRMS calcd for C24H27ClO9Na ([M+Na]+) 517.1236 found 517.1236. 29

28

27

(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(2-chlorophenyl)but-1,3-diene 31

30

(3e): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2e (1.00 g, 1.95 mmol) 32 34

3

in anhydrous CH2Cl2 (5 mL, 0.39 M) at 0-40 °C with Et 3N (2.01 mmol) and methanesulfonyl 36

35

chloride (0.3 mL, 3.80 mmol) 66 % yield (0.63 g) as white solid: mp 130-132 °C; IR (KBr) νmax 38

37

cm-1: 3424, 2910, 1753, 1689, 1232, 669; [α]25D –57.9° (c 0.1, CHCl3); 1H NMR (300 MHz, 39 41

40

CDCl3) δ 7.36 (s, 1H, ArH), 7.27-7.21 (m, 3H, ArH), 6.76 (m, 1H, H-3), 6.53 (d, J = 15.9 Hz, 43

42

1H, H-4), 6.44-6.39 (m, 1H, H-2), 5.72 (dd, J1,2 = 15.1 Hz, J1,1´ = 7.4 Hz, 1H, H-1), 5.25 (t, J = 4 45

9.4 Hz, 1H, H-3´), 5.11 (t, J = 9.8 Hz, 1H, H-4´), 4.97 (t, J = 9.6 Hz, 1H, H-2´), 4.28 (dd, J6´a,6´b 46 48

47

= 12.4 Hz, J5´,6´a = 4.7 Hz, 1H, H-6´a), 4.16 (d, J = 12.2 Hz, 1H, H-6´b), 3.97 (m, 1H, H-1´), 3.74 50

49

(ddd, J4´,5´ = 9.9 Hz, J5´,6´a = 4.6 Hz, J5´,6´b = 2.1 Hz, 1H, H-5´), 2.10 (s, 3H, OAc), 2.04 (s, 3H, 51 52

OAc), 2.01 (s, 3H, OAc), 1.99 (s, 3H, OAc); 13C NMR (50 MHz, CDCl3) δ 170.7, 170.3, 169.5, 5

54

53

169.4, 138.6, 134.7, 134.6, 132.8, 129.8, 128.8, 128.5, 127.8, 126.5, 124.7, 78.9, 75.7, 73.9, 71.5, 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 24 of 47

1 3

2

68.5, 62.3, 20.7, 20.6, 20.6, 20.5; ESI-HRMS calcd for C24H27ClO9Na ([M+Na]+) 517.1236 5

4

found 517.1237. 6 8

7

(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-isopropylphenyl)but-1,3-diene 10

9

(3f): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2f (1.00 g, 1.92 mmol) 1 12

in anhydrous CH2Cl2 (5 mL, 0.38 M) at 0-40 °C with Et3N (2.11 mmol) and methanesulfonyl 13 14

chloride (0.3 mL, 3.84 mmol) in 67 % yield (0.64 g) as white solid: mp 92-95 °C; IR (KBr) νmax 17

16

15

cm-1: 3407, 2849, 2496, 1689, 1460, 1220, 694; [α]25D –7.15° (c 0.1, CHCl3); 1H NMR (300 19

18

MHz, CDCl3 + CCl4) δ 7.30 (d, J = 8.1 Hz, 2H, ArH), 7.18 (d, J = 8.0 Hz, 2H, ArH), 6.71 (dd, 20 2

21

J3,4 = 15.5 Hz, J2,3 = 10.3 Hz, 1H, H-3), 6.58 (d, J = 15.6 Hz, 1H, H-4), 6.44 (dd, J1,2 = 15.0 Hz, 24

23

J2,3 = 10.3 Hz, 1H, H-2), 5.65 (dd, J1,2 = 15.0 Hz, J1,1´ = 7.6 Hz, 1H, H-1), 5.23 (t, J = 9.4 Hz, 1H, 25 27

26

H-3´), 5.10 (t, J = 9.7 Hz, 1H, H-4´), 4.97 (t, J = 9.6 Hz, 1H, H-2´), 4.29 (dd, J6´a,6´b = 12.5 Hz, 29

28

J5´,6´a = 4.9 Hz, 1H, H-6´a), 4.14 (dd, J 6´a,6´b = 12.3 Hz, J5´,6´b = 1.6 Hz, 1H, H-6´b), 3.95 (t, J = 31

30

8.0 Hz, 1H, H-1´), 3.74-3.70 (m, 1H, H-5´), 2.95-2.86 (m, 1H, CH), 2.11 (s, 3H, OAc), 2.05 (s, 32 34

3

3H, OAc), 2.03 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.27 (m, 6H, 2×CH3); 36

35

13

C NMR (50 MHz,

CDCl3 + CCl4) δ 170.2 (2C), 169.4 (2C), 149.0, 136.4 (2C), 135.4 (2C), 134.5, 134.3, 126.4 37 38

(3C), 79.2, 75.7, 73.9, 71.5, 69.5, 62.3, 33.9, 23.9 (2C), 20.6 (4C); ESI-HRMS calcd for 39 40

C27H34O9Na ([M+Na]+) 525.2095 found 525.2095. 43

42

41

(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-methoxyphenyl)but-1,3-diene 4 45

(3g): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2g (1.00 g, 1.96 mmol) 46 48

47

in anhydrous CH2Cl2 (5 mL, 0.39 M) at 0-40 °C with Et 3N (2.16 mmol) and methanesulfonyl 50

49

chloride (0.3 mL, 3.92 mmol) as described above in 76 % yield (0.78 g) as a white solid: mp 51 52

110-112 °C; IR (KBr) νmax cm-1: 3368, 2890, 1745, 1652, 1234, 698; [α]25D –51.02° (c 0.1, 5

54

53

MeOH); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.35-7.30 (m, 2H, ArH), 6.85-6.82 (m, 2H, ArH), 56 57 58 59 60 ACS Paragon Plus Environment

Page 25 of 47

The Journal of Organic Chemistry

1 3

2

6.56-6.53 (m, 1H, H-3), 6.45 (d, J = 15.3 Hz, 1H, H-4), 6.41 (dd, J1,2 = 15.0 Hz, J2,3 = 10.0 Hz, 5

4

1H, H-2), 5.63 (dd, J1,2 = 15.0 Hz, J1,1´ = 7.6 Hz, 1H, H-1), 5.22 (t, J = 9.4 Hz, 1H, H-3´), 5.09 (t, 6 8

7

J = 9.7 Hz, 1H, H-4´), 4.96 (t, J = 9.5 Hz, 1H, H-2´), 4.27 (dd, J6´a,6´b = 12.3 Hz, J5´,6´a = 4.7 Hz, 10

9

1H, H-6´a), 4.11 (d, J = 12.2 Hz, 1H, H-6´b), 3.93 (t, J = 8.8 Hz, 1H, H-1´), 3.81 (s, 3H, OCH3), 1 12

3.73-3.69 (m, 1H, H-5´), 2.10 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.01 (s, 3H, OAc), 1.99 (s, 3H, 13 15

14

17

16

OAc);

13

C NMR (50 MHz, CDCl3 + CCl4) δ 170.4, 169.9, 169.2 (2C), 159.5, 135.7, 134.0,

129.4, 127.8 (2C), 126.2, 125.3, 114.2 (2C), 79.3, 75.8, 74.1, 71.6, 68.4, 62.3, 55.2, 20.7, 20.6 19

18

(3C); ESI-HRMS calcd for C25H30O10Na ([M+Na]+) 513.1731 found 513.1732. 20 2

21

(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(2-naphathalenyl)but-1,3-diene 24

23

(3h): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2h (1.00 g, 1.92 mmol) 25 27

26

in anhydrous CH2Cl2 (5 mL, 0.38 M) at 0-40 °C with Et 3N (2.11 mmol) and methanesulfonyl 29

28

chloride (0.3 mL, 3.94 mmol) in 74 % yield (0.71 g) as white solid: mp 112-115 °C; IR (KBr) 31

30

νmax cm-1: 3435, 1759, 1641, 1220, 772; [α]25D –25.81° (c 0.1, CHCl3); 1H NMR (300 MHz, 32 3

CDCl3 + CCl4) δ 8.12 (d, J = 7.3 Hz, 1H, ArH), 7.86-7.83 (m, 1H, ArH), 7.79 (d, J = 8.1 Hz, 1H, 36

35

34

ArH), 7.65 (d, J = 7.0 Hz, 1H, ArH), 7.54-7.42 (m, 3H, ArH), 6.39 (d, J = 15.3 Hz, 1H, H-4), 37 38

6.82 (dd, J3,4 = 15.1 Hz, J2,3 = 10.6 Hz, 1H, H-3), 6.65 (dd, J1,2 = 15.0 Hz, J2,3 = 10.7 Hz, 1H, H39 41

40

2), 5.74 (dd, J1,2 = 15.0 Hz, J1,1´ = 7.3 Hz, 1H, H-1), 5.26 (t, J = 9.4 Hz, 1H, H-3´), 5.12 (t, J = 9.7 43

42

Hz, 1H, H-4´), 5.01 (t, J = 9.6 Hz, 1H, H-2´), 4.30 (dd, J6´a,6´b = 12.4 Hz, J5´,6´a = 4.7 Hz, 1H, H4 45

6´a), 4.15 (dd, J6´a,6´b = 12.3 Hz, J5´,6´b = 2.0 Hz, 1H, H-6´b), 4.01 (t, J = 7.8 Hz, 1H, H-1´), 3.75 46 48

47

(ddd, J4´,5´ = 9.8 Hz, J5´,6´a = 4.5 Hz, J5´,6´b = 2.5 Hz, 1H, H-5´), 2.13 (s, 3H, OAc), 2.06 (s, 3H, 50

49

OAc), 2.04 (s, 3H, OAc), 2.03 (s, 3H, OAc); 13C NMR (50 MHz, CDCl3 + CCl4) δ 170.4, 170.1, 51 53

52

169.2 (2C), 135.4, 133.9, 133.7, 131.2, 131.1, 130.2, 128.6, 128.4, 127.7 (2C), 126.1, 125.5, 54 5 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 26 of 47

1 3

2

123.6, 123.4, 79.0, 75.7, 73.9, 71.5, 68.4, 62.2, 20.7, 20.6, 20.6, 20.5; ESI-HRMS calcd for 5

4

C28H30O9 ([M+H]+) 511.1962 found 511.1962. 6 8

7

(EE)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-4-phenyl but-1,3-diene (3i): It was obtained 10

9

by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2i (1.00 g, 2.57 mmol) in anhydrous CH2Cl2 1 12

(5 mL, 0.49 M) at 0-40 °C with Et 3N (2.83 mmol), methanesulfonyl chloride (0.4 mL, 5.14 13 14

mmol) in 76 % yield (0.78 g) as white solid: mp 122-125 °C; IR (KBr) νmax cm-1: 3298, 1743, 17

16

15

1650, 1220, 679; [α]25D –26.18° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.39-7.20 18 19

(m, 5H, ArH), 6.74 (dd, J3,4 = 15.6 Hz, J2,3 = 10.5 Hz, 1H, H-3), 6.56 (d, J = 15.6 Hz, 1H, H-4), 20 2

