17 The Solid-State Chemistry of Americium Oxides
Downloaded by MONASH UNIV on September 14, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch017
C. KELLER University of Karlsruhe and Nuclear Research Centre, Karlsruhe, Germany Ternary and polynary oxides of trivalent to hexavalent americium are obtained by solid-state reactions of Am O and AmO with the oxides of various elements. Compounds of pentavalent and hexavalent americium, which are isostructural with the corresponding ternary oxides of Pa, U, Np, and Pu, are formed only with the oxides of alkali metals and alkaline earth metals. By reaction of AmO with oxides of tetravalent elements—e.g., SiO , GeO , ZrO , HfO or ThO —ternary oxides or oxide phases with tetravalent americium are stabilized. The solid-state reaction of AmO with most group V elements yields compounds with trivalent americium which are isostructural with the analogous rare earth compounds. In the last types of reactions americium exhibits a typical actinide behavior. 2
3
2
2
2
2
2
2
2
2
T n a c c o r d a n c e w i t h its e l e c t r o n i c c o n f i g u r a t i o n a n d t h e r e s u l t i n g p o s i A
t i o n i n t h e p e r i o d i c system of elements t h e a c t i n i d e element a m e r i c i u m
is t h e h e a v y h o m o l o g of t h e rare e a r t h e l e m e n t e u r o p i u m (14) : Americium:
5s p d f
Europium :
4s pW f
2
2
Q
6s p ^( S )
10
2
c
6s p 7s> ( S
10
2
G
8
8
7 / 2
7/2
).
D e s p i t e this f o r m a l r e l a t i o n s h i p a c o m p a r i s o n of t h e c h e m i c a l p r o p erties of t h e t w o elements shows c o n s i d e r a b l e differences, n o t o n l y o f a q u a l i t a t i v e b u t also of a f u n d a m e n t a l n a t u r e . A l l experiments to d a t e h a v e f a i l e d to p r e p a r e b i v a l e n t a m e r i c i u m i n a n a l o g y w i t h ( C o m p o u n d s s u c h as A m O a n d A m H
2
E u (II).
contain bivalent americium only
i n a f o r m a l sense). I n contrast to t h e rare e a r t h elements, a m e r i c i u m is a b l e to exist i n s o l u t i o n as w e l l as i n s o l i d c o m p o u n d s i n t h e o x i d a t i o n states + 4 , + 5 , a n d -\-6. T h i s shows a close r e l a t i o n t o t h e elements 228
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
17.
K E L L E R
Americium
229
Oxides
p r e c e d i n g it i n the p e r i o d i c system of elements—i.e., u r a n i u m , n e p t u n i u m , and plutonium. T h e 3 + v a l e n c e of a m e r i c i u m is the most stable i n s o l u t i o n as w e l l as i n s o l i d c o m p o u n d s , element. Nd
(r =
3 +
as s h o w n b y its b e h a v i o r as a t y p i c a l a c t i n i d e
B e c a u s e of the s i m i l a r i o n i c r a d i i of A m
3 +
(r =
0.99 A . ) a n d
0.995 A . ), there is a close r e l a t i o n s h i p i n the c h e m i c a l b e h a v i o r
of these elements i n the 3 + v a l e n c e state. T w o oxides of a m e r i c i u m are k n o w n so f a r : A m 0 A m 0 , w h i c h crystallizes i n the fluorite l a t t i c e (a = 2
2
and A m 0
5.377 ±
2
Downloaded by MONASH UNIV on September 14, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch017
is f o r m e d b y a n n e a l i n g the oxalate, h y d r o x i d e , or other easily posing compounds of A m 0
2
of a m e r i c i u m i n o x y g e n at 8 0 0 ° - 1 1 0 0 ° C .
decom
Reduction
w i t h h y d r o g e n at 6 0 0 ° C . y i e l d s the c u b i c m o d i f i c a t i o n of A m 0 2
( M n 0 - t y p e , rare e a r t h C - t y p e oxide, a = 2
(40).
3
0.001 Α . ) ,
3
11.03 Α . ) , at 8 0 0 ° C .
h e x a g o n a l m o d i f i c a t i o n ( L a 0 - t y p e , rare e a r t h A - t y p e oxide, a = 2
Α., c =
5.971 Α . ) .
3
the 3.817
3
T h e system A m - O has not b e e n i n v e s t i g a t e d sys
t e m a t i c a l l y as yet.
