12 A Terrestrial-Aquatic Model Ecosystem for Evaluating the Environmental Fate of Drugs and Related Residues
Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: May 24, 1979 | doi: 10.1021/bk-1979-0099.ch012
in Animal Excreta S. H. CABALLA, M. PATTERSON, and I. P. KAPOOR Agricultural Division, American Cyanamid Company, P. O. Box 400, Princeton, NJ 08540 When farm animals are treated with drugs both as a prophylactic or curative measure, majority of the drug or drug related residues are eliminated i n the excreta. Poultry as well as farm animal excreta is allowed to compost into manure and the manure is used on the farm land. The objective of the present study was to design a terrestrial-aquatic model ecosystem for evaluating the environmental fate of drugs and related residues i n the animal excreta used as manure. Metcalf et al. (1) developed a model ecosystem consisting of a terrestrial/aquatic interface and a seven-element food chain for obtaining valuable information on the biodegradability and ecological fate of numerous pesticides. This study, using a modified system, was initiated to determine the ecological fate of robenidine hydrochloride and related residues present i n turkey excreta. ROBENZ® Robenidine hydrochloride, (Figure 1), has been found to be an effective and safe feed additive product for the prevention of coccidiosis i n broiler chickens (2). For comparison, a parallel experiment using turkey excreta fortified with carbon-14 DDT as a positive control was conducted since the biodegradability and ecological fate of DDT and i t s analogs have already been extensively studied (1, 3). Materials and Methods Robenidine hydrochloride labeled with carbon-14 i n the amino guanidine carbon atom had a specific activity of 18.61 yCi/mg. Carbon-14 DDT, labeled i n the ring, had a specific activity of 83.4 uCi/mg.
®
R e g i s t e r e d Trademark o f A m e r i c a n Cyanamid Company 0-8412-0489-6/79/47-099-183$05.00/0 © 1979 American Chemical Society Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
184
PESTICIDE AND XENOBIOTIC M E T A B O L I S M I N AQUATIC
ROBENZ®
Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: May 24, 1979 | doi: 10.1021/bk-1979-0099.ch012
Cl-f
^ D E N O T E S
ORGANISMS
ROBENIDINE HYDROCHLORIDE
"\ CC HH == NN HH NN CC **NN HH NN == CC HH --/ \>-NH- HCI
\ - CI
CARBON-14
Figure 1
Figure 2. Schematic of the modified model ecosystem detailing a complete terrestrial/aquatic environment for the study of drug biodegradability and ecological magnification
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: May 24, 1979 | doi: 10.1021/bk-1979-0099.ch012
12.
CABALLA ET AL.
Terrestrial-Aquatic
Model
Ecosystem
185
I n t h i s s t u d y , t h r e e e x p e r i m e n t a l t a n k s were e m p l o y e d : Tank A c o n t a i n i n g e x c r e t a from a t u r k e y t r e a t e d w i t h carbon-14 r o b e n i d i n e ; Tank Β c o n t a i n i n g e x c r e t a f o r t i f i e d w i t h c a r b o n - 1 4 DDT w h i c h was u s e d a s a p o s i t i v e c o n t r o l a n d Tank C c o n t a i n i n g u n t r e a t e d e x c r e t a w h i c h was u s e d a s a c o n t r o l . To o b t a i n e x c r e t a f o r t h i s s t u d y , a t u r k e y was f e d 250 grams o f a b a s a l d i e t c o n t a i n i n g 66 ppm r o b e n i d i n e h y d r o c h l o r i d e f o r t e n d a y s . On t h e e l e v e n t h d a y , t h e t u r k e y was d o s e d w i t h 17 mg o r 316.37 u C i o f c a r b o n - 1 4 r o b e n i d i n e i n a c a p s u l e . E x c r e t a was c o l l e c t e d f o r two d a y s a f t e r t r e a t m e n t . Excreta c o l l e c t e d p r i o r t o t h e t e n - d a y c o n d i t i o n i