21

6.45 (dd, J1,2 = 15.1 Hz, J2,3 = 10.5 Hz, 1H, H-2), 5.66 (dd, J1,2 = 15.1 Hz, J1,1´ = 7.2 Hz, 1H, H24

23

1), 5.22 (t, J = 9.4 Hz, 1H, H-3´), 5.07-4.98 (m, 1H, H-4´), 4.17 (t, J = 9.5 Hz, 1H, H-2´), 4.16 25 27

26

(dd, J4´,5´a = 5.6 Hz, J5´a,5´b = 11.1 Hz, 1H, H-5´a), 3.87 (t, J = 7.6 Hz, 1H, H-1´), 3.34 (t, J = 11.1 29

28

Hz, 1H, H-5´b), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 1.99 (s, 3H, OAc); 31

30

13

C NMR (50 MHz,

CDCl3 + CCl4) δ 170.0, 169.5, 169.3, 136.7, 134.9, 134.3, 128.6 (2C), 127.9, 127.7, 127.5, 126.6 32 3

(2C), 79.6, 73.6, 71.8, 69.3, 66.7, 20.7 (3C); ESI-HRMS calcd for C21H24O7Na ([M+Na]+) 36

35

34

411.1414 found 411.1413. 37 38

(EE)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-chlorophenyl)but-1,3-diene 39

(3j):

It

41

40

was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2j (1.00 g, 2.27 mmol) in 43

42

anhydrous CH2Cl2 (5 mL, 0.45 M) at 0-40 °C with Et3N (2.16 mmol) and methanesulfonyl 4 45

chloride (0.35 mL, 4.54 mmol) in 76 % yield (0.78 g) as white solid: mp 142-145 °C; IR (KBr) 46 48

47

νmax cm-1: 3248, 1748, 1649, 1217, 771; [α]25D –43.18° (c 0.1, CHCl3); 1H NMR (300 MHz, 50

49

CDCl3 + CCl4) δ 7.33-7.30 (m, 4H, ArH), 6.72 (dd, J3,4 = 15.5 Hz, J2,3 = 10.5 Hz, 1H, H-3), 6.51 51 53

52

(d, J = 15.7 Hz, 1H, H-4), 6.44 (dd, J2,3 = 10.7 Hz, J1,2 = 15.4 Hz, 1H, H-2), 5.67 (dd, J1,2 = 15.2 5

54

Hz, J1,1´ = 7.3 Hz, 1H, H-1), 5.25 (t, J = 9.5 Hz, 1H, H-3´), 5.06-5.01 (m, 1H, H-4´), 4.92 (t, J = 56 57 58 59 60 ACS Paragon Plus Environment

Page 27 of 47

The Journal of Organic Chemistry

1 3

2

9.6 Hz, 1H, H-2´), 4.18 (dd, J4´,5´a = 5.6 Hz, J5´a,5´b = 11.2 Hz, 1H, H-5´a), 3.89 (t, J = 7.8 Hz, 1H, 5

4

H-1´), 3.36 (t, J = 11.0 Hz, 1H, H-5´b), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.00 (s, 3H, OAc); 6 7 13

10

9

8

C NMR (50 MHz, CDCl3 + CCl4) δ 170.3, 169.7, 169.5, 135.2, 134.6, 133.6, 132.9, 128.8 (2C),

128.4, 128.1, 127.7 (2C), 79.5, 73.5, 71.8, 69.3, 66.7, 20.7 (3C); ESI-HRMS calcd for 12

1

C21H23ClO7Na ([M+Na]+) 445.1025 found 445.1025. 13 15

14

(EE)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-fluorophenyl)but-1,3-diene (3k): It 17

16

was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2k (1.00 g, 2.45 mmol) in 18 19

anhydrous CH2Cl2 (5 mL, 0.47 M) at 0-40 °C with Et3N (2.70 mmol) and methanesulfonyl 20 2

21

chloride (0.38 mL, 4.90 mmol) in 76 % yield (0.78 g) as white solid: mp 105-107 °C; IR (KBr) 24

23

νmax cm-1: 3543, 1748, 1640, 1246, 1047, 798; [α]25D –93.64° (c 0.1, CHCl3); 1H NMR (300 25 26

MHz, CDCl3) δ 7.37-7.33 (m, 2H, ArH), 7.03-6.97 (m, 2H, ArH), 6.65 (dd, J3,4 = 15.5 Hz J2,3 = 29

28

27

10.3 Hz, 1H, H-3), 6.54 (d, J = 15.6 Hz, 1H, H-4), 6.42 (dd, J1,2 = 15.2 Hz, J2,3 = 10.4 Hz, 1H, H31

30

2), 5.65 (dd, J1,2 = 15.0 Hz, J1,1´ = 7.2 Hz, 1H, H-1), 5.22 (t, J = 9.5 Hz, 1H, H-3´), 5.06-4.98 (m, 32 34

3

1H, H-4´), 4.93 (t, J = 9.6 Hz, 1H, H-2´), 4.16 (dd, J4´,5´a = 5.6 Hz, J5a´,5´b = 11.1 Hz, 1H, H-5´a), 36

35

3.86 (t, J = 7.7 Hz, 1H, H-1´), 3.34 (t, J = 11.0 Hz, 1H, H-5´b), 2.05 (s, 3H, OAc), 2.04 (s, 3H, 37 38

OAc), 1.99 (s, 3H, OAc); 39

13

C NMR (75 MHz, CDCl3) δ 170.3, 169.8, 169.6, 164.2 (d, 1JCF =

40

251.6 Hz), 134.9, 133.0, 132.9, 128.4 (2C, d, 3JCF = 7.9 Hz), 127.7, 127.3, 116.0 (2C, d, 2JCF = 43

42

41

21.9 Hz), 79.5, 73.5, 71.8, 69.3, 66.7, 20.7 (3C); ESI-HRMS calcd for C21H23FO7Na ([M+Na]+) 4 45

429.1350 found 429.1352. 46 48

47

(EE)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-methylphenyl)but-1,3-diene (3l): It 50

49

was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2l (1.00 g, 2.48 mmol) in 51 53

52

anhydrous CH2Cl2 (5 mL, 0.48 M) at 0-40 °C with Et3N (2.73 mmol) and methanesulfonyl 5

54

chloride (0.38 mL, 4.96 mmol) in 76 % yield (0.78 g) as white solid: mp 152-155 °C; IR (KBr) 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 28 of 47

1 3

2

νmax cm-1: 3483, 1754, 1643, 1223, 1045, 771; [α]25D – 76.82° (c 0.1, CHCl3); 1H NMR (300 5

4

MHz, CDCl3 + CCl4) δ 7.29-7.27 (m, 2H, ArH), 7.13 (d, J = 7.8 Hz, 2H, ArH), 6.70 (dd, J3,4 = 6 8

7

15.5 Hz, J2,3 = 10.3 Hz, 1H, H-3), 6.56 (d, J = 15.5 Hz, 1H, H-4), 6.44 (dd, J1,2 = 15.1 Hz, J2,3 = 10

9

10.5 Hz, 1H, H-2), 5.62 (dd, J1,1´ = 7.3 Hz, J1,2 = 15.1 Hz, 1H, H-1), 5.25 (t, J = 9.4 Hz, 1H, H1 12

3´), 5.07-5.00 (m, 1H, H-4´), 4.90 (t, J = 9.6 Hz, 1H, H-2´), 4.15 (dd, J4´,5´a = 5.6 Hz, J5a´,5´b = 13 15

14

11.1 Hz, 1H, H-5´a), 3.87 (t, J = 7.8 Hz, 1H, H-1´), 3.35 (t, J = 11.0 Hz, 1H, H-5´b), 2.35 (s, 3H, 17

16

CH3), 2.06 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.01 (s, 3H, OAc); 19

18

13

C NMR (50 MHz, CDCl3 +

CCl4) δ 170.1, 169.5, 169.3, 137.7, 135.2, 134.3, 133.9, 129.3 (2C), 127.0 (2C), 126.5 (2C), 79.6, 20 2

21

73.5, 71.8, 69.3, 66.6, 21.2, 20.7 (3C); ESI-HRMS calcd for C22H26O7Na ([M+Na]+) 425.1571 24

23

found 425.1569. 25 27

26

(EE)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-methoxyphenyl)but-1,3-diene (3m): 29

28

It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2m (1.00 g, 2.39 mmol) in 31

30

anhydrous CH2Cl2 (5 mL, 0.46 M) at 0-40 °C with Et3N (2.63 mmol) and methanesulfonyl 32 34

3

chloride (0.44 mL, 5.78 mmol) in 76 % yield (0.78 g) as white solid: mp 115-117 °C; IR (KBr) 36

35

νmax cm-1: 3520, 1748, 1629, 1213, 773; [α]25D –40.99° (c 0.1, CHCl3); 1H NMR (300 MHz, 38

37

CDCl3) δ 7.38-7.30 (m, 2H, ArH), 6.89-6.82 (m, 2H, ArH), 6.62 (dd, J 2,3 = 10.3 Hz, J3,4 = 15.4 39 41

40

Hz, 1H, H-3), 6.53 (d, J = 15.5 Hz, 1H, H-4), 6.41 (dd, J2,3 = 10.3 Hz, J1,2 = 15.0 Hz, 1H, H-2), 43

42

5.61 (dd, J1,1´ = 7.4 Hz, J1,2 = 15.0 Hz, 1H, H-1), 5.22 (t, J = 9.5 Hz, 1H, H-3´), 5.06-4.98 (m, 1H, 4 45

H-4´), 4.90 (t, J = 9.5 Hz, 1H, H-2´), 4.16 (dd, J4´,5´a = 5.6 Hz, J5´a,5´b = 11.1 Hz, 1H, H-5´a), 3.83 46 48

47

(m, 4H, H-1´, OCH3), 3.34 (t, J = 10.8 Hz, 1H, H-5´b), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 50

49

1.99 (s, 3H, OAc); 13C NMR (50 MHz, CDCl3) δ 170.4, 169.8, 169.7, 159.6, 135.5, 133.9, 134.3, 51 53

52

129.6, 128.0, 127.8, 126.5, 125.5, 114.2, 79.8, 73.5, 71.8, 69.4, 66.6, 55.3, 20.7 (3C); ESI5

54

HRMS calcd for C22H26O8 ([M+H]+) 419.1685 found 419.1689. 56 57 58 59 60 ACS Paragon Plus Environment

Page 29 of 47

The Journal of Organic Chemistry

1 3

2

(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-mannopyranosyl)-4-(4-methylphenyl)but-1,3-diene 5

4

(3n): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2n (1.00 g, 2.03 mmol) 6 8

7

in anhydrous CH2Cl2 (5 mL, 0.41 M) at 0-40 °C with Et 3N (2.23 mmol) and methanesulfonyl 10

9

chloride (0.3 mL, 4.06 mmol) in 74 % yield (0.71 g) as white solid: mp 118-120 °C; IR (KBr) 12

1

νmax cm-1: 3410, 1754, 1631, 1210, 774; [α]25D –105° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3 13 14