Figure 1. Glove-box with thermomicrobalance (type Mettler) installât ed T h i s p a p e r b r i e f l y surveys the solid-state reactions of A m 0 Am 0 2
3
2
and
i n the presence of second or t h i r d m e t a l oxides at h i g h e r t e m p e r a -
tures. T h e m a i n interest is f o c u s e d u p o n three types of r e a c t i o n s :
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
230
LANTHANIDE/ACTINIDE
CHEMISTRY
( a ) R e a c t i o n w i t h t h e oxides of a l k a l i metals a n d a l k a l i n e e a r t h metals w i t h t h e a i m of p r o d u c i n g t e r n a r y oxides of p e n t a v a l e n t a n d hexavalent americium. ( b ) R e a c t i o n w i t h oxides of the g r o u p I V elements. It w a s to b e e x p e c t e d t h a t i n this r e a c t i o n t h e 4-f- v a l e n c e of a m e r i c i u m w o u l d b e m a i n t a i n e d w i t h c o m p o u n d s of t h e g e n e r a l t y p e A B 0 , a n d i n s o l i d solutions of t h e A 0 - B 0 t y p e . ( c ) T h e r m a l b e h a v i o r of A m 0 i n t h e presence of oxides of g r o u p I I I a n d V elements. It w a s to b e e x p e c t e d t h a t a m e r i c i u m w o u l d b e h a v e as a t y p i c a l a c t i n i d e element—i.e., that t h e m a j o r i t y of t h e t e r n a r y oxides to b e e x p e c t e d c o n t a i n A m ( I I I ) . T h i s a s s u m p t i o n is b a s e d u p o n t h e analogous b e h a v i o r of CeO >, P r O n , a n d T b 0 f o u n d i n reactions w i t h oxides of g r o u p V elements as w e l l as u p o n t h e excellent t h e r m a l s t a b i l i t y a n d t h e h i g h l a t t i c e s y m m e t r y of c o m p o u n d s l i k e M e X 0 3 a n d Me X 0 . I V
2
I V
4
2
2
Downloaded by MONASH UNIV on September 14, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch017
L
6
4
7
m
l n
v
Methods
m
4
of
Investigation
A l l investigations w e r e c a r r i e d out i n g l o v e boxes w i t h q u a n t i t i e s of 5-20 mg. A m 0 . T h e e x p e r i m e n t a l results w e r e e v a l u a t e d m a i n l y b y x - r a y analysis. I n s p e c i a l cases, d i f f e r e n t i a l t h e r m a l analysis ( D T A ) a n d the t h e r m o g r a v i m e t r i c analysis ( T G A ) ( F i g u r e 1) w e r e e m p l o y e d , r e s p e c t i v e l y . T h e v a l e n c e of a m e r i c i u m i n t h e t e r n a r y oxides w i t h A m ( V ) a n d A m ( V I ) , after d i s s o l u t i o n of t h e r e a c t i o n p r o d u c t i n d i l u t e d H C 1 0 , w a s d e t e r m i n e d b y r e c o r d i n g a n a b s o r p t i o n s p e c t r u m of t h e s o l u t i o n obtained. 2 4 1
2
4
Table I .
System
T e r n a r y Oxides of T r i - to Hexavalent
Reaction
Composition
Li 0/Am0 2
Li 0/Am0 2
2
5
LiLi 0/Am0 2
Li 0/Am0 2
1
Na 0/Am0 2
Na 0/Am0 Na 0/Am0 2
2
2
AmO Am0 Am0 AmO,
5
2LUO + 2 A m O / 4 5 0 ° C . / O / 4 h r s . 2
f )
6
3
7
2
3
6
4
6
3
2
3
4
2
2
2
2
2
2
2
L i 0 + A m O / 6 0 0 ° C . / H / 3 0 hrs. 2
Am0 AmO, AmQ AmO
2
3
2
2 . 5 N a 0 + A m 0 / < 3 0 0 ° C . / O / 4 hrs. 3 . 5 N a 0 + A m O / 4 0 0 ° C . / O / 6 hrs. 2 N a 0 + A m O / 6 5 0 ° C . / O / 4 hrs. N a C 0 + A m O / 7 5 0 ° C . / N / 6 hrs.
5
6
4
2
2
s
2
2
2
2
2
2
2
2
2
2
3
2
2
2
BaOo + A m O / 1 1 0 0 ° C . / O / 8 hrs. 1.5BaO + A m O / 1 2 5 0 ° C . / O / 3 0 hrs.
6
2
3
2
2
BaO · A m 0 SrAm0 2
3
2
L i 0 + A m O / 6 0 0 ° C . / v a c u u m / 1 6 hrs. 4 L i 0 + A m 0 / 6 0 0 ° C . / v a c u u m / 1 6 hrs.
2
3
δ
2
2
6
8
Na Na Na Na
9
4
Li Am0 Li Am0
2
3 . 5 L i 0 + A m O / 3 6 0 ° G / O / 1 2 hrs. 1.5Li>0 + A m O / 7 0 0 ° C . / O / 6 hrs. L i A m 0 + L i O / 9 0 0 ° C . / N / 1 2 hrs.
6
Ba Am0 BaAm0
3
2
4
LiAm0
3
2
BaO/AmOi SrO/Am0
2
5
! 2
BaO/Am0 BaO/Am0
Li Li Li Li
3
Conditions
:
2
BaAmO /1250°G/H 1.5SrO + A m O / 1 2 5 0 ° C . / O / 3 0 hrs. 2
2
2
2
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
17.
