Chapter 3
Acid Deposition and Atmospheric Chemistry at Allegheny Mountain 1
1
1
1
1
W. R. Pierson , W. W. Brachaczek , R. A. Gorse, Jr. , S. M. Japar , J. M. Norbeck , and G. J. Keeler 2
Downloaded by UNIV OF CINCINNATI on May 25, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch003
1
Research Staff, Ford Motor Company, P.O. Box 2053, Dearborn, MI 48121 Department of Atmospheric and Oceanic Sciences, University of Michigan, Ann Arbor, MI 48109
2
In August, 1983, members of the Research Staff of Ford Motor Company c a r r i e d out a field experiment at two r u r a l s i t e s i n south western Pennsylvania involving various aspects of the a c i d deposition phenomenon. This presentation will focus on the wet (rain) deposi t i o n during the experiment, as w e l l as the r e l a t i v e importance of wet and dry deposition processes for n i t r a t e and sulfate at the s i t e s . Other aspects of the experiment have been discussed elsewhere: the chemistry of dew and its role in acid deposition (1), the dry deposition of HNO3 and SO2 to surrogate surfaces (2), and the role of elemental carbon in light absorption and of the latter in visibility degradation (3). EXPERIMENTAL
The experiment was conducted August 5-28, 1983 on abandoned radio towers atop Allegheny Mountain (elevation 838 meters) and Laurel Hill (elevation 850 meters, 35 km NW of Allegheny Mountain) i n southwestern Pennsylvania ( F i g . 1 ) . Both s i t e s are heavily forested and experience little l o c a l v e h i c l e traffic. A t t h e A l l e g h e n y M o u n t a i n s i t e a t m o s p h e r i c a e r o s o l and gas measurements, and l i g h t - s c a t t e r i n g and c o n d e n s a t i o n - n u c l e i - c o u n t m e a s u r e m e n t s , w e r e made a t o p t h e t o w e r 14 t o 17 m e t e r s a b o v e t h e ground. Wind speed and d i r e c t i o n , and atmospheric temperature, p r e s s u r e and h u m i d i t y , were c o n t i n u o u s l y r e c o r d e d . R a i n ( a n d dew) was c o l l e c t e d i n a 5 0 0 m^ mowed c l e a r i n g 60 m e t e r s n o r t h o f t h e tower. R a i n was c o l l e c t e d o n a n e v e n t b a s i s 1.8 m e t e r s above t h e ground i n t o t a r e d p o l y e t h y l e n e b o t t l e s , u s i n g a w e t - o n l y c o l l e c t o r (Wong L a b o r a t o r i e s M a r k V ) , e q u i p p e d w i t h a r e t r a c t i n g l i d a c t u a t e d by a r a i n s e n s o r . The s t a n d a r d c o l l e c t o r b u c k e t was s u p p l a n t e d b y a 30.5-cm diameter polyethylene funnel f i t t e d into the tared c o l l e c t i o n bottle. T h e r a i n f a l l a m o u n t ( i n mm o r i n 1 / m ) w a s d e t e r m i n e d f r o m the sample w e i g h t and the c o l l e c t o r geometry. T h e s a m p l i n g s e t u p was similar at Laurel H i l l . As s o o n as e a c h r a i n s t o p p e d , t h e s a m p l e was r e m o v e d , c a p p e d , and r e f r i g e r a t e d a t t h e s i t e . I t was t h e n t r a n s p o r t e d t o t h e f i e l d l a b o r a t o r y i n S o m e r s e t (midway b e t w e e n t h e s i t e s ) where i t was weighed and kept r e f r i g e r a t e d (never f r o z e n ) . The a n a l y t i c a l 2
0097-6156/87/0349-0028$06.00/0 © 1987 American Chemical Society
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
3.
Acid Deposition and Atmospheric Chemistry
PIERSON ET AL.