+ CCl4) δ 7.54-7.43 (m, 2H, ArH), 7.36-7.31 (m, 2H, ArH), 6.69 (dd, J2,3 = 10.4 Hz, J3,4 = 15.4 17

16

15

Hz, 1H, H-3), 6.58 (d, J = 15.5 Hz, 1H, H-4), 6.48 (dd, J2,3 = 10.3 Hz, J1,2 = 15.2 Hz, 1H, H-2), 18 19

5.65 (dd, J1,2 = 15.2 Hz, J1,1´ = 5.7 Hz, 1H, H-1), 5.45 (d, J = 2.3 Hz, 1H, H-2´), 5.30 (t, J = 10.0 20 2

21

Hz, 1H, H-4´), 5.13 (t, J = 9.9 Hz, 1H, H-3´), 4.31 (m, 2H, H-1´ + H-6´a), 4.20 (d, J = 12.1 Hz, 24

23

1H, H-6´b), 3.79-3.71 (m, 1H, H-5´), 2.34 (s, 3H, CH3), 2.12 (s, 3H, OAc), 2.09 (s, 3H, OAc), 25 26

2.04 (s, 3H, OAc), 2.01 (s, 3H, OAc); 13C NMR (50 MHz, CDCl3 + CCl4) δ 170.7, 170.4, 170.1, 29

28

27

169.6, 137.8, 134.0, 133.9, 129.4 (2C), 126.7, 126.4 (2C), 126.0 (2C), 77.6, 76.2, 72.3, 70.1, 31

30

66.0, 62.9, 21.3, 20.8, 20.7, 20.6 (2C); ESI-HRMS calcd for C25H30O9Na ([M+Na]+) 497.1782 32 34

3

found 497.1783. 36

35

(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-mannopyranosyl)-4-(4-methoxylphenyl)but-1,3-diene 37 38

(3o): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2o (1.00 g, 1.96 mmol) 39 41

40

in anhydrous CH2Cl2 (5 mL, 0.39 M) at 0-40 °C with Et 3N (2.34 mmol) and methanesulfonyl 43

42

chloride (0.3 mL, 3.92 mmol) in 75 % yield (0.76 g) as white solid: mp 118-120 °C; IR (KBr) 45

4

νmax cm-1: 3410, 1754, 1631, 1210, 774; [α]25D –56.2° (c 0.1, CHCl3); 1H NMR (300 MHz, 46 48

47

CDCl3) δ 7.39-7.33 (m, 2H, ArH), 6.89-6.86 (m, 2H, ArH), 6.66-6.55 (m, 2H, H-3, H-4), 6.52 50

49

(dd, J2,3 = 10.2 Hz, J1,2 = 15.5 Hz, 1H, H-2), 5.66 (dd, J1,2 = 14.9 Hz, J1,1´ = 5.7 Hz, 1H, H-1), 51 53

52

5.46 (d, J = 3.2 Hz, 1H, H-2´), 5.34- 5.27 (m, 1H, H-4´), 5.15 (dd, J2´,3´ = 3.3 Hz, J3´,4´ = 10.1 Hz, 5

54

1H, H-3´), 4.35-4.29 (m, 2H, H-6´a, H-1´), 4.23 (dd, J5´,6´b = 2.2 Hz, J 6´a,6´b = 12.2 Hz, 1H, H56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 30 of 47

1 3

2

6´b), 3.83 (s, 3H, OCH3), 3.77-3.72 (m, 1H, H-5´), 2.18 (s, 3H, OAc), 2.14 (s, 3H, OAc), 2.09 (s, 5

4

3H, OAc), 2.02 (s, 3H, OAc); 6

13

C NMR (50 MHz, CDCl3) δ 170.9, 170.6, 170.2, 169.8, 159.6,

8

7

134.0, 129.7(2C), 127.9 (2C), 125.7, 125.4, 114.4 (2C), 77.3, 76.2, 72.3, 70.3, 66.2, 63.0, 55.3, 10

9

20.8, 20.7, 20.6 (2C); ESI-HRMS calcd for C25H30O10 ([M+H]+) 491.1917 found 491.1904. 1 12

General procedure for the synthesis of unprotected 1-glycosyl 1,3-dienes (4a, 4b) 13 15

14

(EE)-1-(β-D-xylopyranosyl)-4-(4-fluorophenyl)but-1,3-diene (4a): The above glycosyl diene 17

16

3k (0.50 g, 1.23 mmol) was dissolved in NaOMe solution in MeOH (3 mL, 0.35 M) and was 18 19

stirred at room temperature for 30 min. The reaction mixture was neutralised with aq. 3 N HCl, 20 2

21

and the solvent was evaporated under reduced pressure. The residue, thus obtained was dissolved 24

23

in MeOH and filtered off. The filtrate was concentrated to give compound 4a in 97 % yield (0.34 25 26

g) as white solid: mp 148-150 °C; IR (KBr) νmax cm-1: 3540, 3480, 3359, 2925, 1768, 1672, 779; 29

28

27

[α]25D –70.6° (c 0.1, MeOH); 1H NMR (300 MHz, DMSO-d6) δ 7.58 (m, 2H, ArH), 7.23-7.17 31

30

(m, 2H, ArH), 6.95 (dd, J3,4 = 15.6 Hz J2,3 = 10.6 Hz, 1H, H-3), 6.65 (d, J = 15.7 Hz, 1H, H-4), 32 34

3

6.47 (dd, J2,3 = 10.6 Hz J1,2 = 15.2 Hz, 1H, H-2), 6.00 (dd, J1,1´ = 5.4 Hz J1,2 = 15.3 Hz, 1H, H-1), 36

35

5.08 (d, J = 4.7 Hz, 1H, OH), 5.0 (s, 2H, 2×OH), 3.84 (dd, J1 = 5.1 Hz J2 = 10.7 Hz, 1H, H-5´a), 38

37

3.65-3.61 (m, 1H, H-1´), 3.41 (m, 1H, H-4´), 3.25 (m, 2H, H-3´, H-5´b), 3.01 (m, 1H, H-2´);13C 39 40

NMR (75 MHz, DMSO-d6) δ 163.8 (d, 1JCF = 256.5 Hz), 134.1, 133.4, 131.3, 131.0, 129.4, 43

42

41

128.7 (2C, d, 3JCF = 9.0 Hz), 115.3 (2C, d, 2JCF = 20.9 Hz), 80.4, 78.9, 74.7, 70.4, 70.1; ESI45

4

HRMS calcd for C15H17FO4Na ([M+Na]+) 303.1003 Found: 303.0998. 46 48

47

(EE)-1-(β-D-xylopyranosyl)-4-(4-methoxyphenyl)but-1,3-diene (4b): It was obtained by the 50

49

reaction of acetylated glycosyl diene 3b (0.2 g, 0.47 mmol) with NaOMe solution in MeOH (3 51 52

mL, 0.14 M), in 98 % yield (0.137 g) as white solid: mp 142 °C; IR (KBr) νmax cm-1: 3580, 3466, 5

54

53

2928, 1769, 1653, 776; [α]25D –81.6° (c 0.1, MeOH); 1H NMR (300 MHz, DMSO-d6) δ 7.44 (d, 56 57 58 59 60 ACS Paragon Plus Environment

Page 31 of 47

The Journal of Organic Chemistry

1 3

2

J = 8.7 Hz, 2H, ArH), 6.99 (d, J = 8.7 Hz, 2H, ArH), 6.82 (dd, J3,4 = 15.5 Hz J2,3 = 10.5 Hz, 1H, 5

4

H-3), 6.57 (d, J = 15.7 Hz, 1H, H-4), 6.43 (dd, J2,3 = 10.5 Hz J3,4 = 15.3 Hz, 1H, H-4), 5.91 (dd, 6 8

7

J1,1´ = 5.6 Hz J1,2 = 15.3 Hz, 1H, H-1), 5.04 (d, J = 5.9 Hz, 1H, OH), 4.99-4.97 (m, 2H, 2×OH), 10

9

3.82-3.77 (m, 4H, H-5´a, OCH3), 3.62-3.57 (m, 1H, H-1´), 3.37-3.29 (m, 1H, H-4´), 3.20-3.07 12

1

(m, 2H, H-3´, H-5´b), 2.98-2.92 (m, 1H, H-2´); 13C NMR (75 MHz, DMSO-d6) δ 159.7, 131.9, 13 15

14

131.4 (2C), 128.2 (3C), 127.1, 114.8 (2C), 80.6, 78.9, 74.7, 70.3, 70.1, 55.7; ESI-HRMS calcd 17

16

for C16H20O5Na ([M+Na]+) 315.1203 Found: 315.1204. 18 19

General procedure for the synthesis of anthraquinonyl-C-glycosides (5a-5o) 20 2

21

1-(2',3',4'-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-methylphenyl)anthracene-9,10-dione 24

23

(5l):

To a stirring mixture of 1-glycosyl-1,3-diene 3l (0.5 g, 1.24 mmol), naphthoquinone (0.196 g, 25 27

26

1.24 mmol) in toluene (5 mL, 0.25 M) was added InCl3.4H2O (0.017 g, 0.06 mmol). The reaction 29

28

mixture was stirred at 80 °C for 3 hours. After completion of reaction (TLC), toluene was 31

30

evaporated under reduced pressure to give a residual mass which was partitioned between 32 34

3

CH2Cl2 and water. Organic layer was dried (anhyd. Na2SO4) and concentrated under reduced 36

35

pressure to afford a crude residue, which was purified by column chromatography (SiO2, 60-120 37 38

mesh) using a gradient of hexane: ethyl acetate (13:7) as eluent to give 1-(2',3',4'-Tri-O-acetyl39 41

40

β-D-xylopyranosyl)-4-(4-methylphenyl)anthracene-9,10-(1H, 4H)dione (5'l) in 99 % yield 43

42

(0.682 g) as yellow solid: mp 222-225 °C; IR (KBr) νmax cm-1: 3216, 2922, 1768, 1636, 1594, 45

4

759, 671; [α]25D -0.94° (c 0.1, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.13* (d, J = 7.60 Hz, 1H), 46 48

47

8.08-8.06 (m, 1H), 7.95-7.92 (m*, 2H), 7.70-7.63 (m*, 4H), 7.40-7.38 (m, 2H), 7.21-7.19* (m, 50

49

2H), 7.08-7.05 (m*, 4H), 6.04-5.99 (m*, 2H), 5.93-5.90 (m, 1H), 5.80-5.76* (m, 1H), 5.41* (t, J 51 53

52

= 9.4 Hz, 1H), 5.29 (t, J = 9.2 Hz, 1H), 5.22 (t, J = 9.6 Hz, 1H), 5.13* (t, J = 9.4 Hz, 1H), 4.985

54

4.90 (m*, 2H), 4.82-4.75 (m*, 2H), 4.06-3.99 (m*, 4H), 3.80 (bs, 1H), 3.60* (dd, J1 = 9.4 Hz, J2 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 32 of 47