Americium
K E L L E R
Oxides
231
Results and Discussion T h e r e a c t i o n c o n d i t i o n s a n d the lattice constants of the a m e r i c i u m compounds
d e s c r i b e d i n the f o l l o w i n g sections are l i s t e d i n T a b l e s
I
and II. Ternary Oxides of Trivalent to Hexavalent Americium with L i t h ium and Sodium. Solid-state reactions of A m 0
w i t h L i 0 i n o x y g e n at
2
2
3 5 0 ° - 4 5 0 ° C . , d e p e n d i n g o n the m o l a r r a t i o of L i 0 : A m 0 , result i n t h e 2
compounds
Li Am0 4
5
20).
6
The blackish-brown L i A m 0 4
d i s c o v e r e d b y K o v b a (26), Downloaded by MONASH UNIV on September 14, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch017
2
a n d L i o A m 0 w i t h h e x a v a l e n t a m e r i c i u m (4, has the t e t r a g o n a l s t r u c t u r e of
5
a n d H o e c k s t r a a n d S i e g e l (12),
w h i c h is a lattice d e r i v e d f r o m a - U F
Li U0 4
5
respectively,
closely r e l a t e d to the r o c k s a l t
5
structure. I n adherence to the h e x a g o n a l i n d e x i n g of x - r a y p o w d e r p a t terns of the c o m p o u n d s
Li Bi0 7
and L i P b 0
6
8
g i v e n b y Blasse ( 5 ) ,
6
and
S c h o l d e r a n d H u p p e r t ( 3 8 ) , r e s p e c t i v e l y , i t w a s also possible to deter m i n e the l a t t i c e constants Li Am
0 .
I V
8
of
Me Am 6
V I
0
6
(Li, Na), L i A m 0 , v
7
6
and
D e s p i t e the different A m : L i r a t i o a n d t h e different v a l e n c e
6
of a m e r i c i u m the c o m p o u n d s of the t y p e L i ^ A m O e ( χ •= 6, 7, 8 ) are isos t r u c t u r a l a m o n g e a c h other. T h e analogous solid-state r e a c t i o n of N a 0 2
2
with A m 0
2
i n oxygen
a l w a y s results i n «-Na AmO > of the rocksalt s t r u c t u r e b e l o w 3 0 0 ° C , 4
r
but
i n t h e t e m p e r a t u r e r a n g e b e t w e e n 300° a n d 5 0 0 ° C , one obtains N a A m 0 6
6
Americium with Alkaline and Alkaline E a r t h Elements Lattice Constants (A.) Type of Li Li Li Li
U0 ReO U0 Bi0
4
6
3
7
(12, 26), t e t r a g . (38), hexag. ( 5 ) , tetrag. ( 5 ) , hexag.
5
f )
4
6
L i P r 0 , unknown L i P b O (5), hexag. 2
a
Structure
c
, Isostructural Compounds
T
6.666 5.174 4.459 5.54
±0.001 ± 0.005 ± 0.005 ± 0.02
4.415 14.59 8.355 15.65
±0.002 ±0.05 ± 0.01 ± 0.05
Np, Pu Te, N p , P u Pa, U , Np, Pu Sb, N b , T a , Os, Pa, U , N p , P u
5.62
±0.02
15.96
±0.05
16.10
± 0.1
Sn, Zr, Ce, Pr, T b , Ir, P t , P u La, Pr, N d , Sm, Gd, E u U, Np, Pu Re, Te, N p , P u U, Ru Ti, Tc
3
8
e
«-LiEu0 a-Na UO Li ReO , Na U0 Li SnO 4
(3),
2
monoklin
, cubic hexag. (38), cubic (27), monoklin
r >
B a W O , cubic C a T i 0 , cubic
5.76 ± 0.03 4.757 ± 0.005 5.92 ± 0 . 0 1 b = 10.26 ± 0 . 0 2 8.81 ± 0 . 0 1 4.365 ± 0.005
C a F e 0 , orthorhomb. C a T i 0 , pseudocubic
4.23 ±
6
e
3
4
2
a
3
e
3
2
4
3
11.23 ± 0 . 0 2 β=100°7'
U , Np, Pu, Mo Pa, U , Np, Pu, Tc, Zr R . E . , Y , Sc
0.05
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
232
LANTHANIDE /ACTINIDE
Table l i a .