29
p r o c e d u r e s w e r e s i m i l a r t o t h o s e p r e v i o u s l y d e s c r i b e d ( 1 ) f o r dew samples. Q u a n t i t i e s m e a s u r e d i n c l u d e d pH, c o n d u c t i v i t y , t o t a l t i t r a t a b l e a c i d , a n d ( b y i o n c h r o m a t o g r a p h y ) SO^", NO3", NO2" , PO^", F", C I " , a n d B r " . The u n u s e d p o r t i o n s o f t h e r a i n s a m p l e s w e r e t r a n s p o r t e d t o Dearborn, s t i l l r e f r i g e r a t e d . Some 7 m o n t h s l a t e r t h e y w e r e r e a n a l y z e d ; t o s e l e c t e d s a m p l e s H 2 O 2 was a d d e d b e f o r e a n a l y s i s ( f i n a l [ H 2 O 2 ] = 1.5%) t o make c e r t a i n t h a t a l l S ( I V ) h a d b e e n o x i d i z e d t o sulfate. A t t h i s t i m e NH^ , Na a n d Κ w e r e d e t e r m i n e d b y i o n c h r o m a tography . A t m o s p h e r i c N O 2 , S O 2 , a n d O3 w e r e m e a s u r e d b y v a r i o u s m e t h o d s ( 1 , 4, 5 ) . l i g h t s c a t t e r i n g was m e a s u r e d b y i n t e g r a t i n g n e p h e l o meters. H N U 3 ( g ) a n d a e r o s o l N O 3 " w e r e m e a s u r e d b y t h e dénuder d i f f e r e n c e m e t h o d ( 6 - 8 ) u s i n g M g O - c o a t e d dénuder t u b e s a n d n y l o n membrane f i l t e r s , w i t h i o n c h r o m a t o g r a p h i c n i t r a t e d e t e r m i n a t i o n on a l k a l i n e f i l t e r e x t r a c t s . V a l i d ammonia d a t a w e r e n o t o b t a i n e d d u r i n g any o f t h e r a i n p e r i o d s . A e r o s o l s a m p l e s were c o l l e c t e d on f i l t e r s o f v a r i o u s t y p e s ( i n c l u d i n g i m p a c t o r s and v i r t u a l i m p a c t o r s ) and a n a l y z e d f o r H , ΝΗ^ , S 0 4 , and o t h e r components. The f i l t e r , dénuder, a n d impinger s a m p l e s w e r e c o l l e c t e d i n 1/2to 24-hour p e r i o d s s y n c h r o n i z e d w i t h each other but not g e n e r a l l y w i t h the onset or stop of r a i n . A c c o r d i n g l y i t s h o u l d be u n d e r s t o o d t h a t , i n t h e t r e a t m e n t that f o l l o w s , the atmospheric c o n c e n t r a t i o n s of a e r o s o l components, HNO3, a n d i m p i n g e r S O 2 t h a t we w i l l a s s o c i a t e w i t h t h e r a i n s a m p l e s a r e t h e average c o n c e n t r a t i o n s over the s e v e r a l - h o u r p e r i o d d u r i n g which the g i v e n r a i n o c c u r r e d , and n o t t h e c o n c e n t r a t i o n s j u s t d u r i n g the r a i n itself. I n s p e c t i o n o f t h e c o n t i n u o u s S O 2 , Ν 0 , O 3 , CNC a n d b t r a c e s i n d i c a t e s t h a t use o f the l o n g e r p e r i o d does not m a t e r i a l l y i n f l u e n c e the r e s u l t s .
Downloaded by UNIV OF CINCINNATI on May 25, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch003
+
+
+
=
χ
R E S U L T S AND
DISCUSSION
Rain Chemistry. The c h a r a c t e r i s t i c s o f t h e 17 r a i n e v e n t s a t t h e two s i t e s a r e s u m m a r i z e d a n d c o m p a r e d i n T a b l e 1 t o t h e dew s a m p l e s a n d t h e one s e t t l e d f o g w a t e r s a m p l e c o l l e c t e d a t A l l e g h e n y Mountain (1). (The dew was s a m p l e d i n a m a n n e r t h a t e x c l u d e d p r i o r dry d e p o s i t i o n . The r e p r e s e n t a t i v e n e s s o f t h e f o g w a t e r s a m p l e i s u n k n o w n - o t h e r f o g s o c c u r r e d b u t no s a m p l e s w e r e c o l l e c t e d . ) A number o f c o n c l u s i o n s c o n c e r n i n g r a i n a r e e v i d e n t f r o m T a b l e 1: •The r a i n was a c i d i c , w i t h t h e v o l u m e - a v e r a g e d pH o f 3.5 being p e r h a p s s o m e w h a t l o w e r t h a n t h a t o f t h e a v e r a g e summer r a i n i n the n o r t h e a s t (9-14). •H " a c c o u n t e d f o r a b o u t 9 0 % o f t h e t o t a l r a i n a c i d i t y . •The r a i n H c o u l d be a c c o u n t e d f o r i n t e r m s o f H 2 S O 4 and H N O 3 . •The S 0 4 / N 0 3 ~ e q u i v a l e n t s r a t i o o f a b o u t 3.7 i n t h e r a i n was c o m p a r a b l e t o t h a t c h a r a c t e r i s t i c o f summer r a i n s i n t h e n o r t h e a s t , i . e . , a b o u t 2.3 t o 4 ( 9 - 1 7 ) . •The L a u r e l H i l l r a i n s w e r e a b o u t 1 0 % m o r e c o n c e n t r a t e d i n a l l s p e c i e s than those c o l l e c t e d a t A l l e g h e n y M o u n t a i n ( i n agreement w i t h atmospheric a e r o s o l and t r a c e gas c o n c e n t r a t i o n s a t t h e sites). 4