n g p e r i o d was a l s o c o l l e c t e d a n d u s e d f o r t h e c o n t r o l a n d DDT e x p e r i m e n t a l t a n k s . The m o d e l e c o s y s t e m was e s s e n t i a l l y t h e same a s t h a t p r e v i o u s l y d e s c r i b e d b y M e t c a l f et_ a l . (1) e x c e p t t h a t t h e t e r r e s t r i a l p o r t i o n c o n s i s t e d o f u n s t e r i l i z e d sandy loam s o i l i n s t e a d o f w h i t e q u a r t z s a n d . I n p r a c t i c e , 4.5 k g o f a q u a r i u m g r a v e l was washed t h o r o u g h l y t o remove f i n e s and m o l d e d i n t o a s u p p o r t s h e l f m e a s u r i n g 2 χ 6 χ 12 i n c h e s a t t h e b o t t o m o f a 2 0 - g a l l o n g l a s s a q u a r i u m . A s o i l s h e l f was t h e n m o l d e d o n t o p o f t h e g r a v e l c o n s i s t i n g o f 7 k g o f P r i n c e t o n s a n d y loam s o i l . The t o p 2 i n c h e s o f t h e s o i l s h e l f was m o l d e d f r o m 2.5 k g o f s o i l m i x e d t h o r o u g h l y i n a b a l l m i l l w i t h t h e d r i e d t u r k e y e x c r e t a . The amount o f e x c r e t a added c o r r e s p o n d e d t o a n a p p l i c a t i o n r a t e o f 5 tons/acre. The t o t a l a r e a o f t h e p l a t e a u was 78 s q u a r e i n c h e s (6.5 χ 12 i n c h e s ) w i t h a t o t a l h e i g h t o f 6 i n c h e s ( F i g u r e 2 ) . The t o t a l r a d i o a c t i v i t y a p p l i e d t o t h e s o i l a s c a r b o n - 1 4 r o b e n i d i n e r e s i d u e s i n e x c r e t a was 167.54 m i c r o c u r i e s . F o r Tank B, 100 m i c r o c u r i e s o f c a r b o n - 1 4 DDT a n d 9 mg o f u n l a b e l e d DDT w e r e m i x e d i n a b a l l m i l l w i t h 2.5 k g o f s o i l a n d 52g o f c o n t r o l t u r k e y e x c r e t a . The amount o f DDT added t o t h e s o i l c o r r e s p o n d e d to a n a p p l i c a t i o n r a t e o f a p p r o x i m a t e l y 1.5 l b s / a c r e . F o r Tank C, c o n t r o l t u r k e y e x c r e t a was m i x e d w i t h t h e t o p two i n c h e s of s o i l as p r e v i o u s l y described. A f t e r t h e t e r r e s t r i a l p o r t i o n was f o r m e d , 8 l i t e r s o f r e f e r e n c e w a t e r (4) w e r e added t o t h e s y s t e m . The e x c r e t a was a l l o w e d t o age f o r 4 weeks. D u r i n g t h e a g i n g p e r i o d , d i s t i l l e d w a t e r was added whenever needed t o keep t h e l e v e l o f t h e a q u a t i c portion constant. A t t h e e n d o f 4 w e e k s , f i f t y sorghum (sorghum h a l p e n s e ) s e e d s were sowed i n 5 rows a l o n g t h e f l a t t e n e d t e r r e s t r i a l end. A f t e r 3 t o 4 d a y s when t h e s e e d s h a d g e r m i n a t e d , 3 l i t e r s more o f r e f e r e n c e w a t e r were added a n d t h e l e v e l o f w a t e r was k e p t c o n s t a n t t h r o u g h o u t t h e r e m a i n d e r o f t h e s t u d y . At this p o i n t , t h e f o l l o w i n g w e r e added t o t h e a q u a t i c p o r t i o n : 100 D a p h n i a magna, 10 G y r a u l i s s n a i l s , a s t r a n d o f a l g a e ( R h i z o ^ c I o n i u m and L y n g b i a ) a n d 10 m i l l i l i t e r s o f pond w a t e r w h i c h p r o v i d e d t h e p l a n k t o n c u l t u r e . When t h e s e e d l i n g s w e r e 3 weeks o l d , ten e a r l y f i f t h i n s t a r s a l t marsh c a t e r p i l l a r (Estigmene a c r e a ) l a r v a e w e r e p l a c e d o n t h e sorghum p l a n t s . Two t o t h r e e s e e d l i n g s were removed p r i o r t o a d d i t i o n o f t h e l a r v a e i n o r d e r to d e t e r m i n e t h e g r o s s u p t a k e o f r a d i o a c t i v i t y b y t h e p l a n t s .