1 3

2

= 9.4 Hz, 1H), 2.28-2.27 (m*, 5H), 2.18 (s, 3H), 2.04-2.00 (m*, 12H); (100 MHz, CDCl3 + CCl4) 5

4

δ 184.6, 184.5*, 183.7, 183.6*, 170.6, 170.2*, 170.1, 169.9*, 169.8, 169.6*, 146.8, 144.8*, 6 8

7

142.9, 141.6*, 138.7, 138.5*, 136.4, 136.3*, 133.7 (2C*), 133.5, 133.5 (2C*), 132.2, 132.1*, 10

9

129.6 (2C*), 129.4 (2C*), 129.1 (2C*), 128.8, 128.1*, 126.7, 126.6*, 126.4, 126.2*, 124.5, 1 12

119.5, 81.6, 78.5*, 74.4, 74.1*, 72.7 (2C*), 69.6, 69.3*, 68.9, 66.8*, 66.4 (2C*), 41.34, 40.8*, 13 15

14

36.1, 35.6*, 21.0 (2C*), 20.8 (2C*) , 20.7(2C*), 20.7(2C*); ESI-HRMS calcd for C32H30O9Na 17

16

([M+Na]+) 581.1788 Found: 581.1776. 18 19

Note = *Chemical Shift value minor isomer, multiplicity* (in 1H NMR data) and Carbon* (in 13C NMR data) 20 21

denotes the mixture of both the isomers 2 23

The above C-(1,4-dihydroanthraquinon-1-yl-)-xylopyranoside 5l' was dissolved in CH2Cl2 (5 24 26

25

mL, 0.25 M) and reacted with triethyl amine (0.1 M) in presence of molecular oxygen at r.t. for 6 28

27

hours. After completion of reaction (TLC), reaction mixture was diluted with water and extracted 29 30

with CH2Cl2 and water. Organic layer was dried over (anhyd. Na2SO4) and concentrated under 31 3

32

reduced pressure to afford a crude residue, which was purified by column chromatography (SiO2, 35

34

60-120 mesh) using a gradient of hexane: ethyl acetate (3:1) as eluent to give the above 5l in 98 36 37

% yield (0.66 g) as light yellow solid: mp 174-175°C; IR (KBr) νmax cm-1: 3022, 2920, 1750, 40

39

38

1674, 1594, 1221, 1035, 759; [α]25D 34.4° (c 0.1, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.18 (d, 41 42

J = 7.2 Hz, 1H, ArH), 8.02-8.00 (m, 2H, ArH), 7.77-7.68 (m, 2H, ArH), 7.57 (d, J = 8.4 Hz, 1H, 43 45

4

ArH), 7.25-7.22 (m, 2H, ArH), 7.14 (d, J = 8.0 Hz, 2H, ArH), 6.24 (d, J = 10.0 Hz, 1H, H-1'), 47

46

5.48 (t, J = 9.6 Hz, 1H, H-3'), 5.21-5.14 (m, 2H, H-2', H-4'), 4.28 (dd, J4´,5´a = 5.6 Hz, J5´a,5´b = 48 49

11.2 Hz,1H, H-5'a), 3.65 (t, J = 11.2 Hz, 1H), 3.66 (t, J = 10.8 Hz,1H, H-5'b), 2.43 (s, 3H, CH3), 50 52

51

54

53

2.11 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.63 (s, 3H, OAc); 13C NMR (100 MHz, CDCl3 + CCl4) δ 185.8, 183.9, 170.2, 170.0, 169.3, 145.4, 139.3, 138.6, 137.8, 137.0, 134.4, 134.1, 133.9, 133.3, 5 56 57 58 59 60 ACS Paragon Plus Environment

Page 33 of 47

The Journal of Organic Chemistry

1 3

2

132.8, 132.6, 129.1 (2C), 128.0 (2C), 127.0 (2C), 126.9, 74.9, 74.4, 73.4, 70.0, 67.5, 21.6, 5

4

20.9,20.6 (2C); ESI-HRMS calcd for C32H28O9 ([M+H]+) 557.1806 Found: 557.1816. 6 8

7

It was also obtained by the reaction of 1-glycosyl-1,3-diene (3l) (0.5 g, 1.24 mmol) in toluene (5 10

9

mL, 0.25 M) at 80 °C with naphthoquinone (0.196 g, 1.24 mmol) and InCl3.4H2O (0.017 g, 0.06 1 12

mmol) to afford a crude mass (without purifying), was again dissolved in CH2Cl2 (5 mL, 0.20 13 15

14

M), added triethylamine (0.1M) and this reaction mixture, was stirred at room temperature in 17

16

presence of molecular oxygen for 6 hours. Reaction mixture was diluted with water and 18 19

extracted with CH2Cl2 and water. Organic layer was separated, dried over (anhyd. Na2SO4) and 20 2

21

evaporated under reduced pressure. Obtained crude product was purified by column 24

23

chromatography (SiO2, 60-120 mesh) using hexane: ethylacetate (3:1) in 95 % yield (0.66 g) as 25 27

26

light yellow solid. 29

28

1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-flourophenyl) anthracene-9,10-dione 31

30

(5a): It was obtained by the reaction of 1-glycosyl-1,3-diene 3a (0.5 g, 1.04 mmol), in toluene (5 32 34

3

mL, 0.21 M) at 80 °C with naphthoquinone (0.165 g, 1.04 mmol) and InCl3.4H2O (0.015 g, 0.05 36

35

mmol) followed by oxidative aromatization. in 92 % yield (0.60 g) as yellow solid: mp 198-200 38

37

°C; IR (KBr) νmax cm-1: 3410, 2930, 1763, 1680, 1243, 776; [α]25D 69.2° (c 0.1, CHCl3); 1H 39 41

40

NMR (300 MHz, CDCl3) δ 8.25 (d, J = 1.3 Hz, 1H, ArH), 8.22-8.03 (m, 2H, ArH), 7.85-7.77 (m, 43

42

2H, ArH), 7.63 (d, J = 8.3 Hz, 1H, ArH), 7.31-7.17 (m, 4H, ArH), 6.39 (d, J = 9.8 Hz, 1H, H-1'), 4 45

5.56 (t, J = 9.2 Hz, 1H, H-3'), 5.37-5.29 (m, 2H, H-2', H-4'), 4.38 (dd, J5´,6´a = 4.8 Hz, J6´a,6´b = 46 48

47

12.5 Hz, 1H, H-6'a), .4.26 (dd, J5´,6´b = 1.8 Hz, J6´a,6´b = 12.3 Hz,1H, H-6'b), 4.14-4.09 (m, 1H, H50

49

5'), 2.13 (s, 6H, 2×OAc), 2.06 (s, 3H, OAc), 1.41 (s, 3H, OAc); 51

13

C NMR (75 MHz, CDCl3) δ

52

185.6, 183.7, 170.7, 170.2, 169.7, 169.3, 160.4 (d, 1JCF = 250.5 Hz), 144.3, 138.3, 137.9, 137.8, 5

54

53

134.1 (2C), 134.0, 133.7, 133.1, 132.7, 132.5, 129.6 (2C, d, 3JCF = 8.8 Hz), 126.8, 126.7, 115.3 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 34 of 47

1 3

2

(2C, d, 2JCF = 21.5 Hz), 76.4, 74.7, 74.2, 72.8, 68.9, 62.4, 20.8 (2C), 20.7, 20.4; ESI-HRMS 5

4

calcd for C34H29FO11 ([M+H]+) 633.1767 Found: 633.1775. 6 8

7

1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-phenyl anthracene-9,10-dione (5b): 10

9

It was obtained by the reaction of 1-glycosyl-1,3-diene 3b (0.5 g, 1.08 mmol) in toluene (5 mL, 1 12

0.21 M) at 80 °C with naphthoquinone (0.17 g, 1.08 mmol) and InCl3.4H2O (0.016 g 0.054 13 15

14

mmol) followed by oxidative aromatization in 91 % yield (0.60 g) as yellow solid: mp 165-168 17

16

°C; IR (KBr) νmax cm-1: 3460, 3022, 1750, 1674, 1594,1371, 916; [α]25D 96.0° (c 0.1, CHCl3); 1H 19

18

NMR (300 MHz, CDCl3) δ 8.22 (d, J = 6.7 Hz, 1H, ArH), 8.04-8.00 (m, 2H, ArH), 7.80-7.70 (m, 20 2

21

2H, ArH), 7.63 (d, J = 8.1 Hz, 1H, ArH), 7.43-7.42 (d, J = 1.1 Hz, 3H, ArH), 7.27-7.25 (m, 1H, 24

23

ArH), 6.35 (d, J = 9.8 Hz,1H, H-1'), 5.51 (t, J = 9.2 Hz,1H, H-3'), 5.35-5.24 (m, 2H, H-2', H-4'), 25 27

26

4.34 (dd, J5´,6´a = 4.8 Hz, J6´a,6´b = 12.2 Hz, 1H, H-6'a), 4.21-4.17 (d, J = 11.0 Hz, 1H, H-6'b), 29

28

4.10-4.00 (m, 1H, H-5'), 2.19 (s, 3H, OAc), 2.18 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.69 (s, 3H, 31

30

OAc); 32

13

C NMR (75 MHz, CDCl3 + CCl4) δ 185.4, 183.5, 170.4, 170.0, 169.4, 169.0, 145.2,

34

3

141.9, 138.0, 137.4, 134.1, 133.9, 133.8, 133.7, 133.0, 132.7, 132.3, 128.1 (2C), 127.8 (2C), 36

35

127.2, 126.7 (2C), 76.3, 74.7, 74.1, 72.7, 68.8, 62.3, 20.7 (2C), 20.6, 20.3; ESI-HRMS calcd for 38

37

C34H30O11 ([M+H]+) 615.1861 Found: 615.1863. 39 41

40

1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-bromophenyl)anthracene-9,10-dione 43

42

(5c): It was obtained by the reaction of 1-glycosyl-1,3-diene 3c (0.5 g, 0.93 mmol) in toluene (5 4 45

mL, 0.18 M) at 80 °C with naphthoquinone (0.146 g, 0.93 mmol) and InCl3.4H2O (0.013 g, 46 48

47

0.046 mmol) followed by oxidative aromatization in 90 % yield (0.58 g) as light yellow solid: 50

49

mp 218-220 °C; IR (KBr) νmax cm-1: 3410, 2930, 1758, 1680, 1231, 771; [α]25D -22.0° (c 0.1, 51 52

CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 8.22 (d, J = 6.5 Hz, 1H, ArH), 8.04-7.99 (m, 2H, 5

54

53

ArH), 7.78-7.76 (m, 2H, ArH), 7.62-7.57 (m, 2H, ArH), 7.27-7.13 (m, 4H, ArH), 6.37 (d, J = 9.8 56 57 58 59 60 ACS Paragon Plus Environment

Page 35 of 47

The Journal of Organic Chemistry

1 3

2

Hz,1H, H-1'), 5.51 (t, J = 9.0 Hz, 1H, H-3'), 5.32-5.29 (m, 2H, H-2', H-4'), 4.35-4.32 (m, 1H, H5