+
=
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
30
dew
T H E CHEMISTRY OF ACID RAIN
When t h e c o m p o s i t i o n o f t h e r a i n i s c o m p a r e d w i t h t h a t o f t h e and t h e f o g , a number o f p o i n t s emerge: •While the ranges i n i o n c o n c e n t r a t i o n s , i n c l u d i n g H , are wider i n dew s a m p l e s , t h e r a n g e s o v e r l a p s o t h a t t h e dew was qualita t i v e l y s i m i l a r to d i l u t e r a i n . •The S 0 ^ / N 0 3 " c o n c e n t r a t i o n r a t i o i n t h e r a i n was a b o u t 3.7 e q u i v a l e n t s p e r e q u i v a l e n t v s . a r a t i o o f a b o u t 2.5 i n t h e dew. T h i s i s n o t s u r p r i s i n g s i n c e s i g n i f i c a n t amounts o f s u l f a t e are i n t r o d u c e d i n t o r a i n by n u c l e a t i o n s c a v e n g i n g (18) w h i l e a e r o s o l s u l f a t e d e p o s i t i o n t o dew i s m i n i m a l ( 1 ) . (In fact, at A l l e g h e n y M o u n t a i n ( 1 ) S O 2 was r e s p o n s i b l e f o r a b o u t 8 0 % o f t h e dew S0 ".) •There i s l i t t l e evidence of the presence of S(IV) i n the r a i n a n d f o g w a t e r s a m p l e s ( t h a t i s , no s i g n i f i c a n t i n c r e a s e i n s u l f a t e was s e e n b e t w e e n t h e p r o m p t a n d d e l a y e d a n a l y s e s ) . By c o n t r a s t , t h e r e i s e v i d e n c e o f c o n s i d e r a b l e S ( I V ) (up t o 40%) r e m a i n i n g u n o x i d i z e d i n t h e dew a t t h e e n d o f t h e n i g h t ( 1 ) . •The c h e m i s t r y o f t h e one s e t t l e d f o g w a t e r s a m p l e i s s i m i l a r t o t h a t o f t h e more c o n c e n t r a t e d rains. +
=
Downloaded by UNIV OF CINCINNATI on May 25, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch003
4
A c i d Deposition Fluxes i n Rain. Table 2 l i s t s cumulative a m o u n t s o f v a r i o u s s p e c i e s d e p o s i t e d p e r u n i t a r e a i n r a i n , dew and fog d u r i n g the experiment. T a b l e 2 a l s o shows t h e f l u x e s o b t a i n e d by d i v i d i n g t h e a c c u m u l a t i o n b y t h e sum o f c o l l e c t i o n t i m e s . The
CITIES
H •
INOUSTRIALOR POPULATIONO17000)CENTERS
Δ
COAL- FIRED POWER PLANTS > 1000
MW
χ (L E.LIVERPOOL o| 8 CHESTER . J Λ ALIQUIPPA
ί ! \ » \ I WEIRTON
F i g u r e 1. The Pennsylvania.
site
PITTSBURGH METROAREA "
of
the
field
experiment i n
southwestern
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
4
+
+
2+
2
2 +
"
"
delayed
"
"
η
prompt
"
"
"
„
106%
115 (67-271)
1.15 122
111%
(109-220)
1.16
(6-21)
262 (138-700) 8.5
(251-575)
299
256 (125-700)
8 (3-25)
(249-575)
86 (63-202) 294
68 (41-252)
373
81 (14-251)
0.99 159 107%
1.27 42 (10-137) 94%
26
387
73 (10-254)
5 (0.3-16)
230
32 (3-138)
-
0.6-1.3
0. 6-1.0
0. 7 (0.1-2.0)
155
41 (14-99)
70 (48-159)
53 (15-116) 39 (8-99)
340 144
91 (5.5-347)
350
3.47
Fog (n - l )
8 (0-55)
311 (257-550)
(3.5-5.3)
108 (16-382)
4.0
Dew (n - 15)
70 (61-119)
290 (178-741)
(3.3-3.6)
349 (317-615)
3.5
Rain - L a u r e l (n - 5) a
Volume-weighted averages are the amount o f a given species deposited per u n i t area throughout the experiment d i v i d e d by the amount o f water deposited per u n i t area throughout the experiment. The prompt and delayed s u l f a t e data are, r e s p e c t i v e l y , the f i e l d - l a b o r a t o r y r e s u l t s and the re-analyses 7 months l a t e r .
Does not include a l l fog events.