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
186
PESTICIDE AND
XENOBIOTIC M E T A B O L I S M IN AQUATIC ORGANISMS
A f i n e mesh w i r e s c r e e n was t h e n f i t t e d o v e r t h e t a n k s t o c o n f i n e t h e l a r v a e on t h e p l a n t s . The c a t e r p i l l a r s consumed t h e p l a n t s w i t h i n 3 t o 4 days and c o n t a m i n a t e d t h e w a t e r w i t h t h e i r e x c r e t a and l e a f f r a s s . I n t h e i r s e a r c h f o r more f o o d , t h e c a t e r p i l l a r s a l s o ended up c o n t a m i n a t i n g t h e w a t e r t h e m s e l v e s . Approximately 300 m o s q u i t o l a r v a e ( A n o p h e l e s q u a d r i m a c u l a t u s ) were added t o t h e e c o s y s t e m a f t e r 26 days and 4 days l a t e r 50 were removed f o r d e t e r m i n a t i o n of gross r a d i o a c t i v i t y . At t h i s p o i n t , t h r e e m o s q u i t o f i s h (Gambusia a f f i n i s ) were i n t r o d u c e d and a l l o w e d t o e a t t h e r e m a i n i n g m o s q u i t o l a r v a e and t h e D a p h n i a . A f t e r t h r e e d a y s (Day 3 3 ) , t h e e x p e r i m e n t was t e r m i n a t e d and t h e d i f f e r e n t components o f t h e s y s t e m were a n a l y z e d f o r c a r b o n - 1 4 r e s i d u e s .
Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: May 24, 1979 | doi: 10.1021/bk-1979-0099.ch012
R e s u l t s and
Discussion
A p p r o x i m a t e l y 60% o f t h e c a r b o n - 1 4 r o b e n i d i n e a d m i n i s t e r e d to t h e t u r k e y was r e c o v e r e d i n t h e e x c r e t a w i t h i n 48 h o u r s . About 84% o f t h e r a d i o a c t i v i t y i n t h e e x c r e t a was e x t r a c t e d w i t h m e t h a n o l , a n o t h e r 9% was e x t r a c t e d w i t h a 1% h y d r o c h l o r i c a c i d / m e t h a n o l m i x t u r e l e a v i n g a b o u t 7% u n e x t r a c t e d . I t was f o u n d by TLC t h a t 75% o f t h e m e t h a n o l - s o l u b l e r a d i o a c t i v i t y was due t o t h e p r e s e n c e o f unchanged r o b e n i d i n e ( F i g u r e 3 ) . Metabolites 1, 2, and 3 a c c o u n t e d f o r 7, 2 and 0.7% o f t h e e x t r a c t a b l e radioactivity, respectively. Sorghum s e e d l i n g s r a d i o a s s a y e d f o r c a r b o n - 1 4 r e s i d u e s a t t h e t i m e o f l a r v a l f e e d i n g showed l o w l e v e l s o f 0.004 and 0.013 ppm f o r c a r b o n - 1 4 DDT and c a r b o n - 1 4 r o b e n i d i n e , r e s p e c t i v e l y . R e s i d u e l e v e l s o f c a r b o n - 1 4 i n w a t e r were l o w , e s p e c i a l l y i n t h e c a s e o f c a r b o n - 1 4 DDT, i n d i c a t i n g t h a t D D T - r e l a t e d r e s i d u e s r e m a i n bound t o t h e s o i l ( F i g u r e 4 ) . A f t e r an i n i t i a l c o n c e n t r a t i o n o f 0.009 ppb a t Day 1, t h e c o n c e n t r a t i o n o f c a r b o n - 1 4 DDT r e s i d u e s r e a c h e d an e q u i l i b r i u m o f a b o u t 0.02 ppb by t h e t h i r d day and t h e n d r o p p e d o f f s l i g h t l y t o 0.012 to 0.013 ppb a t t h e t i m e t h e m o s q u i t o l a r v a e and f i s h w e r e i n t r o d u c e d . Carbon-14 r e s i d u e s i n w a t e r d e r i v e d f r o m c a r b o n - 1 4 r o b e n i d i n e showed an i n i t i a l c o n c e n t r a t i o n o f 0.344 ppb and t h e n r e m a i n e d f a i r l y c o n s t a n t a t a b o u t 1 ppb t h r o u g h o u t t h e s t u d y , i n d i c a t i n g t h a t r o b e n i d i n e - r e l a t e d residues are p o l a r i n nature and r e a d i l y m i g r a t e i n t o t h e w a t e r p h a s e and r e a c h e q u i