4

6'a), 4.23-4.19 (m, 1H, H-6'b), 4.10 (m, 1H, H-5'), 2.10 (s, 6H, 2×OAc), 2.03 (s, 3H, OAc), 1.69 6 8

7

(s, 3H, OAc); 10

9

13

C NMR (75 MHz, CDCl3 + CCl4) δ 185.5, 183.4, 170.4, 170.0, 169.4, 169.0,

145.4, 138.6, 137.6,134.0, 133.9, 133.7, 133.6, 133.0, 132.5, 132.3, 131.2, 129.5 (2C), 128.9, 1 12

127.8, 126.7 (2C), 121.5, 76.4, 74.7, 74.1, 72.7, 68.9, 62.3, 20.7 (2C), 20.6, 20.3; ESI-HRMS 13 14

calcd for C34H29O11Br ([M+H]+) 693.0966 Found: 693.0955. 17

16

15

1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-chlorophenyl)anthracene-9,10-dione 18 19

(5d): It was obtained by the reaction of 1-glycosyl-1,3-diene 3d (0.5 g, 1.01 mmol) in toluene (5 20 2

21

mL, 0.20 M) at 80 °C with naphthoquinone (0.159 g, 1.01 mmol) and InCl3.4H2O (0.014 g, 0.05 24

23

mmol) followed by oxidative aromatization in 91% yield (0.60 g) as yellow solid: mp 210-212 25 26

°C; IR (KBr) νmax cm-1: 3482, 3023, 1750, 1674, 1493, 982; [α]25D 136.0° (c 0.1, CHCl3); 1H 29

28

27

NMR (300 MHz, CDCl3 + CCl4) δ 8.22 (d, J = 6.6 Hz, 1H, ArH), 8.03 (d, J = 6.9 Hz, 2H, ArH), 31

30

7.81-7.74 (m, 2H, ArH), 7.59 (d, J = 8.1 Hz, 1H, ArH), 7.42 (d, J = 8.0 Hz, 2H, ArH), 7.20-7.25 32 34

3

(d, J = 8.1 Hz, 1H, ArH), 6.33 (d, J = 9.5 Hz,1H, H-1'), 5.48 (t, J = 9.2 Hz,1H, H-3'), 5.31-5.22 36

35

(m, 2H, H-2', H-4'), 4.34 (dd, J5´,6´a = 5.0 Hz, J6´a,6´b = 12.6 Hz, 1H, H-6'a), 4.16 (d, J6´a,6´b = 12.5 37 38

Hz, 1H, H-6'b), 4.07-4.05 (m, 1H, H-5'), 2.10 (s, 6H, 2×OAc), 2.03 (s, 3H, OAc), 1.69 (s, 3H, 39 41

40

43

42

OAc);

13

C NMR (50 MHz, CDCl3 + CCl4) δ 185.1, 183.1, 170.1, 169.7, 169.2, 168.7, 143.8,

140.3, 138.5, 137.2, 134.1, 133.9, 133.8, 133.6, 133.4, 133.0, 132.5, 129.2 (2C), 128.4 (3C), 4 45

126.8, 126.7, 76.3, 74.7, 74.1, 72.6, 68.7, 62.1, 20.5 (3C), 20.3; ESI-HRMS calcd for 46 48

47

C34H29O11Cl ([M+H]+) 649.1471 Found: 649.1473. 50

49

1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(2-chlorophenyl)anthracene-9,10-dione 51 53

52

(5e): It was obtained by the reaction of 1-glycosyl-1,3-diene 3e (0.5 g, 0.95 mmol) in toluene (5 5

54

mL, 0.20 M) at 80 °C with naphthoquinone (0.150 g, 0.95 mmol) and InCl3.4H2O (0.01 g, 0.05 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 36 of 47

1 3

2

mmol). by oxidative aromatization in 90 % yield (0.58 g) as yellow solid: mp 188-190 °C; IR 5

4

(KBr) νmax cm-1: 3482, 3023, 1750, 1674, 1493, 982; [α]25D 44.2° (c 0.1, CHCl3); 1H NMR (300 6 7

MHz, CDCl3 + CCl4) δ 8.29 (d, J = 7.0 Hz, 1H, ArH), 8.11 (d, J = 5.0 Hz, 2H, ArH), 7.86-7.84 10

9

8

(m, 2H, ArH), 7.66 (d, J = 8.1 Hz, 1H, ArH), 7.50 (d, J = 7.8 Hz, 2H, ArH), 7.34-7.25 (m, 2H), 1 12

6.43 (d, J = 9.7 Hz,1H, H-1'), 5.60 (t, J = 9.2 Hz, 1H, H-3'), 5.37-5.33 (m, 2H, H-2', H-4'), 4.4113 15

14

4.37 (dd, J5´,6´a = 4.8 Hz, J6´a,6´b = 12.0 Hz, 1H, H-6'a), 4.30 (d, J6´a,6´b = 12.1 Hz, 1H, H-6'b), 17

16

4.16-4.14 (m, 1H, H-5'), 2.17 (s, 6H, 2×OAc), 2.09 (s, 3H, OAc), 1.74 (s, 3H, OAc); 19

18

13

C NMR

(50 MHz, CDCl3) δ 185.5, 183.7, 170.7, 170.3, 169.7, 169.3, 143.9, 140.5, 138.5, 137.4, 134.2, 20 2

21

134.1, 133.7, 133.4, 133.2, 132.6 (2C), 129.3 (2C), 128.5 (3C), 126.9, 126.8, 76.4, 74.7, 74.1, 24

23

72.8, 68.9, 62.4, 20.8 (2C), 20.7, 20.4; ESI-HRMS calcd for C34H29O11Cl ([M+H]+) 649.1471 25 27

26

Found: 649.1473. 29

28

1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-isopropylphenyl)anthracene-9,1031

30

dione (5f): It was obtained by the reaction of 1-glycosyl-1,3-diene 3f (0.5 g, 0.99 mmol) in 32 34

3

toluene (5 mL, 0.20 M) at 80 °C with naphthoquinone (0.157 g, 0.99 mmol) and InCl3.4H2O 36

35

(0.014 g, 0.05 mmol) followed by oxidative aromatization in 93 % yield (0.61 g) as light yellow 38

37

solid: mp 172-175 °C; IR (KBr) νmax cm-1: 3435, 1750, 1639, 1366, 1219, 771, 668; [α]25D 136.7° 39 40

(c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3) δ 8.22-8.20 (m, 1H, ArH, ArH), 8.06 (d, J = 7.2 Hz, 43

42

41

1H, ArH), 8.00 (d, J = 8.2 Hz, 1H, ArH), 7.80-7.71 (m, 2H, ArH), 7.62 (d, J = 8.1 Hz, 1H, ArH), 4 45

7.31 (m, 1H, ArH), 7.19 (d, J = 7.8 Hz, 2H, ArH), 6.31 (d, J = 9.7 Hz,1H, H-1'), 5.50 (t, J = 9.1 46 48

47

Hz,1H, H-3'), 5.36-5.24 (m, 2H, H-2', H-4'), 4.34 (dd, J5´,6´a = 4.6 Hz, J6´a,6´b = 12.3 Hz, 1H, H50

49

6'a), 4.19-4.16 (m, 1H, H-6'b), 4.10-4.07 (m, 1H, H-5'), 3.06-2.97 (m, 1H, CH), 2.10 (s, 6H, 51 53

52

5

54

2×CH3), 2.03 (s, 3H, OAc), 1.70 (s, 3H, OAc), 1.37 (s, 3H, OAc), 1.35 (s, 3H, OAc);

13

C NMR

(75 MHz, CDCl3 + CCl4) δ 185.4, 183.4, 170.1, 169.8, 169.2, 168.8, 147.5, 145.4, 139.3, 137.7, 56 57 58 59 60 ACS Paragon Plus Environment

Page 37 of 47

The Journal of Organic Chemistry

1 3

2

137.6, 134.2, 133.9, 133.7, 133.5, 133.0, 132.8, 132.2, 128.1, 127.9, 126.7 (2C), 126.1 (2C), 5

4

76.4, 74.8, 74.2, 72.6, 68.8, 62.3, 33.8, 24.0 (2C), 20.7 (2C), 20.5, 20.3; ESI-HRMS calcd for 6 7

C37H36O11 ([M+H]+) 657.2330 Found: 657.2330. 10

9

8

1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-methoxyphenyl)anthracene-9,101 12

dione (5g): It was obtained by the reaction of 1-glycosyl-1,3-diene 3g (0.5 g, 1.02 mmol) in 13 15

14

toluene (5 mL, 0.21 M) at 80 °C with naphthoquinone (0.159 g, 1.02 mmol) and InCl3.4H2O 17

16

(0.014 g, 0.05 mmol) followed by oxidative aromatization in 95 % yield (0.62 g) as light yellow 19

18

solid: mp 175-178 °C; IR (KBr) νmax cm-1: 3021, 2921, 1750, 1673, 1598, 1493, 917, 598; [α]25D 20 2

21

168.2° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3) δ 8.21 (d, J = 7.3 Hz, 1H, ArH), 8.05 (d, J = 24

23

6.9 Hz, 2H, ArH), 7.99 (d, J = 8.1 Hz, 1H, ArH), 7.79-7.70 (m, 2H, ArH), 7.62 (d, J = 8.1 Hz, 25 27

26

1H, ArH), 7.20 (d, J = 10.3 Hz, 1H, ArH), 6.97 (d, J = 8.5 Hz, 2H, ArH), 6.32 (d, J = 9.6 Hz, 1H, 29

28

H-1'), 5.49 (t, J = 9.2 Hz,1H, H-3'), 5.34-5.23 (m, 2H, H-2', H-4'), 4.34 (dd, J5´,6´a = 4.7 Hz, 31

30

J6´a,6´b = 12.3 Hz,1H, H-6'a), 4.16 (d, J = 12.0 Hz, 1H, H-6'b), 4.09-4.05 (m, 1H, H-5'), 3.89 (s, 32 34

3

3H, OCH3), 2.10 (s, 6H, 2×OAc), 2.03 (s, 3H, OAc), 1.69 (s, 3H, OAc); 36

35

13

C NMR (75 MHz,

CDCl3 +CCl4) δ 185.4, 183.6, 170.3, 169.8, 169.3, 169.8, 158.9, 145.0, 137.7, 137.6, 134.1, 37 38

134.0, 139.0, 133.8, 133.6, 133.1, 132.7, 132.2, 129.1 (2C), 126.7 (2C), 113.6 (2C), 76.2, 74.7, 39 40

74.1, 72.6, 68.8, 62.2, 55.0, 21.7 (2C), 20.6, 20.3; ESI-HRMS calcd for C35H32O12([M+H]+) 43

42

41

645.1967 Found: 645.1974. 4 45

1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(2-naphathalenyl)anthracene-9,10-dione 46 48

47

(5h): It was obtained by the reaction of 1-glycosyl-1,3-diene 3h (0.5 g, 0.98 mmol) in toluene (5 50

49

mL, 0.19 M) at 80 °C with naphthoquinone (0.155 g, 0.98 mmol) and InCl3.4H2O (0.015 g, 0.05 51 53