Λ accounted f o r
Λ, jumho cm*^
ϊ on balance Σ+/Σ-
α
SO4 "
3
N0 "
2
N0 "
Na , K , M g , C a
+
NH
H+
324 (227-763)
T i t r a t a b l e acid,
/ieq/liter
3.5 (3.1-3.75)
Rain - Allegheny (n - 12)
s e t t l e d fogwater (volume-weighted averages) *
Comparison of r a i n p r o p e r t i e s a t Allegheny and L a u r e l , August 1983, with Allegheny dew and
PH
Table 1.
Downloaded by UNIV OF CINCINNATI on May 25, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch003
Downloaded by UNIV OF CINCINNATI on May 25, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch003
32
T H E CHEMISTRY OF ACID RAIN
g r e a t e r f r e q u e n c y o f r a i n a t A l l e g h e n y M o u n t a i n p r o d u c e d a b o u t a 4f o l d greater accumulation o f a l l i o n i c species there than a t L a u r e l Hill. T h i s r e f l e c t s t h e r a n d o m n e s s o f summer c o n v e c t i v e p r e c i p i t a t i o n ( a p p r o x i m a t e l y 7 0 % o f t h e r a i n a t A l l e g h e n y M o u n t a i n was convective i n nature). C o m p a r i s o n o f t h e d e p o s i t i o n e f f i c i e n c i e s o f r a i n , dew a n d f o g a t A l l e g h e n y M o u n t a i n shows t h a t d u r i n g t h e 2 1 - d a y e x p e r i m e n t , r a i n was r e s p o n s i b l e f o r t h e d e p o s i t i o n o f 60 t i m e s m o r e a c i d i t y ( t o g e t h e r w i t h r e l a t e d s p e c i e s ) t h a n w a s d e p o s i t e d d u r i n g dew p e r i o d s o r w i t h settled fogwater. P r e c i p i t a t i o n i n t h e v i c i n i t y o f A l l e g h e n y M o u n t a i n i s a b o u t 107 cm p e r y e a r ( 1 9 ) , o r c l o s e t o t h e r a t e r e c o r d e d i n T a b l e 2. I f t h e r a t i o b e t w e e n d e p o s i t i o n b y r a i n a n d d e p o s i t i o n t o dew d u r i n g t h e sampling p e r i o d i s a l s o r e p r e s e n t a t i v e o f t h eyear, then i t f o l l o w s t h a t t h e a n n u a l t o t a l a c i d d e p o s i t e d i n r a i n i s v e r y r o u g h l y 60 t i m e s a s g r e a t a s t h a t d e p o s i t e d t o dew o r i n s e t t l e d fogwater. S c a v e n g i n g R a t i o s f o r S0/, a n d N O 3 " b y R a i n . I f i t i s a s s u m e d t h a t t h e c o n c e n t r a t i o n o f a p o l l u t a n t i n p r e c i p i t a t i o n i s dependent on i t s c o n c e n t r a t i o n i n t h e a i r i n which t h ep r e c i p i t a t i o n forms, then t h e scavenging r a t i o , , c a nbe d e f i n e d as i - Ci /Ci =
W
r
a
Table 2. Deposition t o t a l s and deposition
fluxes associated
with r a i n a t
Allegheny and Laurel, August 1983; Allegheny dew and s e t t l e d fogwater shown f o r comparison Rain-Allegheny (n - 12)
Rain-Laurel (η - 5)
Dew (n - 15)
Fog (η - 1)
August 7-27 Accumulations: 2
Water g/m
T i t r a t a b l e a c i d peq/m H+
2
+
NH
S 0 " prompt 4
delayed
4513
295
(~210)
a
14800
4017
247
(~200)
a
a
(~590)
898
22
(~185)
88
(~140)
a
"
13100
3799
197
(~230)
a
"
13400
3860
220
(~230)
a
2
Water mg/m /sec
+
times) 1700
700
5
2
550
244
0.53
1.2
"
490
217
0.44
1.1
T i t r a t a b l e a c i d neq/m /sec
3.3
+
n
85
49
0.04
0.5
N0 _
w
115
60
0.16
0.8
NH
4
3
2
S 0 " prompt 4
delayed
a
1113
Fluxes (accumulations/collection
H
16500
2722
3440
3
2
12940
2570
4
_
N0
51000
"
440
206
0.35
1.28
"
450
209
0.39
1.24
Order-of-magnitude estimate, based on the estimate that 5 times as much was deposited during the experiment as i n the one 10-hour sample that was analyzed.
The représenta
tiveness o f the sample composition i s not known.