l i b r i u m very r a p i d l y . The n a t u r e o f t h e r a d i o a c t i v i t y i n t h e w a t e r , s o i l and f i s h f r o m t h e c a r b o n - 1 4 DDT e x p e r i m e n t was e x a m i n e d by t h i n - l a y e r c h r o m a t o g r a p h y as shown i n F i g u r e 5. The r a d i o a c t i v i t y i n t h e w a t e r was v e r y p o l a r i n n a t u r e and d i d n o t m i g r a t e a p p r e c i a b l y from the o r i g i n . About 78% o f t h e r a d i o a c t i v i t y i n t h e s o i l was e x t r a c t e d w i t h m e t h a n o l . The m a j o r m e t a b o l i t e i n t h e e x t r a c t a b l e f r a c t i o n was DDD w h i c h r e p r e s e n t e d 33% o f t h e t o t a l r a d i o activity. The r e d u c t i v e d e c h l o r i n a t i o n o f DDT t o DDD i s a known pathway u n d e r a n a e r o b i c c o n d i t i o n s and has been shown t o be due to m i c r o b i a l m e t a b o l i s m ( 5 ) . S i n c e c a r b o n - 1 4 DDT was i n c o r -
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: May 24, 1979 | doi: 10.1021/bk-1979-0099.ch012
CABALLA ET AL.
Figure 3.
Terrestrial-Aquatic
Model
Ecosystem
TLC of the extractable radioactivity from the excreta of turkeys
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
188
PESTICIDE AND XENOBIOTIC M E T A B O L I S M IN AQUATIC ORGANISMS
CONCENTRATION IN
AT
SORQHUM
OF
CARBON-14
DIFFERENT PLANTS
BY
RESIDUES
DAYS
(CALCULATED
FOLLOWING
SALT
MARSH
LARVAL
A8
PARENT)
FEEDING
OF
CATERPILLAR
Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: May 24, 1979 | doi: 10.1021/bk-1979-0099.ch012
THE
WATER
14C-ROBENIDINE
0.01 L _ B _
10
15
20
25
30
DAYS Figure 4
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
35
Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: May 24, 1979 | doi: 10.1021/bk-1979-0099.ch012
CABALLA ET AL.
T erre striai-Aquatic
Model
Ecosystem
189
Figure 5. TLC of the fish and soil extractable radioactivity and water from the C-DDT experiment. Solvent system used was petroleum etheridiethyl ether (9:1).
14
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: May 24, 1979 | doi: 10.1021/bk-1979-0099.ch012
190
PESTICIDE AND
XENOBIOTIC M E T A B O L I S M IN AQUATIC ORGANISMS
porated i n t o the s o i l w i t h the e x c r e t a i t i s l i k e l y t h a t a n a e r o b i c c o n d i t i o n s p r e v a i l e d . P a r e n t DDT a c c o u n t e d f o r 44% of the e x t r a c t a b l e r a d i o a c t i v i t y w i t h t r a c e s (1.1%) of DDE. A b o u t 13% o f t h e e x t r a c t a b l e r a d i o a c t i v i t y was a component more p o l a r t h a n DDT and t h e r e m a i n i n g r a d i o a c t i v i t y s t a y e d a t o r near the o r i g i n . E x t r a c t i o n o f t h e f i s h showed t h a t 8 1 % o f t h e c a r b o n - 1 4 r e s i d u e s were o r g a n o s o l u b l e , 13% w e r e p o l a r w a t e r - s o l u b l e p r o d u c t s and 6% u n e x t r a c t a b l e . Chromatography of the organos o l u b l e r a d i o a c t i v i t y showed t h a t a l a r g e p r o p o r t i o n (87%) was s t i l l v e r y p o l a r i n n a t u r e w i t h DDT a c c o u n t i n g f o r 8%, DDE 3% and DDD 2%. T h i n - l a y e r chromatography of the water from the carbon-14 r o b e n i d i n e s t u d y showed a b o u t 12% (0.138 ppb) p a r e n t compound, 27% (0.319 ppb) o f M e t a b o l i t e No. 2 and 6 1 % (0.734 ppb) p o l a r r a d i o a c t i v i t y which d i d not m i g r a t e f a r from the o r i g i n (Figure 6). The r e s u l t s i n d i c a t e t h a t e v e n t h o u g h r o b e n i d i n e was t h e p r e d o m i n a n t component o f t h e t u r k e y e x c r