System Am 0 /B 0 Am 0 /Al 0 Am 0 /V 0 Am0 /Si0 Am0 /Ge0 BaO/AmOi BaO/AmOi TiOg/AmOi Ti0 /Am0 2
3
2
3
2
3
2
2
Downloaded by MONASH UNIV on September 14, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch017
2
5
2
2
5
5
0 0 0 0
5
2
5
2
2
2
5
5
System
5
2
1 5
1 5
Am0 Am0
1 5
1 5
6
4
2
6
4
Ternary and Polynary Oxides of T e t r a Reaction
2
5
/As 0 2
Am(N0 )
7
Am0 .5/Ta 0 2
1
5
^-AmNb0 Am NbO o:-AmTa0
/Pa 0 2
Ta0
0
5
4
2
2
+
3
2
4
(NH ) HAsO /1000°C. 4
2
4
+ V O / 1 0 0 0 ° C . / 1 0 hrs. + N b O 5 / 1 2 0 0 ° C . / 2 4 hrs. 2
5
2
2
2
3
0
r >
2
i n d e p e n d e n t l y of the N a : A m ratio. to A m ( V I )
2
2
2
(Am ' ni, Pa . v)O
5
2
660°C. 2 A m 0 + 3 N b O / 1 2 0 0 ° C . / 2 4 hrs. 2 A m 0 + T a O / 1 2 0 0 ° C . / 2 4 hrs.
a
4
3 3
4
2Am0 2Am0
4
3 3
0
2
3
4
Am
2
2
2
4
AmV0 AmNb0
5
2
2
3 +
2
5
/V 0 /Nb 0 2
AmAs0
7
2
4
5
Conditions
A m 0 + ZrO /1200°C./20 h r s . / H A m 0 + HfO /1400°C./20 h r s . / H Am + H P O 7 8 0 ° C . / 4 hrs. A m 0 + ( N H ) H P O / 8 0 0 ° C . / 6 hrs.
2
9
4
1 5
4
2
Am Zr 0 Am Hf 0 A m P 0 · 0-0.5H O AmPO, 2
2
0
Am0
2
4
Composition
AmOi / Z r 0 Am0 /Hf0 Am0 /P 0
Am0
2
4
6
Table l i b .
3
2
4
4
/Nb /Ta /Nb /Ta
3
4
4
5
3
3
3
1
1 5
2
3
2
Conditions
A m 0 + H B O / 9 0 0 ° C . / 1 2 hrs. A m ( O H ) + A 1 ( O H ) / 1 2 5 0 ° C . / 1 6 hrs. A m V 0 + H / 1 2 0 0 ° C . / 8 hrs. A m ( O H ) + S i 0 · aq/230°C./7d A m ( O H ) + G e 0 · aq/230°C./7d B a O + A m N b O / 1 3 0 0 ° C . / 8 hrs. B a O + A m T a O / 1 3 0 0 ° C . / 8 hrs. T i 0 + A m N b O / 1 1 5 0 ° C . / 2 4 hrs. T i 0 + A m T a O / 1 1 5 0 ° C . / 2 4 hrs.
3
2
2
Reaction
AmB0 AmA10 AmV0 AmSi0 AmGe0 Ba AmNb0 Ba AmTa0 AmNbTiQe AmTaTi0
3
3
2
Ternary and Polynary Oxides of Tetra-
Composition
3
2
CHEMISTRY
2
5
5
2Am0
2
+ 3 T a O / 1 2 0 0 ° C . / 2 4 hrs.
2Am0
2
+
2
5
Pa 0 7ll00°C./8 2
Quantitative oxidation
of A m ( I V )
takes a surplus of a b o u t 0 . 3 - 0 . 5 moles N a 0 . 2
s o d i u m shortage, p a r t of the A m 0
2
hrs
5
I f t h e r e is a
2
is present after the r e a c t i o n
without
h a v i n g u n d e r g o n e c o n v e r s i o n to A m ( V I ) . T h e c o m p o u n d s of h e x a v a l e n t
americium
little thermal stability. A t 550°C. ( M e =
w i t h a l k a l i metals
have
L i ) and 700°C. ( M e =
Na)
t h e r e is a loss of o x y g e n , a n d c o m p o u n d s w i t h p e n t a v a l e n t are f o r m e d ( 3 1 ) . Li 0-Am0 -0 2
2
2
The continued
t h e r m a l d e c o m p o s i t i o n i n the
results d i r e c t l y i n A m 0
t h e d e c o m p o s i t i o n of N a A m 0 3
4
americium
2
system
above 900°-1000°C.; whereas
leads to A m 0
2
via N a A m 0 . 2
3
The indi-
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
17.
Americium
K E L L E R
233
Oxides
and Trivalent Americium w i t h Group III-V Elements Lattice Constants (A.) -
Type of Structure Aragonite, orthorhomb. L a A 1 0 , hexagonal G d V O g , orthorhomb. Z r S i 0 , tetragonal C a W 0 , tetragonal B a W O , cubic B a W 0 , cubic C a T a 0 , orthorhomb. C a T a O , orthorhomb.