52

mmol) followed by oxidative aromatization in 88 % yield (0.57 g) as light yellow solid: mp 1805

54

182 °C; IR (KBr) νmax cm-1: 3482, 2925, 1750, 1673, 1371, 1229, 758, 667; [α]25D -52.6° (c 0.1, 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 38 of 47

1 3

2

CHCl3); 1H NMR (300 MHz, CDCl3) δ 8.24 (d, J = 7.6 Hz 1H, ArH), 8.12 (d, J = 8.1 Hz, 1H, 5

4

ArH), 7.93-7.85 (m, 2H, ArH), 7.78-7.64 (m, 4H, ArH), 7.55-7.46 (m, 2H, ArH), 7.31-7.23 (m, 6 8

7

3H, ArH), 6.42 (d, J = 9.7 Hz,1H, H-1'), 5.57-5.49 (m, 1H, H-3'), 5.37-5.30 (m, 2H, H-2', H-4'), 10

9

4.41-4.29 (m, 1H, H-6'a), 4.23-4.18 (m, 1H, H-6'b), 4.13-4.11 (m, 1H, H-5'), 2.12 (s, 6H, 1 12

2×OAc), 2.05 (s, 3H, OAc), 1.74 (s, 3H, OAc); 13

13

C NMR (75 MHz, CDCl3 + CCl4) δ 185.9,

15

14

182.6, 170.5, 170.1, 169.5, 168.9, 143.2, 138.1, 134.3, 133.8 (2C), 133.5, 132.7 (3C), 131.6, 17

16

128.5 (2C), 127.7, 126.8 (2C), 126.1 (2C), 125.7 (2C), 125.4, 124.9, 124.6, 74.8, 74.6, 74.3, 19

18

73.0, 68.9, 62.4, 20.7 (3C), 20.4; ESI-HRMS calcd for C38H32O11([M+H]+) 665.2017 Found: 20 2

21

665.2013. 24

23

1-(2',3',4'-Tri-O-acetyl-β-D-xylopyranosyl)-4-phenyl anthracene-9,10-dione (5i): It was 25 27

26

obtained by the reaction of 1-glycosyl-1,3-diene 3i (0.5 g, 1.28 mmol) in toluene (5 mL, 0.26 M) 29

28

at 80 °C with naphthoquinone (0.203 g, 1.28 mmol) and InCl3.4H2O (0.017 g, 0.06 mmol) 31

30

followed by oxidative aromatization in 93 % yield (0.65 g) as yellow solid: mp 200-202 °C; IR 32 3

(KBr) νmax cm-1: 3480, 2899, 1762, 1680, 1234, 776; [α]25D 70.7° (c 0.1, CHCl3); 1H NMR (300 36

35

34

MHz, CDCl3) δ 8.23 (d, J = 7.2 Hz, 1H, ArH), 8.05 (d, J = 8.0 Hz, 1H, ArH), 7.82-7.75 (m, 2H, 37 38

ArH), 7.61 (d, J = 8.1 Hz, 2H, ArH), 7.29-7.12 (m, 5H, ArH), 6.30 (d, J = 9.7 Hz, 1H, H-1'), 39 41

40

5.54 (t, J = 9.3 Hz, 1H, H-3'), 5.25-5.19 (m, 2H, H-2', H-4'), 4.29 (m,1H, H-5'a), 3.68 (t, J = 10.7 43

42

Hz, 1H, H-5'b), 2.12 (s, 3H, OAc), 2.06 (s, 3H, OAc), 1.66 (s, 3H, OAc); 45

4

13

C NMR (75 MHz,

CDCl3) δ 185.8, 183.7, 170.1(2C), 169.3, 145.0, 139.8, 137.8, 134.2, 134.0, 133.9 (2C), 133.8, 46 48

47

132.6, 132.5, 132.4, 128.1, 127.8 (2C), 127.2, 127.0, 126.7, 126.3, 74.8, 74.2, 73.3, 69.8, 67.3, 50

49

20.8 (2C), 20.3; ESI-HRMS calcd for C31H26O9([M+H]+) 543.1650 Found: 543. 1656. 51 53

52

1-(2',3',4'-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-chlorophenyl)anthracene-9,10-dione (5j): 54 5 56 57 58 59 60 ACS Paragon Plus Environment

Page 39 of 47

The Journal of Organic Chemistry

1 3

2

It was obtained by the reaction of 1-glycosyl-1,3-diene 3j (0.5 g, 1.18 mmol) in toluene (5 mL, 5

4

0.24 M) at 80 °C with naphthoquinone (0.187 g, 1.18 mmol) and InCl3.4H2O (0.017 g, 0.06 6 8

7

mmol) followed by oxidative aromatization in 92 % yield (0.63 g) as light yellow solid: mp 14710

9

150 °C; IR (KBr) νmax cm-1: 3420, 2921, 1760, 1659, 1242, 771; [α]25D 63.7° (c 0.1, CHCl3); 1H 12

1

NMR (300 MHz, CDCl3) δ 8.22 (d, J = 7.0 Hz, 1H, ArH), 8.02 (d, J = 8.0 Hz, 1H, ArH), 7.8113 15

14

7.72 (m, 2H, ArH), 7.58 (d, J = 8.1 Hz, 1H, ArH), 7.42 (d, J = 8.1 Hz, 2H, ArH), 7.21 (d, J = 8.0 17

16

Hz, 3H, ArH), 6.27 (d, J = 9.7 Hz,1H, H-1'), 5.49 (t, J = 9.3 Hz,1H, H-3'), 5.19-5.14 (m, 2H, H18 19

2', H-4'), 4.29 (dd, J4´,5´a = 5.8 Hz, J5´a,5´b = 10.8 Hz,1H, H-5'a), 3.66 (t, J = 10.8 Hz,1H, H-5'b), 20 2

21

2.11 (s, 3H, OAc), 2.05 (s, 3H, OAc), 1.65 (s, 3H, OAc); 24

23

13

C NMR (75 MHz, CDCl3+CCl4) δ

185.5, 183.6, 170.1, 169.9, 169.2, 144.0, 140.7, 139.3, 137.5, 134.2, 134.1, 133.9, 133.7, 133.3, 25 27

26

132.9, 132.6, 129.5 (2C), 128.6 (3C), 127.1, 127.0, 74.9, 74.4, 73.5, 70.0, 67.5, 20.9(2C), 20.6; 29

28

ESI-HRMS calcd for C31H25O9Cl ([M+H]+) 577.1260 Found: 577. 1266. 31

30

1-(2',3',4'-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-fluorophenyl)anthracene-9,10-dione (5k): 32 34

3

It was obtained by the reaction of 1-glycosyl-1,3-diene 3k (0.5 g, 1.23 mmol) in toluene (5 mL, 36

35

0.25 M) at 80 °C with naphthoquinone (0.194 g, 1.23 mmol) and InCl3.4H2O ( 0.017g, 0.06 37 38

mmol) followed by oxidative aromatization in 93 % yield (0.66 g) as light yellow solid: mp 18639 40

187 °C; IR (KBr) νmax cm-1: 3021, 1752, 1674, 1220, 771; [α]25D 21.7° (c 0.1, CHCl3); 1H NMR 43

42

41

(300 MHz, CDCl3) δ 8.22 (d, J = 7.4 Hz, 1H, ArH), 8.03 (d, J = 7.7 Hz, 2H, ArH), 7.79-7.50 (m, 4 45

2H, ArH), 7.58 (d, J = 8.1 Hz, 1H, ArH), 7.24-7.20 (m, 2H, ArH), 7.14-7.08 (m, 2H, ArH), 6.27 46 48

47

(d, J = 9.6 Hz,1H, H-1'), 5.48 (t, J = 9.3 Hz,1H, H-3'), 5.22-5.14 (m, 2H, H-2', H-4'), 4.29 (dd, 50

49

J4,5´a = 5.8 Hz, J5´a,5´b = 11.0 Hz, 1H, H-5'a), 3.66 (t, J = 11.0 Hz, 1H, H-5'b), 2.10 (s, 3H, OAc), 51 52

2.04 (s, 3H, OAc), 1.64 (s, 3H, OAc); 13C NMR (50 MHz, CDCl3 + CCl4) δ 185.2, 183.3, 169.8, 5

54

53

169.5, 168.8, 143.9, 138.8, 137.3, 134.1 (2C), 133.8, 133.7, 132.5, 132.4, 129.6, 129.4 (2C, d, 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 40 of 47

1 3

2 3

5

4

JCF = 8.1 Hz), 126.8, 126.7 (2C), 115.3 (2C, d, 2JCF = 22.0 Hz), 73.2, 72.9, 72.0, 69.7, 67.2, 20.6

(2C), 20.2; ESI-HRMS calcd for C31H25FO9 ([M+H]+) 561.1555 Found: 561.1563. 6 8

7

1-(2',3',4'-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-methoxyphenyl)anthracene-9,10-dione 10

9

(5m): It was obtained by the reaction of 1-glycosyl-1,3-diene 3m (0.5 g, 1.19 mmol) in toluene 1 12

(5 mL, 0.24 M) at 80 °C with naphthoquinone (0.189 g, 1.19 mmol) and InCl3.4H2O (0.017g, 13 15

14

0.06 mmol) followed by oxidative aromatization in 94 % yield (0.64 g) as yellow solid: mp 19217

16

195 °C; IR (KBr) νmax cm-1: 2925, 1751, 1672, 1596, 1221, 771; [α]25D 161.6° (c 0.1, CHCl3); 1H 19

18

NMR (300 MHz, CDCl3) δ 8.20 (d, J = 7.5 Hz, 1H, ArH), 8.05-7.98 (m, 2H, ArH), 7.80-7.71 (m, 20 2

21

2H, ArH), 7.61 (d, J = 7.1 Hz, 1H, ArH), 7.21 (d, J = 8.7 Hz, 2H), 6.98 (d, J = 9.4 Hz, 2H, ArH), 24

23

6.28 (d, J = 9.6 Hz,1H, H-1'), 5.52 (t, J = 9.3 Hz,1H, H-3'), 5.25-5.20 (m, 2H, H-2', H-4'), 4.29 25 27

26

(dd, J4´,5´a = 5.7 Hz, J5´a,5´b = 10.9 Hz, 1H, H-5'a), 3.89 (s, 3H, OCH3), 3.66 (t, J5´a,5´b = 10.8 29

28

Hz,1H, H-5'b), 2.11 (s, 3H, OAc), 2.05 (s, 3H, OAc), 1.65 (s, 3H, OAc); 31

30

13

C NMR (75 MHz,

CDCl3 + CCl4) δ 185.6 183.8, 170.0, 169.8, 169.1, 159.0, 144.9, 138.2, 137.7, 134.2, 134.1, 32 34

3

133.9, 133.7, 133.2, 132.5, 132.4, 129.2 (2C), 126.8, 126.7, 126.6, 113.6 (2C), 74.7, 74.1, 73.2, 36

35

69.7, 67.2, 55.16, 20.6 (2C), 20.3; ESI-HRMS calcd for C32H28O10 ([M+H]+) 573.1755 Found: 37 38