e t a , i t was readily and e x t e n s i v e l y d e g r a d e d i n t o p o l a r compounds w h i c h end up i n the a q u a t i c phase. A b o u t 20% o f t h e r a d i o a c t i v i t y i n t h e s o i l f r o m t h e c a r b o n 14 r o b e n i d i n e t a n k was e x t r a c t a b l e a t t h e end o f t h e e x p e r i m e n t w i t h 80% r e m a i n i n g u n e x t r a c t a b l e . Chromatography of the e x t r a c t a b l e r a d i o a c t i v i t y showed e x t e n s i v e d e g r a d a t i o n o f t h e compound as shown i n F i g u r e 7. R o b e n i d i n e , w h i c h was t h e m a j o r component i n t h e e x c r e t a , r e p r e s e n t e d a b o u t 10% o f t h e e x t r a c t a b l e r a d i o a c t i v i t y i n t h e soil. I n terms of t o t a l carbon-14 r e s i d u e s i n the s o i l , p a r e n t compound r e p r e s e n t e d 2.0%. M e t a b o l i t e 2, w h i c h was p r e s e n t o n l y i n t r a c e q u a n t i t i e s i n t h e e x c r e t a , a c c o u n t e d f o r 21% o f t h e e x t r a c t a b l e r a d i o a c t i v i t y o r 4.2% o f t h e t o t a l c a r b o n - 1 4 r e s i d u e s i n the s o i l . T h i s m e t a b o l i t e was a l s o t h e o n l y s i g n i f i c a n t compound f o u n d i n t h e w a t e r . T h r e e o t h e r m e t a b o l i t e s a c c o u n t e d f o r a b o u t 18% o f t h e e x t r a c t a b l e r a d i o a c t i v i t y i n t h e s o i l , n a m e l y , M e t a b o l i t e 3, 5.3%, M e t a b o l i t e 6, 7.6% and M e t a b o l i t e 10, 4.9%. P o l a r m a t e r i a l w h i c h was n o t r e s o l v e d f r o m t h e o r i g i n r e p r e s e n t e d 25% o f t h e e x t r a c t a b l e r a d i o a c t i v i t y i n t h e s o i l . The r e m a i n i n g r a d i o a c t i v i t y was d i s t r i b u t e d among t e n m i n o r components. I n t h e f i s h , t h e l a s t e l e m e n t i n t h e f o o d c h a i n web, m e t h a n o l e x t r a c t e d a b o u t 58% o f t h e r a d i o a c t i v i t y r e s u l t i n g f r o m t h e c a r b o n - 1 4 r o b e n i d i n e t r e a t m e n t l e a v i n g 42% u n e x t r a c t e d , i n d i c a t i n g t h a t r o b e n i d i n e was b e i n g e x t e n s i v e l y d e g r a d e d by f i s h into very polar nonextractable products. T h i n - l a y e r chromatography of the e x t r a c t a b l e r a d i o a c t i v i t y d i d n o t show any p a r e n t compound e v e n t h o u g h r o b e n i d i n e was one o f t h e components i n t h e e n v i r o n m e n t ( w a t e r ) ( F i g u r e 8 ) . The c o n c e n t r a t i o n o f c a r b o n - 1 4 r e s i d u e s i n t h e d i f f e r e n t components o f t h e m o d e l e c o s y s t e m i s compared i n T a b l e 3,· The b i o c o n c e n t r a t i o n f a c t o r ( B C F ) , d e f i n e d as t h e r a t i o o f t h e
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: May 24, 1979 | doi: 10.1021/bk-1979-0099.ch012
CABALLA ET AL.
Figure 6.
Figure 7.
T err est rial-Aquatic
Model
Ecosystem
TLC of the water from the C-robenidine model ecosystem 14
TLC of the methanol-soluble radiactivity in the aged soil/excreta mixture from the C-robenidine model ecosystem 14
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
PESTICIDE AND XENOBIOTIC M E T A B O L I S M I N AQUATIC
Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: May 24, 1979 | doi: 10.1021/bk-1979-0099.ch012
192
Figure 8.
ORGANISMS
TLC of the methanol-soluble radioactivity in the fish from the robenidine model ecosystem
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
C-
lA
12.
CABALLA ET AL.
Terrestrial-Aquatic
Model
193
Ecosystem
Table I .
Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: May 24, 1979 | doi: 10.1021/bk-1979-0099.ch012
COMPARISON
OF
THE
CONCENTRATIONS*'
AND
BIOCONCENTRATION
AND
CARBON-14
FACTOR
ROBENIDINE
(BCF>
MODEL
2 /
OF IN
CARBON-14 THE
PPM
BCF
CARBON-14
EC08Y8TEM8
14C-•DDT
14C-ROBENIDINE COMPONENT
RESIDUES
PPM
BOP
WATER
0.001
ALQAE
0.030
33
0.0022
138
0.0124
10
0.0034
214
M08QUITOLARVAE
0.181
178
0.0038
314
FISH
0.081
88
0.0180
1120
8NAIL8
1/ CALCULATED
2
'
B C F
AS
0.000014
PARENT
. CONCENTRATION CONCENTRATION
OF CARBON-14 RESIDUES IN THE OF CARBON-14 RESIDUES IN THE
ORGANISM WATER
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
DDT
194
PESTICIDE
A N D XENOBIOTIC
METABOLISM
IN AQUATIC
ORGANISMS
c o n c e n t r a t i o n o f carbon-14 r e s i d u e s i n t h e organism t o t h e c o n c e n t r a t i o n o f c a r b o n - 1 4 r e s i d u e s i n t h e w a t e r , i s a l s o shown. The d a t a c l e a r l y i n d i c a t e s t h a t t h e BCF v a l u e s o b t a i n e d i n a l l t h e e l e m e n t s o f t h e f o o d c h a i n were h i g h e r f o r t h e c a r b o n - 1 4 DDT e x p e r i m e n t compared w i t h t h o s e f o r t h e c a r b o n - 1 4 r o b e n i d i n e e x p e r i m e n t . T h i s d i f f e r e n c e i s more p r o m i n e n t i n t h e c a s e o f s n a i l s a n d f i s h , t h a t i s , 214 v s 10 and 1129 v s 6 8 , r e s p e c t i v e l y . A l l t h e s e r e s u l t s s u g g e s t t h a t t h e u s e o f e x c r e t a a s manure f r o m b i r d s k e p t on a d i e t c o n t a i n i n g r o b e n i d i n e w i l l n o t r e s u l t i n any b i o l o g i c a l m a g n i f i c a t i o n o f r o b e n i d i n e - r e l a t e d r e s i d u e s i n the elements o f t h e environment.
Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: May 24, 1979 | doi: 10.1021/bk-1979-0099.ch012
Conclusion The m o d i f i e d t e r r e s t r i a l - a q u a t i c m o d e l e c o s y s t e m d e s c r i b e d h e r e h a s b e e n f o u n d t o be a u s e f u l t o o l i n s t u d y i n g t h e e n v i r o n m e n t a l f a t e o f d r u g s and r e l a t e d r e s i d u e s p r e s e n t i n a n i m a l e x c r e t a u s e d as manure. The o p e r a t i o n o f t h e e c o s y s t e m i s r e l a t i v e l y s i m p l e and y e t i t a l l o w s one t o s t u d y t h e complex metabolic transformations o f a drug o r r e l a t e d r e s i d u e s i n i t s v a r i o u s components. E s p e c i a l l y i n t e r e s t i n g i s t h e s t u d y o f t h e d e g r a d a t i o n o f a compound i n t h e s o i l i n t h e p r e s e n c e o f m i c r o organisms found i n t h e animal e x c r e t a . This i n f o r m a t i o n i s i m p o r t a n t s i n c e i t e v e n t u a l l y d e t e r m i n e s w h e t h e r a compound a n d / or i t s m e t a b o l i t e s w i l l bioaccumulate i n t h e v a r i o u s elements o f the environment.
Literature Cited 1. Metcalf, R. L., Sangha, G. Κ., and Kapoor, I. P., Environ mental Science and Technology, (1971), 5, 709-713. 2. Kantor, S., Kenneth, R. L., Jr., Waletzky, E., Tomcufcik, A. S., Science, (1970), 168, 373. 3. Kapoor, I. P., Metcalf, R. L., Nystrom, R. F., and Sangha, G. K., J. Agr. Food Chem., (1970), 18, 1145. 4. Freeman, L., Sewage Ind. Wastes, (1953), 25, 845, 1331. 5. Burge, W. D., J. Agr. Food Chem., (1971), 19 375-378. RECEIVED
January 10, 1979.
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.