5.053 5.336 5.45 6.87 5.04 8.520 8.518 5.34 5.33
3
4
Downloaded by MONASH UNIV on September 14, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch017
4
3
e
3
6
2
6
2
e
Isostructural Compounds
c
5.85
5.738 12.91 7.76 6.20 11.03
11.00 10.95
7.53 7.49
8.092
R.E. Pr, N d , P u R.E., Pu Th-Pu Zr, C e , T h - P u R.E. R.E. L a - E u (-Lu) La-Dy
and Trivalent Americium with Group III-V Elements Type of
Structure
Lattice Constants
(A.)
b
c
a
Pyrochlor, cubic Pyrochlor, cubic C e P 0 · 0 - 0 . 5 H O , hexag. T h S i 0 , monoklin
10.565 10.650 6.99 6.73
6.93
T h S i 0 , monoklin
6.89
7.06
Z r S i Q , tetragonal Y T a 0 , monoklin
7.31 5.444
Z r S i 0 , tetragonal La NbO Y T a 0 , monoklin
5.30 3.819 5.489
La NbO Fluorite, cubic
3.889 5.458
4
2
4
4
4
4
4
0 3 3
3
4
0
3 3
3
Isostructural Compounds R.E. R.E. R.E., Cm, Ac R.E., Pu, C m
6.39 6.41 β = 103°50' 6.62 β = 105° 30' 6.42 5.141 β = 95°57' 11.34 7.835 5.115 β = 95°22' 7.820
11.25
11.21
La-Nd, Pu Ce-Lu R.E., Pu R.E. R.E. R.E. La-Nd, Cm La-Er, Y, C m
v i d u a l modes of d e c o m p o s i t i o n a n d the temperatures of
decomposition
are i n d i c a t e d i n F i g u r e s 2 a n d 3. The
simplest w a y
Li Am0 , 3
Li AmOo,
4
7
to
prepare
and N a A m 0 3
( N a 0 ) to react i n a stream of N 2
2
q u o t e d i n F i g u r e s 2 a n d 3.
4
lattice, L i A m 0 3
Li U0 3
Li
+
4
3
4
+
m e t a l americates
allowing A m 0
some 1 % 0
2
2
and
4
4
(37)
(V) Li 0 2
at t h e t e m p e r a t u r e s 7
3
3
alkali
is b y
T h e t h e r m a l s t a b i l i t y of L i A m 0
u p to some 1000 ° C ; via L i A m 0 W h i l e N a A m 0 , as N a U 0
2
the 4
6
extends
the d e c o m p o s i t i o n finally y i e l d s A m 0 . 2
c r y s t a l l i z e s i n the u n d i s t o r t e d N a C l -
has t h e t e t r a g o n a l l y d i s t o r t e d r o c k s a l t s t r u c t u r e of
( 5 ) , w h i c h is c a u s e d b y a l a r g e r difference i n the i o n i c r a d i i of
and A m . 5 +
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
234
LANTHANIDE/ACTINIDE
Li 0:Am0 2
, 3.5:1 0
2
LioO:Am0
360°C.
e
>-
LLAm0
Li AmO«
6
, 2.5:1
420°C. — L i
K
U
4
A m O
2
r
«.
8
450°-500°C. 0
CHEMISTRY
600°C. ^
2
4.5:1
800°C.
,
I 550°-900°C.
ο ι
550°C. —*-
u
Li Am0 3
1000°C. .
4
2
χ A
m
1000°C.
ί Λ
°
2
2
Downloaded by MONASH UNIV on September 14, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch017
1000°C. w
900°C. ( N / ~jjT 0 )
4:1
2
Figure 2.
2
Li Am0 7
1000°C./O
6
Preparative
Li Am0
600°C. — —
3
1.5:1
2
LiAm0
2
600°C. ~* J J
1:1
conditions and thermal stability of compounds in the system Li-Am-0
Na 0:Am0 2
2
> 300°C.
2:1
-Na Am0 )
tt
4
5
350°C. 300°-50()°C.
3.5:1
Na Am0 e
6
6()0°-700°C. 600°-700°C.
2:1
Na Am0 3
4
700°-800°C. 700 -800°C. N o
1.5:1
Na Am0 2
3
2
900°C AmO.,
Figure 3. Preparative conditions and thermal stability of compounds in the system Na-Am-0 A l t h o u g h a b o v e 7 0 0 ° C . the t h e r m a l d e c o m p o s i t i o n of the A m ( V ) a n d A m ( V I ) c o m p o u n d s w i t h s o d i u m passes t h r o u g h N a A m 0 — o f the m o n o c l i n i c s t r u c t u r e of L i S n 0 ( 2 7 ) — i t w a s not possible to o b t a i n a n i n t e r m e d i a t e c o m p o u n d w i t h A m ( I V ) for L i - c o m p o u n d s . D o u b l e oxides i n the system L i 0 - A m 0 w e r e o b t a i n e d b y d i r e c t r e a c t i o n of L i 0 w i t h A m 0 i n a n e v a c u a t e d q u a r t z tube. A t 600 ° C . one obtains for L i 0 : A m 0 = 1.5:1 the substance L i A m 0 w h i c h is i s o s t r u c t u r a l w i t h L i P r 0 ( 3 6 ) ; i n t h e case of L i 0 : A m 0 = 4.5:1, t h e c o m p o u n d L i A m 0 . T h e L i 0 surplus is necessary to compensate for the v o l a t i l i z a t i o n of L i 0 . 2
2
2
3
3
2
2
2
2
2
2
2
3
2
8
2
3
6
2
2
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
17.