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
3.
a
33
Acid Deposition and Atmospheric Chemistry
PIERSON ET AL.
r
where C and Cj_ a r e t h e volume c o n c e n t r a t i o n s o f s p e c i e s i i n a i r ( e q u i v a l e n t s p e r cubic meter o f a i r ) and i n the r a i n w a t e r (equiva l e n t s p e r cubic meter o f l i q u i d water, i . e . , m i l l i - e q u i v a l e n t s p e r liter). The c a l c u l a t i o n o f s c a v e n g i n g r a t i o s u s i n g g r o u n d - l e v e l a t m o s p h e r i c d a t a f u r t h e r assumes t h a t t h e g r o u n d - l e v e l p o l l u t a n t d a t a are r e p r e s e n t a t i v e o f the a i r scavenged by a p r e c i p i t a t i n g cloud. This assumption appears a t l e a s t p a r t i a l l y j u s t i f i e d a t l o c a t i o n s remote enough from sources f o r v e r t i c a l m i x i n g t o have o c c u r r e d ( 1 8 ) . Washout r a t i o s f o r a e r o s o l S 0 4 a n d f o r t o t a l N O 3 " (HNO3 + a e r o s o l N O 3 " ) a r e p r e s e n t e d i n T a b l e 3. These washout r a t i o s p r e s u p p o s e , i n a c c o r d a n c e w i t h B a r r i e ' s t r e a t m e n t ( 1 8 ) , t h a t SO2 does not c o n t r i b u t e t o the r a i n S 0 a n d t h a t b o t h HNO3 a n d a e r o s o l N O 3 " contribute to the rain NO3'. Accordingly, the sulfate ratios are upper l i m i t s on W ; and t h e N O 3 " r a t i o s r e p o r t e d a r e c l o s e t o , and only s l i g h t l y less ^than, f o r HNO3 a l o n e s i n c e HNO3 i s h i g h l y s o l u b l e and dominates the ^total NO3". T h u s f r o m T a b l e 3, =
Downloaded by UNIV OF CINCINNATI on May 25, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch003
4
W
. - < a e r o s o l SO^
W... u
HNO3
=>
=
9 χ 10
5
19 χ 1 0
5
These r e s u l t s a r e s i m i l a r t o d a i l y - a v e r a g e d v a l u e s r e p o r t e d by B a r r i e (18) f o r s i t e s i n e a s t e r n Canada ( 1 9 7 8 - 1 9 8 1 ) . H i s mass scavenging r a t i o s , m u l t i p l i e d b y 890 ( t h e r a t i o b e t w e e n t h e d e n s i t y o f w a t e r a n d t h a t o f a i r a t t h e 838-m a l t i t u d e o f A l l e g h e n y M o u n t a i n i n o r d e r t o match u n i t s ) , g i v e t h e f o l l o w i n g averages f o r 4 remote l o c a t i o n s : W - 9 χ 1 0 t o 14 χ 1 0 f o r a e r o s o l S 0 ; W = 19 χ 1 0 t o 26 χ 4-10 f o r t o t a l N O 3 " ( H N O 3 + a e r o s o l N O 3 " ) . Forgone suburban/rural s i t e B a r r i e o b t a i n s \J = 10 χ 1 0 , W ^ = 11 χ 1 0 . S0 t-JM03 5
5
5
=
4
SQ
5
5
5
4
E s t i m a t i o n o f Wet a n d D r y A c i d . N O 3 " . a n d S0/^ Deposition Budgets a t Allegheny Mountain. To g a u g e t h e r e l a t i v e i m p o r t a n c e o f wet and d r y d e p o s i t i o n , t h e w e t - d e p o s i t i o n measurements need t o be accompanied by d r y - d e p o s i t i o n estimates. Nighttime dry deposition to dew was m e a s u r e d i n t h e p r e s e n t e x p e r i m e n t ( 1 ) , b u t we l a c k g o o d e s t i m a t e s o f d r y d e p o s i t i o n a t n i g h t w h e n dew was a b s e n t a n d , m o r e i m p o r t a n t , we l a c k a g o o d e s t i m a t e o f d r y d e p o s i t i o n d u r i n g t h e d a y when d e p o s i t i o n v e l o c i t i e s a r e e x p e c t e d t o be l a r g e s t . To d e a l w i t h t h i s d e f i c i e n c y two a l t e r n a t i v e a p p r o a c h e s a r e a d o p t e d a s f o l l o w s . F i r s t , n y l o n a n d T e f l