573.1757. 39 41

40

1-(2',3',4',6'-Tetra-O-acetyl-β-D-mannopyranosyl)-4-(4-methylphenyl)anthracene-9,1043

42

dione (5n): It was obtained by the reaction of 1-glycosyl-1,3-diene 3n (0.5 g, 1.05 mmol) in 45

4

toluene (5 mL, 0.21 M) at 80˚C with naphthoquinone (0.167 g, 1.05 mmol) and InCl3.4H2O 46 48

47

(0.015g, 0.05 mmol) followed by oxidative aromatization in 93 % yield (0.62 g) as yellow solid: 50

49

mp 198-200 °C; IR (KBr) νmax cm-1: 3020, 2925, 1746, 1671, 1217, 1053, 770; [α]25D -31.5° (c 51 52

0.1, CHCl3); 1H NMR (400 MHz, CDCl3 + CCl4) δ 8.22 (d, J = 7.3 Hz, 1H, ArH), 8.07-8.00 (m, 5

54

53

2H, ArH), 7.75-7.67 (m, 2H, ArH), 7.55 (d, J = 8.2 Hz, 1H, ArH), 7.25-7.21 (m, 2H, ArH), 7.14 56 57 58 59 60 ACS Paragon Plus Environment

Page 41 of 47

The Journal of Organic Chemistry

1 3

2

(d, J = 7.9 Hz, 2H, ArH), 5.94 (s, 1H, H-1'), 5.88 (d, J = 3.1 Hz,1H, H-2'), 5.59 (dd, J2,3´ = 3.1 5

4

Hz, J3´,4´ = 9.9 Hz, 1H, H-3'), 5.34 (t, J = 9.9 Hz, 1H, H-4'), 4.38 (dd, J5´,6´a = 6.0 Hz, J6´a,6´b = 6 8

7

12.2 Hz, 1H, 6'a), 4.21 (dd, J5´,6´b = 1.7 Hz, J6´a,6´b = 12.2 Hz, 1H, H-6'b), 3.90 (ddd, J5´,6´b = 1.7 10

9

Hz, J5´,6´a = 6.0 Hz, J4´,5´ = 4.4 Hz, 1H, H-5'), 2.43 (s, 3H, CH3), 2.10 (s, 3H, OAc), 2.08 (s, 3H, 1 12

OAc), 2.01 (s, 3H, OAc), 1.91 (s, 3H); 13

13

C NMR (100 MHz, CDCl3 + CCl4) δ 185.5, 183.5,

15

14

170.3, 169.7, 169.6, 169.5, 144.7, 139.2, 138.8, 136.7 (2C), 133.9, 133.8, 133.6 (2C), 132.8, 17

16

132.4 (2C), 131.2, 128.9 (2C), 127.8 (2C), 127.0, 126.7, 76.02, 72.0, 69.9, 66.8 (2C), 63.0, 21.3, 19

18

20.7, 20.6, 20.4; ESI-HRMS calcd for C35H32O11Na ([M+Na]+) 651.1842 Found: 651.1834. 20 2

21

1-(2',3',4',6'-Tetra-O-acetyl-β-D-mannopyranosyl)-4-(4-methoxyphenyl)anthracene-9,1024

23

dione (5o): It was obtained by the reaction of 1-glycosyl-1,3-diene 3o (0.5 g, 1.02 mmol) in 25 27

26

toluene (5 mL, 0.20 M) at 80 °C with naphthoquinone (0.161 g, 1.02 mmol) and InCl3.4H2O 29

28

(0.014 g, 0.05 mmol) followed by oxidative aromatization in 94 % yield (0.63 g) as light yellow 31

30

solid: mp 210-215 °C; IR (KBr) νmax cm-1: 3021, 2925, 1765, 1675, 1221, 779; [α]25D -209.1° (c 32 3

0.1, CHCl3); 1H NMR (300 MHz, CDCl3) δ 8.24 (d, J = 6.7 Hz, 1H, ArH), 8.09-8.03 (m, 2H, 36

35

34

ArH), 7.75-7.72 (m, 2H, ArH), 7.58 (d, J = 8.1 Hz, 1H, ArH), 7.20 (d, J = 8.4 Hz, 2H, ArH), 37 38

6.96 (d, J = 8.3 Hz, 2H, ArH), 5.95 (s, 1H, H-1'), 5.91 (d, J = 2.4 Hz, 1H, H-2'), 5.61 (dd, J2´,3´ = 39 41

40

3.0 Hz, J3´,4´ = 9.8 Hz, 1H, H-3'), 5.34 (m, 1H, H-4'), 4.40 (dd, J5´,6´a = 6.3 Hz, J6´a,6´b = 12.3 43

42

Hz,1H, H-6'a), 4.25 (d, J6´a,6´b = 11.9 Hz, 1H, H-6'b), 3.89 (bs, 4H, OCH3, H-5´), 2.12 (s, 3H, 4 45

OAc), 2.11 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.94 (s, 3H, OAc); 46

13

C NMR (75 MHz, CDCl3 +

48

47

CCl4) δ 185.5, 183.5, 170.1, 169.5, 169.4, 169.3, 158.9, 144.4, 138.7, 136.8, 134.2, 134.0, 133.9, 50

49

133.6, 133.5, 132.7, 132.4, 131.3, 129.2 (2C), 127.0, 126.7, 113.6 (2C), 76.03, 72.0, 70.01, 66.8 51 52

(2C), 63.0, 55.0, 20.7 (2C), 20.6, 20.4; ESI-HRMS calcd for C35H32O12 ([M+H]+) 645.1967 5

54

53

Found: 645.1968. 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 42 of 47

1 3

2

General procedure for the synthesis uprotected aryl -C-glycosides of compound (6a-6b) 5

4

1-(β-D-xylopyranosyl)-4-(4-fluorophenyl)anthracene-9,10-dione (6a): To a solution of 16 8

7

glycosyl-1,3-diene 4a (0.10 g, 0.35 mmol) in water:toluene (9:1), (3 mL, 0.11 M) was added 10

9

naphthoquinone (0.06 g, 0.35 mmol) and InCl3.4H2O (0.05 mmol) at 80 °C. The resulting 1 12

reaction mixture was stirred for 4 hours until the glycosyl diene substrate was completely 13 15

14

consumed. After completion (TLC), toluene was evaporated under reduced pressure afforded 17

16

residue was partitioned between ethyl acetate and water. Obtained organic layer was dried over 18 19

Na2SO4 evaporated under reduced pressure then dissolved in pyridine (1 mL, 0.36 M) added 20 2

21

triethylamine (0.1 M) and this mixture, was allowed to stir at room temperature in presence of 24

23

oxygen for 6 hours. After completion (TLC), crude reaction mixture was concentrated under 25 27

26

reduced pressure and extracted with ethyl acetate and water. Organic layer was separated and 29

28

dried over anhydrous sodium sulphate (Na2SO4) and evaporated under reduced pressure. The 31

30

obtained crude product was purified by column chromatography using 60-120 mesh silica gel 32 34

3

with CHCl3: MeOH (99:1) as eluent to give 6a. in 76 %yield (0.11 g); as yellow solid: mp 60-62 36

35

°C; IR (KBr) νmax cm-1: 3620, 3471, 2922, 1760, 1678, 961; [α]25D 35.6° (c 0.1, CHCl3); 1H 38

37

NMR (300 MHz, CDCl3) δ 8.14 (m, 3H, ArH), 7.79 (bs, 2H, ArH), 7.76 (d, J = 7.7 Hz 1H, ArH), 39 41

40

7.45-7.16 (m, 4H, ArH), 5.56 (d, J = 9.3 Hz, 1H, H-1´), 4.78 (s, 1H, OH), 4.22-4.20 (m, 2H, OH, 43

42

H-5´a), 4.00-3.92 (m, 3H, OH, H-3´, H-4´), 3.60-3.55 (m, 2H, H-5´b, H-2´); 13C NMR (75 MHz, 45

4

CDCl3) δ 189.0, 183.6, 164.2 (d, 1JCF = 241.1 Hz), 143.7, 142.1, 138.2, 137.7, 134.7, 134.1, 46 48

47

132.5, 131.9, 129.6, 128.7, 128.6, 127.7, 127.0, 126.9 (2C, d, 3JCF = 7.5 Hz) 115.5 (2C, d, 2JCF = 50

49

21.0 Hz), 80.3, 76.8, 70.5, 70.1, 65.4; ESI-HRMS calcd for C25H19FO6 ([M+H]+) 435.1244 51 53

52

Found: 435.1234. 54 5 56 57 58 59 60 ACS Paragon Plus Environment

Page 43 of 47

The Journal of Organic Chemistry

1 3

2

1-(β-D-xylopyranosyl)-4-(4-methoxyphenyl)anthracene-9,10-dione (6b): It was obtained by 5

4

the reaction of 1-glycosyl-1,3-diene 4b (0.10 g, 0.34 mmol) in water:toluene (9:1) (3 mL, 0.11 6 8

7

M) at 80 °C with naphthoquinone (0.053 g, 0.34 mmol) and InCl3.4H2O (0.05 mmol) followed 10

9

by oxidative aromatization in 79 % yield (0.12 g) as light yellow solid: 6b as white solid. Yield 12

1

0.12 g, 79 %; IR (Neat) νmax cm-1: 3642, 3460, 2921, 1768, 1672, 978; [α]25D -94.1° (c 0.1, 13 14

CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 8.19-8.16 (m, 1H, ArH), 8.16-8.06 (m, 2H, ArH), 17

16

15

7.82-7.77 (m, 2H, ArH), 7.68 (d, J = 8.1 Hz, 1H, ArH), 7.25 (d, J = 8.6 Hz, 2H, ArH), 7.04 (d, J 18 19

= 7.7 Hz, 2H, ArH), 5.84 (d, J = 9.5 Hz, 1H, H-1´), 5.34 (s, 1H, OH), 4.24-4.18 (m, 1H, H-5´a), 20 2

21

4.02-3.97 (m, 1H, H-4´), 3.96 (s, 3H, OCH3), 3.94-3.82 (m, 1H, H-3´), 3.57 (s, 1H, OH), 3.5324

23

3.49 (m, 3H, OH, H-5´b, H-2´); 25

13

C NMR (100 MHz, CDCl3 + CCl4) δ 188.9, 183.4, 159.3,

27

26

144.7, 141.9, 138.6, 134.6, 134.4, 134.3, 134.3, 133.9, 133.8, 132.6, 123.1, 129.3 (2C), 128.5, 29

28

126.7, 125.6, 113.9 (2C), 80.4, 77.9, 76.9, 70.7, 70.3, 55.4; ESI-HRMS calcd for C26H22O7 31

30

([M+Na]+) 469.1263 Found: 469.1245. 32 34

3

General Procedure for the Preparation of Compound (7) 36

35

4-(2',3',4',6'-Tetra-O-acetyl-β-D-xylopyranosyl)-7-(4-methoxyphenyl)-2-phenyl tetrahydro37 38

1H-isoindole-1,3-(2H)-dione (7): To a solution of (EE) 1-glycosyl-1,3-diene 3m (0.2 g, 0.5 39 41