Americium
K E L L E R
Oxides
235
B y solid-state reactions of A m 0 2
i t w a s p o s s i b l e to p r e p a r e L i A m 0 clinic « - L i E u 0
3
w i t h L i 0 i n h y d r o g e n at 6 0 0 ° C , 2
w h i c h is i s o s t r u c t u r a l w i t h t h e m o n o -
2
the l a t t i c e constant of w h i c h has b e e n d e t e r m i n e d
2
Barnighausen (3).
by
Probably, another h i g h temperature modification m a y
be e x p e c t e d for L i A m 0
w h i c h , as / 3 - L i E u 0
2
2
(2)
or L i G d 0 , has a n 2
orthorhombic structure. Most
of
the compounds
of
t e t r a v a l e n t to
hexavalent
americium
d e s c r i b e d here w e r e o b t a i n e d for u r a n i u m , n e p t u n i u m , a n d p l u t o n i u m (Table III).
T h e decomposition
t e m p e r a t u r e s of the a m e r i c i u m c o m -
Downloaded by MONASH UNIV on September 14, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch017
p o u n d s are c o n s i d e r a b l y b e l o w ( 2 0 0 ° - 3 0 0 ° C . ) those of t h e c o r r e s p o n d i n g t e m p e r a t u r e s of the analogous neptunates a n d p l u t o n a t e s (4,
25).
Compounds of Americium with Alkaline Earths Metals. W h i l e the system a m e r i c i u m o x i d e — a l k a l i m e t a l o x i d e , at least for M e
1
= L i and
N a w e r e w o r k e d o n i n d e t a i l , o n l y a f e w attempts h a v e b e e n m a d e
to
c h a r a c t e r i z e the t e r n a r y oxides e x p e c t e d i n the system a m e r i c i u m o x i d e — a l k a l i n e e a r t h oxide. I n the solid-state r e a c t i o n of 3.5 B a O + compound B a ( B a . 5 , A m . 5 n
0
0
V I
)O
3
1 Am0
at 8 0 0 ° - 9 0 0 ° C . t h e
2
w i t h ordered perovskite structure
(17)
is f o r m e d . A t h i g h e r t e m p e r a t u r e s there is a loss of o x y g e n , t r a n s f o r m i n g Ba(Ba .5, A m , 5 ) O 0
0
3
into B a A m
I V
0
3
w i t h the c u b i c
perovskite lattice
i n s u c h a w a y t h a t no i n t e r m e d i a t e stages of this t r a n s i t i o n c a n b e r e c o g Table III.
Schematic Representation of L i t h i u m and Sodium Uranates (VI) and Transuranates (VI) U
Composition
Li
Me X O Me X 0 a-Me X0 £-Me X0 a-Me X0 £-Me XO Me XO
+ + +
2
3
1 0
2
2
7
2
2
4
+ = — =
+
—
e
Li
Pu Na
— — — —
+ + + + +
—
5
r>
6
Na
4
4
4
Np
+ + + + +
+ +
_
Li
—
_
— — + +
Am Na
Li
Na
__
_ _ _
__
+ +
—
— — + + +
—
—
+
+
existent none-existent
nized.
BaAm0
r e a c t i o n of B a 0
3
2
and S r A m 0
3
are o b t a i n e d i n a s i m p l e r w a y b y d i r e c t
(or B a C 0 ) and A m 0 3
2
( a i r , 30 hrs., 1 2 5 0 ° C . ) (4,
19).
T o a c h i e v e a q u a n t i t a t i v e r e a c t i o n of A m 0 , a m o l a r r a t i o of A m : M e 2
1 1
=
1:1.5 is r e q u i r e d ; there is n o s o l i d s o l u t i o n i n t h e system M e O - M e A m 0 i n contrast to t h e system B a U 0 / B a O . 3
SrAm0
3
The dark brown B a A m 0
3
3
and
are s o l u b l e i n s t r o n g acids a l o n g w i t h d i s p r o p o r t i o n a t i o n of
Am(IV).
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
236
L A N T H A N I D E / A C T I N I D E
T h e r e d u c t i o n of B a A m 0 compounds SrAm 0 2
which
3
and S r A m 0
probably
have
w i t h h y d r o g e n results i n
3
the
formula
BaAm 0 2
and
4
a n d the s t r u c t u r e of C a F e 0 . A m o r e d e t a i l e d i n v e s t i g a
(16)
4
most
C H E M I S T R Y
2
4
t i o n has not b e e n m a d e . The System A m 0 / B 0 2
t i o n of A m 0
a
2
with H B 0
2
3
3
3
2
2
m a t i o n w i t h i n 12 hours of A m B 0 of A m ( I V ) i n t o A m ( I I I ) .