o n 1 4 2 - m m - d i a m e t e r membrane f i l t e r s w e r e s e t o u t as s u r r o g a t e c o l l e c t i o n s u r f a c e s above t h e canopy a t A l l e g h e n y d u r i n g d a y l i g h t on f i v e days d u r i n g t h e 1983 e x p e r i m e n t , t o gauge t h e r e l a t i v e i m p o r t a n c e o f a e r o s o l N O 3 " and S 0 4 d e p o s i t i o n ( o n T e f l o n ) a n d t h e d e p o s i t i o n o f HNO3 a n d S 0 ( n y l o n - T e f l o n d i f f e r e n c e ) (2). The a p p l i c a b i l i t y o f s u r r o g a t e s u r f a c e s t o r e a l o n e s , h o w e v e r , i s q u e s t i o n a b l e on s e v e r a l grounds. F o r HNO3 t h e s t i c k i n g e f f i c i e n c y to n y l o n i s p r o b a b l y (20) 100%; f o r SO2 t h e s t i c k i n g e f f i c i e n c y i s l e s s t h a n 100% b u t g r e a t e r than z e r o ( 2 1 ) ; and s t i c k i n g e f f i c i e n c i e s a r e b y n o means t h e o n l y i s s u e . The s e c o n d a p p r o a c h i s t o u s e t h e m e a s u r e d a m b i e n t c o n c e n t r a tions i n combination with deposition v e l o c i t i e s reported i nthe literature (21-23). The t w o a p p r o a c h e s g i v e e f f e c t i v e l y t h e same r e s u l t s . For e x a m p l e , t h e a v e r a g e HNO3 d e p o s i t i o n v e l o c i t y m e a s u r e d b y m i c r o m e t e o r o l o g i c a l m e t h o d s a b o v e a f o r e s t i n e a s t T e n n e s s e e o r o n summer =
=
2
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
(Meq/1)
4
S07
Rain*
653
704 1181
44o
213
176
811
276
138
230
3
4
5
755
755
773
650
537
542
13
14
15
252
273
573
2
3
4
average
377
158
830
2.0 χ 10
17.3 x 10
(9.5
± 5.6)
χ
10
15.2 χ 10
864 1044
3.0 χ 10
17.3 x 10
7.0 χ 10
660
1066
754
7.1 χ 10
8.6 χ 10
849
3.8 χ 10
849
18.0 χ 10
849
980
13.1 χ 10
6.5 χ 10
41
5
5
5
5
5
5
5
5
194
72
63
135
161
252
212
79
139
5
5
150
63
63
70
58
(Meq/1)
Rain N0~
5
5
5
5
5
5
12.9 χ 10
4.7 χ 10
5.9 x 10
so=
w
^Results from the delayed analyses where available
392
1
226
755
284
12
Laurel H i l l
388
163
700
6
10
681
681
653
44o
260
207
213
2
3 3
103
117
83.8
78.5
77.8
41.6
81.7
74.6
74.6
74.6
154
87.5
43.4
21.3
21.3
55.8
55.8
3
8.6 χ 10 16.6 χ 10
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
8.0 χ 10
32.5 x 10
19.7 x 10
33.8 χ 10
28.4 χ 10
10.6 χ 10
9.0 χ 10
4.7 x 10
34.6 χ 10
29.6 χ 10
29.6 χ 10
12.5 x 10
10.4 χ 10
VNO
w
(19 + 11) χ 10
(neq/m )
t o t a l N0~
36.6
75.9
70.0
70.0
70.0
153
73.7
27.9
19.5
19.5
46.9
46.9
(neq/m )
M 0
Rain Scavenging Ratios f o r SO^ and N0~
(neq/m"
so
1
3
(neq/m )
Aerosol
2
Allegheny Mountain
Rain #
Table 3
Downloaded by UNIV OF CINCINNATI on May 25, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch003
3.
Sources of NO3"
Downloaded by UNIV OF CINCINNATI on May 25, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch003
August 5-28,
and SC>4~ deposition at Allegheny Mountain,
1983
a
N0
_
804
3
2
Rain (12 events) Fog
(1 event)
Dew
(15 events)
(neo/m *)
3440
Dry - without dew
Based on deposition to nylon surrogate substances not depositing to nylon
4
13400
140
230
88
220
2400
1 ^equivalent — 1 μπιοίε; f o r S 0
b
5000
e
2 μequivalents — 1 /zmole.
surfaces; does not
(e.g.,
E
2
(ueq/m )
For NO3"
35
Acid Deposition and Atmospheric Chemistry
PIERSON ET AL.
include
NO2).
Based on the measurement of dry deposition to nylon surrogate
surfaces
we
estimate that SO2 contributed about 5000 /xeq/m of dry deposition to the 2
S04
=
total.
Aerosol S04
=
adds another 300 μeq/m
2
or l e s s .