40

mmol) in toluene (4 mL, 0.12 M) at 80 ˚C added N-phenyl maleimide (0.086 g, 0.5 mmol) and 43

42

InCl3.4H2O (0.02 mmol). The resulting reaction mixture was stirred for 4-5 h until the substrate 4 45

was completely consumed. After completion (TLC), toluene was evaporated under reduced 46 48

47

pressure afforded residue was partitioned between ethyl acetate and water. Obtained organic 50

49

layer was dried over Na2SO4 evaporated under reduced pressure. Obtained crude product was 51 53

52

purified by column chromatography using 60-120 mesh silica gel with hexane:ethyl acetate (3:1) 5

54

as eluent to give white solid of compound 7 in 81 % yield (0.23 g) as white solid: Yield 0.23 g, 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 44 of 47

1 3

2

81 %; mp 74 °C; IR (KBr) ν max cm-1: 3216, 2922, 1768, 1636, 1594, 759, 671; [α]25D 83° (c 0.1, 5

4

CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.42-7.25 (m, 3H, ArH), 7.13 (d, J = 7.9 Hz, 2H, ArH), 6 8

7

7.14 (d, J = 7.9 Hz, 2H, ArH), 6.87 (d, J = 8.37 Hz, 2H, ArH), 6.29-6.26 (m, 1H, H-3), 6.07-6.02 10

9

(m, 1H, H-2), 5.27 (t, J = 9.4 Hz, 1H, H-3'), 5.09 (t, J = 9.3 Hz, 1H, H-2'), 5.06 (t, J = 10.6 Hz, 1 12

1H, H-4'), 4.23 (t, J = 10.0 Hz, 1H, H-1'), 4.17 (dd, J4´,5´a = 5.9 Hz, J5´a,5´b = 11.2 Hz, 1H, H-5'a), 13 15

14

3.86 (dd, J1,6 = 5.0 Hz, J 5,6 = 8.3 Hz, 1H, H-6), 3.78 (s, 3H, OCH3), 3.63 (dd, J4,5 =7.8 Hz, J3,4 17

16

=3.9 Hz, 1H, H-4), 3.45 (t, J = 11.1 Hz, 1H, H-5'b), 3.37 (t, J = 8.2 Hz, 1H, H-5), 2.64 (d, J = 6.6 18 19

Hz, 1H, H-1), 2.04(s, 3H, OAc), 2.03 (s, 3H, OAc), 2.01 (s, 3H, OAc); 20

13

C NMR (75 MHz,

2

21

CDCl3) δ 176.4, 174.9, 170.3, 170.1, 169.8, 158.9, 132.1, 130.6, 129.9 (2C), 129.2 (2C), 128.6, 24

23

126.6 (2C), 114.0 (2C), 76.8, 74.0, 69.9, 67.1 (2C), 55.3, 46.3, 41.8, 41.7, 40.6, 20.9 (3C); ESI25 26

HRMS calcd for C32H33NO10 ([M+H]+) 592.2177 Found: 592.2171. 28

27 29 30 32

31

ACKNOWLEDGMENT: NA, KU, AA and RM are thankful to CSIR and UGC, New Delhi 34

3

respectively for fellowships RPT thank DRDO and CSIR (SPLENDID Project) New Delhi for 35 37

36

financial supports. We thank SAIF division, CSIR-CDRI for the analytical facilities. This is 39

38

CDRI communication No: 41

40

SUPPORTING INFORMATION AVAILABLE: 1H, 42

13

C, 2D-NOESY and 1H-13C HMBC

4

43

spectra, for all new compounds. This material is available free of charge via the internet at 46

45

http://pubs.acs.org 47 48 50

49

REFERENCES: 52

51

(1) (a) Hansen, M. R.; Hurley, L. H. Acc. Chem. Res. 1996, 29, 249-258 and references cited 54

53

therein. (b) Bililign, T.; Griffith, B. R.; Thorson, J. S. Nat. Prod. Rep. 2005, 22, 742-760. 5 56 57 58 59 60 ACS Paragon Plus Environment

Page 45 of 47

The Journal of Organic Chemistry

1 3

2

(2) Levy, D. E.; Tang, C. The Chemistry of C-Glycosides, Pergamon, Elsevier Science Ltd. 1995, 5

4

p. 4. 6 8

7

(3) (a) Rohr, J.; Thiericke, R. Nat. Prod. Rep. 1992, 9, 103-137. (b) Kharel, M. K.; Pahari, P.; 10

9

Shepherd, M. D.; Tibrewal, N. S.; Nybo, E.; Shaaban, K. A.; Rohr, J. Nat. Prod. Rep. 2012, 29, 1 12

264-325. (c) Toshima, K.; Ouchi, H.; Okazaki, Y.; Kano, T.; Moriguchi, M.; Asai, A.; 13 15

14

Matsumura, S. S. Angew. Chem. Int. Ed. Engl. 1997, 36, 2748-2750. (d) Yang, X.; Fu, B.; Yu, B. 17

16

J. Am. Chem. Soc. 2011, 133, 12433–12435. 18 19

(4) (a) Meng, W.; Ellsworth, B. A.; Nirschl, A. A.; McCann, P. J.; Patel, M.; Girotra, R. N.; 20 2

21

Wu, G.; Sher, P. M.; Morrison, E. P.; Biller, S. A.; Zahler, R.; Deshpande, P. P.; Pullockaran, 24

23

A.; Hagan, D. L.; Morgan, N.; Taylor, J. R.; Obermeier, M. T.; Humphreys,W. G.; Khanna, A.; 25 27

26

Discenza, L.; Robertson, J. G.; Wang, A.; Han, S.; Wetterau, J. R.; Janovitz, E. B.; Flint, O. P.; 29

28

Whaley, J. M.; Washburn, W. N. J. Med. Chem. 2008, 51, 1145-1149. (b) Xu, B.; Feng, Y.; 31

30

Cheng, H.; Song, Y.; Lv, B.; Wub, Y.; Wang, C.; Li, S.; Xu, M.; Du, J.; Peng, K.; Dong, J.; 32 34

3

Zhang, W.; Zhang, T.; Zhu, L.; Ding, H.; Sheng, Z.; Welihinda, A.; Roberge, J. Y.; Seed, B.; 36

35

Chen, Y. Bioorg. Med. Chem. Lett. 2011, 21, 4465-70. 37 38

(5) (a) McDonald, F. E.; Zhu, H. Y. H.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117, 660539 41

40

6606. (b) Yamamoto, Y.; Saigoku, T.; Ohgai, T.; Nishiyama, H.; Itoh, K. Chem. Commun. 2004, 43

42

10, 2702-2703. (c) Yamamoto, Y.; Saigoku, T.; Nishiyama, H.; Ohgai, T.; Itoh, K. Org. Biomol. 4 45

Chem. 2005, 3, 1768-1775. 46 48

47

(6) (a) Pully, S. R.; Carey, J. P. J. Org. Chem. 1998, 63, 5275-5279. (b) Paetsch, D.; Dotz, K. H. 50

49

Tetrahedron Lett. 1999, 40, 487-488. (c) Janes, E.; Nieger, M.; Saarenketo, P.; Dotz, K. H. Eur. 51 53

52

J. Org. Chem. 2003, 22, 2276-2285. (d) Fuganti, C.; Serra, S. Synlett 1999, 82, 1241-1242. (e) 54 5 56 57 58 59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Page 46 of 47

1 3

2

Brenna, E.; Fuganti, C.; Grasselli, P.; Serra, S.; Zambotti, S. Chem. Eur. J. 2002, 8, 1872-1878. 5

4

(f) Schmidt, R. R.; Effenberger, G. Liebigs Ann. Chem. 1987, 1987, 825-831. 6 8

7

(7) (a) Matsumoto, T.; Hosoya, T.; Suzuki, K. J. Am. Chem. Soc. 1992, 114, 3568–3570. (b) 10

9

Hosoya, T.; Takashiro, E.; Matsumoto,T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116, 1004–1015. 1 12

(c) Suzuki, K. Pure Appl. Chem.2000, 72, 1783–1786. 13 15

14

(8) (a) Kaelin, D. E.; Jr.; Lopez, O. D.; Martin, S. F. J. Am. Chem. Soc. 2001, 123, 6937-6938. 17

16

(b) Kaelin, D. E.; Jr.; Sparks, S. M.; Plake, H. R.; Martin, S. F. J. Am. Chem. Soc. 2003, 125, 18 19

12994-12995. (c) Chen, C. L.; Sparks, S. M.; Martin, S. F. J. Am. Chem. Soc. 2006, 128, 1369620 2

21

13697. 24

23

(9) Kaliappan, K. P.; Subrahmanyam, A. V. Org. Lett. 2007, 9, 1121-1124. 25 27

26

(10) Acton, E. M.; Ryan, K. J.; Tracy, M. Tetrahedron Lett. 1984, 25, 5743-5746. 29

28

(11) (a) Anand, N.; Pandey, S. K.; Tripathi, R. P. Carbohydr. Research 2011, 346, 16-25. (b) 31

30

Mishra, M.; Sharma, R.; Tripathi, R. P. Tetrahedron 2011, 67, 740-748. (c) Bisht, S. S.; Fatima, 32 34

3

S.; Tamrakar, A. K.; Rahuja, N.; Jaiswal, N.; Srivastava, A. K.; Tripathi, R. P. Bioorg. Med. 36

35

Chem. Lett. 2009, 19, 2699-2703. (d) Pandey, J.; Sharma, A.; Tiwari, V. K.; Dube, D.; 37 38

Ramachandran, R.; Chaturvedi, V.; Sinha, S. K.; Mishra, N. N.; Shukla, P. K.; Tripathi, R. P. J. 39 41

40

Comb. Chem. 2009, 11, 422-427. 43

42

(12) (a) Sharma, A.; Sharma, S.; Tripathi, R. P.; Ampapathi, R. S. J. Org. Chem. 2012, 77, 20014 45

2007. (b) Ajay, A.; Sharma, S.; Gupt, M. P.; Bajpai, V.; Hamidullah; Kumar, B.; Kaushik, M. P.; 46 48

47

Konwar, R.; Ampapathi, R. S.; Tripathi, R. P. Org. Lett. 2012, 14, 4306-4309. 50

49

(13) (a) Rodrigues, F.; Canac, Y.; Lubineau, A. Chem. Commun. 2000, 2049-2050. (b) Riemann, 51 53

52

I.; Papadopoulos, M. A.; Knorst, M.; Fessner, W. D. Aust. J. Chem. 2002, 55, 147-154. (c) Bisht, 5

54

S. S.; Pandey, J.; Sharma, A.; Tripathi, R. P. Carbohydr. Res. 2008, 343, 1399-1406. 56 57 58 59 60 ACS Paragon Plus Environment

Page 47 of 47

The Journal of Organic Chemistry

1 3

2

(14) Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226-2227. 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 2 23 24 25 26 27 28 29 30 31 32 3 34 35 36 37 38 39 40 41 42 43 4 45 46 47 48 49 50 51 52 53 54 5 56 57 58 59 60 ACS Paragon Plus Environment