T h e solid-state r e a c
and A m 0 / A l 0 .
or B 0 3
3
3
2
(1:1)
3
at 900° C . results i n the for
a l o n g w i t h the t h e r m a l d e c o m p o s i t i o n
X - r a y analysis shows that A m B 0
t u r a l w i t h the l o w t e m p e r a t u r e modifications of L a B 0
is isostruc
3
and N d B 0
3
(29)
3
Downloaded by MONASH UNIV on September 14, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch017
c r y s t a l l i z i n g i n the o r t h o r h o m b i c aragonite lattice. B y solid-state reactions of A m 0 compound
with A 1 0
2
2
f o r m a t i o n c o u l d be observed.
at 1 2 5 0 ° C . i n H
3
2
no
I n order not to increase the
r e a c t i o n t e m p e r a t u r e , a 1:1 m i x e d h y d r o x i d e p r e c i p i t a t i o n of a m e r i c i u m and a l u m i n i u m reacted i n H
2
for 2 - 8 hrs. at 1250 ° C . T h i s r e s u l t e d i n t h e
q u a n t i t a t i v e f o r m a t i o n of rose-colored
AmA10
h a v i n g the
3
hexagonal
d i s t o r t e d p e r o v s k i t e structure of the a l u m i n a t e s of L a , P r , N d (11),
and
Pu (17,35). T h e Reaction of A m G w i t h Oxides of the Group I V Elements.
The
2
d i o x i d e s of the elements
thorium, protactinium, uranium, neptunium,
a n d p l u t o n i u m react d i r e c t l y w i t h S i 0 h y d r o t h e r m a l l y to f o r m t e r n a r y oxides
2
and G e 0 of
either t h e r m a l l y o r
2
the t y p e A
I V
B
l v
0
4
which,
d e p e n d i n g u p o n the a c t i n i d e element a n d the c o n d i t i o n s of p r e p a r a t i o n , possess a z i r c o n ( Z r S i 0 ) , scheelite 4
s t r u c t u r e (16). Am0
2
(CaW0 ),
or h u t t o n i t e
4
(ThSi0 ) 4
Corresponding reaction products c o u l d be expected
e v e n if the l o w t h e r m a l s t a b i l i t y of A m 0
2
for
at the r e q u i r e d h i g h
r e a c t i o n temperatures causes difficulties. T h e solid-state r e a c t i o n of A m 0 with S i 0 Am0
2
2
2
at 1250 ° C . i n a l l cases r e s u l t e d i n a n extensive o x y g e n loss of
a l o n g w i t h the f o r m a t i o n of A m ( I I I ) .
T h e h o p e of f o r m i n g a n
A m ( I V ) s i l i c a t e b y a solid-state r e a c t i o n w a s p o o r because i n the series of tetravalent a c t i n i d e s o n l y silicates of T h ( I V )
a n d P a ( I V ) , b u t not of
U ( I V ) , N p ( I V ) , a n d P u ( I V ) could be obtained b y thermal methods. A n A m ( I V ) silicate, A m S i 0 , h a v i n g the structure of z i r c o n ( α-form 4
of the a c t i n i d e ( I V )
silicates) w a s o b t a i n e d b y h y d r o t h e r m a l synthesis
o u t of a m i x e d h y d r o x i d e p r e c i p i t a t i o n of A m ( O H )
+
4
Si0
2
* aq.
A m f r a c t i o n , after p r e c i p i t a t i o n b y the m e t h o d of P e n n e m a n n et al. w a s o x i d i z e d w i t h N a O C l i n a n a l k a l i n e s o l u t i o n to f o r m
The (31),
Am(OH) .
A f t e r 5 - 7 days at 2 3 0 ° C . a n d a p H of 8.2-8.6, the components
4
reacted
to f o r m c r y s t a l l i n e A m S i 0 , w h i c h is i s o s t r u c t u r a l w i t h the silicates of 4
the other tetravalent a c t i n i d e s p r e p a r e d the same w a y . A t t e m p t s to p r e p a r e A m G e 0 +
Ge0
2
4
b y a solid-state r e a c t i o n of
r e s u l t e d i n a p a r t i a l d e c o m p o s i t i o n of A m 0
1000°C. i n 0 . 2
T h e n o n d e c o m p o s e d p a r t of A m 0
2
2
Am0
2
i n a l l cases also at reacts b y f o r m i n g
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
17.
Americium
K E L L E R
AmGe0 nates).
w i t h scheelite s t r u c t u r e ( α - f o r m of the a c t i n i d e ( I V )
4
Pure A m G e 0
Am(OH)
+
4
2
4
a
u n d e r the same
experimental conditions
T h e t h e r m a l d e c o m p o s i t i o n of A m G e 0
as
starts at
4
1050°C.
(X) •
Downloaded by MONASH UNIV on September 14, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch017
germa-
is o b t a i n e d a g a i n b y h y d r o t h e r m a l r e a c t i o n of
4
Ge0 (aq)
q u o t e d for A m S i 0 . about
237
Oxides
5.400 -
5.100
U
ι
Zr0 10 0
i
»
.