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
T H E CHEMISTRY OF ACID RAIN
Downloaded by UNIV OF CINCINNATI on May 25, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch003
36
d a y s o v e r a n I l l i n o i s p a s t u r e ( 2 2 ) i s a b o u t t h e same a s t h e 2.5 + 1.5 cm/sec m e a s u r e d b y t h e s u r r o g a t e c o l l e c t o r s ( t o g e t h e r w i t h atmosp h e r i c c o n c e n t r a t i o n s ) i n the present experiment. T h e 0.5 c m / s e c S O 2 d e p o s i t i o n v e l o c i t y t o the surrogate c o l l e c t o r s i s i n the range r e p o r t e d t o v e g e t a t i o n (23) ( a v e r a g e - 0 . 7 c m / s e c ) . T h e 0.05 c m / s e c d e p o s i t i o n v e l o c i t y o f a e r o s o l S O ^ t o the surrogate c o l l e c t o r s i s i n the range g i v e n i n the l i t e r a t u r e (23). The r e s u l t s e m p l o y i n g d a y t i m e d r y d e p o s i t i o n e s t i m a t e s f r o m t h e s u r r o g a t e c o l l e c t o r s a r e g i v e n i n T a b l e 4; t h e s e e s t i m a t e s p r e s u p p o s e t h a t t h e f i v e d a y s a r e r e p r e s e n t a t i v e . W h i l e r a i n a c c o u n t e d f o r some 60% o f t h e N O 3 ' d e p o s i t i o n , d r y d e p o s i t i o n o f HNO3 i n t h e a b s e n c e o f dew a p p e a r s a l s o t o b e i m p o r t a n t . T h i s s i m i l a r t o t h e e s t i m a t e made by H u e b e r t (22) i n t h e I l l i n o i s e x p e r i m e n t t h a t HNO3 d r y d e p o s i t i o n accounted f o r 48% o f the NO3" wet/dry d e p o s i t i o n . For S 0 ^ deposit i o n , r a i n i s a g a i n t h e d o m i n a n t medium; h o w e v e r , t h e d r y d e p o s i t i o n o f S O 2 may a l s o b e i m p o r t a n t . The c o n t r i b u t i o n s o f d r y - d e p o s i t e d a e r o s o l n i t r a t e a n d s u l f a t e , n o t l i s t e d i n T a b l e 4, w e r e s m a l l ( a b o u t 5%) a t t h e s i t e . I f we now s u p p o s e t h a t S O 2 i s t a n t a m o u n t t o H 2 S O 4 i n a c i d i f y i n g p o t e n t i a l , o n g r o u n d s t h a t S O 2 r e a d i l y o x i d i z e s t o H 2 S O 4 , a n d i f we r e c a l l t h a t the NO3" and S 0 ^ i n the rain/dew/fog samples can be r e g a r d e d a s m o s t l y HNO3 a n d H 2 S O 4 , t h e n t h e t o t a l s t r o n g a c i d d e p o s i t e d i n the experiment can be a p p o r t i o n e d from T a b l e IV r o u g h l y as f o l l o w s : 47% = H2SO4 i n r a i n (34% S O 2 s c a v e n g i n g , 1 3 % a e r o s o l S O ^ scavenging) 2 3 % = S O 2 d r y d e p o s i t i o n w i t h o u t dew 16% = HNO3 i n r a i n 1 1 % = H N O 3 d r y d e p o s i t i o n w i t h o u t dew =
=
3%
= HNO3
and H2SO4
i n f o g a n d dew +
At the r a t e s i m p l i e d b y Table IV, t o t a l wet and dry H d e p o s i t i o n w o u l d b e a b o u t 300 moles H / h e c t a r e / m o n t h - i n A u g u s t . +
ACKNOWLEDGMENTS We a r e p l e a s e d t o a c k n o w l e d g e t h e a s s i s t a n c e o f t h e P e n n s y l v a n i a T u r n p i k e C o m m i s s i o n i n p r o v i d i n g a c c e s s a n d e l e c t r i c power t o t h e two s i t e s a n d h e l p i n g u s s e t u p t h e e x p e r i m e n t ; we a r e e s p e c i a l l y i n d e b t e d t o W a r r e n E. K i p p , R o b e r t E. D a v i s , N e v i n A. M i l l e r , C a r l Baker a n d the crew a t the A l l e g h e n y Mountain Tunnel, and the C h i e f Engineer and Deputy E x e c u t i v e D i r e c t o r o f the P e n n s y l v a n i a Turnpike C o m m i s s i o n , R o b e r t H. K l u c h e r . A t F o r d , we a r e i n d e b t e d t o R i c h a r d F l o y d , L e e C. W e s t w o o d , Y. T. L i u , a n d G. E. F i s h e r f o r t h e i r p a r t i c i p a t i o n i n the chemical a n a l y s i s . Ford p a r t i c i p a n t s i n the f i e l d e x p e r i m e n t i t s e l f i n c l u d e d K a r e n M. A d a m s , J a m e s W. B u t l e r , A n n C. C l e a r y , J a m e s C. D z i a d o s z , L a r r y P. H a a c k , Thomas J . K o r n i s k i , W i l l i a m K. O k a m o t o , a n d M i c h a e l J . R o k o s z . J e f f r e y M. M a s t e r s , f o r m e r l y o f the U n i v e r s i t y o f Michigan, p a r t i c i p a t e d i n the f i e l d and handled the o n - s i t e meteorology. P r o f . P e r r y J . Samson o f t h e U n i v e r s i t y o f M i c h i g a n a s s i s t e d i n the t r a j e c t o r y a n a l y s i s and meteorology. We t h a n k W i l l i a m J . C o u r t n e y o f N o r t h r o p S e r v i c e s a n d Thomas G. D z u b a y , C h a r l e s W. L e w i s , a n d R o b e r t K. S t e v e n s o f E P A / E S R L for t h e i r c o l l a b o r a t i o n i n c l u d i n g f i e l d i n t e r c a l i b r a t i o n and the use
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
3.