20
ι
30
,
40
•
1
Figure
4.
Lattice
50
ι
ι
I
ι
80
constants and extension of solid solutions
90 AmCL in the
system
Am0 -Zr0 2
O = 1200°C. X = 1400°C.
2
It has b e e n k n o w n for a l o n g t i m e t h a t T h 0 series of m i x e d crystals w i t h Z r 0 fluorite
.
60 70 [mole 7·]
structure at l o w T h 0
and U 0
2
structure at h i g h e r content [e.g.
2
and U 0
2
f o r m extensive
a b o v e 1000 ° C . w h i c h h a v e a t e t r a g o n a l
2
2
content a n d a c u b i c
(6, 9, 26, 4 2 ) ] .
fluorite
F i g u r e 4 shows t h a t the
c o r r e s p o n d i n g series of m i x e d crystals exist also i n the system A m 0 - Z r 0 . 2
2
A one-phase s o l i d s o l u t i o n of fluorite structure extends a b o v e 18 m o l e % Am0
2
u p to p u r e A m 0 . T h e lattice constants of these o x i d e phases i n 2
crease p r o p o r t i o n a l l y w i t h the A m 0
2
content, w h i c h m u s t b e e x p l a i n e d
as a n i n d i c a t i o n of the presence of p u r e A m ( I V ) .
T h e corresponding
experiments i n the system A m 0 - H f 0 d i d not s h o w q u a n t i t a t i v e results, 2
2
b u t here too a fluorite phase of a large b u t u n d e t e r m i n e d extension is found. R e d u c t i o n of the A m 0 - Z r 0 a n d A m 0 - H f 0 2
2
2
2
fluorite phases results
i n the c o r r e s p o n d i n g t e r n a r y oxides a n d o x i d e phases of t r i v a l e n t a m e r i c i u m . I n the system A m O i - H f 0 5
2
there is a 1:1 c o m p o u n d A m H f 0
a p y r o c h l o r e s t r u c t u r e w h i c h has a n e a r l y s t o i c h i o m e t r i c
2
2
7
of
composition
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
238
LANTHANIDE/ACTINIDE CHEMISTRY
a/2(Â)
a(Â)
4
4
10.700
5.350 2 PHASES
10.600
tetrag. F. ss+
2 PHASES _o—
5.300
ss
ω ω
10.500 Downloaded by MONASH UNIV on September 14, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch017
1 PHASE
-I 5.250
πι
10.400
u
5.200
oR
-I
Zr0 10 2
Figure
5.
Lattice
i
L.
20
30
40
ss*
ss
h e x
50 60 70 -+ [mole%]
80
90 Am0
constants and extension of solid solutions Am0 -ZrO , 1200°C. 15
15
in the system
%
a(Â)|
10.700h -o
o
Q—°-
10.600 h
Hf0 10 2
Figure 6.
20 Lattice
30
40
*
50 60 70 [mole/o]
80
90 Am0
1R
e
constants in the system AmO
-Hf0 ,
t
5
2
1400°C.
( F i g u r e 5 ) . M o r e c o m p l i c a t e d are t h e results i n t h e system A m O i - Z r 0 . Besides t h e p u r e s t a r t i n g c o m p o n e n t s , t w o one-phase areas c a n b e o b s e r v e d at 1 2 0 0 ° C : a t e t r a g o n a l s o l i d s o l u t i o n of 0 - 6 m o l e % A m O i , a n d a c u b i c s o l i d s o l u t i o n of a b o u t 3 2 - 5 5 m o l e % A m O i . ( F i g u r e 6 ) . I n t h e c u b i c s o l i d s o l u t i o n , i n w h o s e r e g i o n exists A m Z r 0 w i t h t h e p y r o c h l o r e 5
r
5
2
2
7
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
2
17.
Americium
K E L L E R
Oxides
239
t y p e s t r u c t u r e , a c o n t i n u o u s t r a n s i t i o n f r o m the fluorite phase to t h e p y r o c h l o r e phase c a n b e observed.
I n this respect t h e system A m O i . - Z r 0 5
2
fits e x c e l l e n t l y i n t o the series o f rare e a r t h zirconates i n v e s t i g a t e d b y F r e n c h authors—e.g.,
(7, 8, 32); for t h e c o r r e s p o n d i n g H f systems there
are, as yet, n o c o m p r e h e n s i v e investigations r e p o r t e d i n the l i t e r a t u r e . T h e s t r i k i n g difference i n the systems A m O i - Z r 0 5
2
and
AmOi. -Hf0 5
2
cannot b e explained, however. A s expected, T h 0
2
forms a c o m p l e t e series o f m i x e d crystals w i t h
A m 0 , w h o s e l a t t i c e constants f o l l o w V e g a r d ' s r u l e ( F i g u r e 7 ) . Downloaded by MONASH UNIV on September 14, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch017
2
a(K)
Î Γ 5,800 5,700 5,600