PIERSON ET AL.
Acid Deposition and Atmospheric Chemistry
37
of their instruments. We a r e g r a t e f u l t o E . E u g e n e W e a v e r , who r e t u r n e d from F o r d r e t i r e m e n t to h e l p , w i t h A d e l e Weaver, on the f i e l d experiment. We t h a n k P r o f . J a m e s A . L y n c h o f t h e P e n n s y l v a n i a S t a t e U n i v e r s i t y f o r s h a r i n g d e t a i l e d r a i n d a t a w i t h us from h i s Laurel H i l l site. O u r w o r k was s u p p o r t e d i n p a r t b y t h e N a t i o n a l Science Foundation under I n d u s t r y / U n i v e r s i t y Cooperative Research G r a n t NO. A T M - 8 5 0 7 2 8 2 t o t h e U n i v e r s i t y o f M i c h i g a n .
LITERATURE CITED
Downloaded by UNIV OF CINCINNATI on May 25, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch003
(1)
(2)
(3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21)
Pierson, W.R., Brachaczek, W.W., Gorse, R.A., Jr., Japar, S.M. and Norbeck, J.M., Paper No. 85-7.4, Air Pollution Control Association 78th Annual Meeting, Detroit, June (1985); J. Geophys. Res. 91, 4083 (1986). Japar, S.M., Brachaczek, W.W., Gorse, R.A., Jr., Norbeck, J.M. and Pierson, W.R., presented at Muskoka '85: International Symposium on Acidic Precipitation, Minett, Ontario, September (1985). Japar, S.M., Brachaczek, W.W., Gorse, R.A., Jr., Norbeck, J.M., and Pierson, W.R., Atmos. Environ. 20, 1281 (1986). Holdren, M.W. and Spicer, C.W., Environ, Sci. Tech., 18, 113 (1984). Pierson, W.R., Brachaczek, W.W., Truex, T.J., Butler, J.W., and Korniski, T.J., Annals N.Y. Acad. Sci. 338, 145 (1980). Appel, B.R., Tokiwa, Υ., and Haik, Μ., Atmos. Environ. 15, 283 (1981). Shaw, R.W., Jr., Stevens, R.K., Bowermaster, J . , Tesch, J.W., and Tew, E., Atmos. Environ. 16, 845 (1982). Spicer, D.W., Howes, J.E., Jr., Bishop, T.A., Arnold, L.H., and Stevens, R.K., Atmos. Environ. 16, 1487 (1982). Bowersox, V.C. and de Pena, R.G., J. Geophys. Res. 85, 5614 (1980). Bowersox, V.C. and Stensland, R.G., Paper No. 81-6.1, Air Pollution Control Association 74th Annual Meeting, Philadelphia, June (1981). Altwicker, E.R. and Johannes, A.H., Paper No. 81-6.2, Air Pollution Control Association 74th Annual Meeting, Philadelphia, June (1981) Pack, D.H., Atmos. Environ. 16, 1145 (1982). Hales, J.M., et al, Atmos. Environ. 16, 1603 (1982). Pratt, G.C. and Krupa, S.V., Atmos. Environ. 17, 1845 (1983). Galloway, J.N. and Likens, G.E., Atmos. Environ. 15, 1081 (1981). Henderson, R.G. and Weingartner, Κ., Atmos. Environ. 16, 1657 (1982) Wilson, W.E. and Husar, R.B., Society of Automotive Engineers Technical Paper Series, Paper No. 830647 (1983). Barrie, L.A., J. Geophys. Res. 90, 5789 (1985). National Oceanographie and Atmospheric Administration, Climates of the States. Vol. 2 (Gale Research Co., Detroit (1978)), P. 852. Durham, J.L. and Stockburger, L., Atmos. Environ. 20, 559 (1986). Fowler, D., Atmos. Environ. 12, 369 (1978).
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
38
T H E CHEMISTRY OF ACID RAIN
22) Huebert, B.J. and Robert, C H . , J. Geophys. Res. 90, 2085 (1985) . (23) Schmel, G.A., Atmos. Environ. 14, 983 (1980).
Downloaded by UNIV OF CINCINNATI on May 25, 2016 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch003
RECEIVED May 15, 1987
Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.