6 Actinide Extractants: Development, Comparison,
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
and Future R. R. S H O U N and W . J. M c D O W E L L Oak Ridge National Laboratory, Oak Ridge, TN 37830
Actinide Separations Milestones In 1805 Bucholz noted that uranyl nitrate is very soluble in diethyl ether (1), and in 1842 Peligot purified uranyl nitrate by recrystallization from ether (2). These documented instances of the dissolution of an inorganic material in an organic solvent formed the basis for a method to separate and purify large quantities of high-purity uranium and plutonium for the Manhattan Project by solvent extraction, initially using ether as an extractant. One of its first uses was to isolate element 94 (plutonium) in the Chicago Metallurgical Laboratory during the period 1942-1944. This objective was accomplished by ether extraction of uranyl nitrate, leaving the plutonium in the aqueous phase. In one instance, 300 lb of neutron-irradiated uranyl nitrate was separated batchwise by using 2- and 3-liter separatory funnels (3). In addition to the actinide separations needs that were recognized in the 19th century and the first half of the 20th century, a multitude of other separations problems currently need to be resolved. F o r e x a m p l e , we a r e now f a c e d w i t h t h e p r o b l e m o f s e p a r a t i n g s e v e r a l new (man-made) a c t i n i d e s f r o m t h e o t h e r a c t i n i d e s , or other groups of elements, f o r a n a l y t i c a l , e n v i r o n m e n t a l , and n u c l e a r w a s t e h a n d l i n g p u r p o s e s . These needs have added s p e c i a l u r g e n c y t o t h e n e c e s s i t y f o r d e v e l o p i n g m e t h o d s f o r s e p a r a t i n g a c t i n i d e s from a wide range of u n d e s i r e d i o n s . It i s hoped t h a t t h i s r e v i e w w i l l n o t o n l y s e r v e t o c o r r e l a t e t h e r e f e r e n c e m a t e r i a l i n a u s e f u l manner, but a l s o p r o v i d e an u n d e r s t a n d i n g o f t h e a p p r o p r i a t e c o m b i n a t i o n o f m o i e t i e s n e e d e d t o make the most e f f i c i e n t s e p a r a t i o n s agents f o r s p e c i f i c a p p l i c a t i o n s , and t h e r e b y c o n t r i b u t e t o t h e d e v e l o p m e n t o f b e t t e r e x t r a c t a n t s . N a t u r a l s u c c e s s o r s t o d i e t h y l e t h e r as an e x t r a c t a n t w e r e v a r i o u s e t h e r s , p o l y e t h e r s , a n d a l c o h o l s s u c h as d i b u t y l c a r b i t o l , known as " t r i e t h e r d i b u t o x y t e t r a e t h y l e n e g l y c o l , known as " p e n t a e t h e r , " and k e t o n e s s u c h a s m e t h y l i s o b u t y l k e t o n e , known as " M I B K " o r " h e x o n e " ( 4 ) . Most a p p l i c a t i o n s f o r the e t h e r e x t r a c t a n t s r e q u i r e d the a d d i t i o n of h i g h c o n c e n t r a t i o n s of
0-8412-0527-2/80/47-117-071$05.00/0 ©
1980 A m e r i c a n C h e m i c a l Society
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
72
ACTINIDE
SEPARATIONS
s a l t i n g a g e n t s t o t h e aqueous phase t o e f f e c t t r a n s f e r o f t h e d e s i r e d metal species i n t o the extractant phase. T h i s was a d i s a d v a n t a g e b o t h e c o n o m i c a l l y and i n h a n d l i n g and d i s p o s i n g o f t h e aqueous r a f f i n a t e f o r p u r p o s e s o t h e r t h a n a n a l y t i c a l a p p l i c a t i o n s . S e e k i n g o t h e r e t h e r - l i k e , a q u e o u s - i m m i s c i b l e compounds w i t h electron-donor, coordinative properties l e d to the recognition t h a t t r i b u t y l p h o s p h a t e (TBP) h a d o u t s t a n d i n g q u a l i t i e s a s a n e x t r a c t a n t f o r u r a n y l , t h o r i u m , and c e r i u m ( I V ) n i t r a t e s f r o m solutions containing a d d i t i o n a l n i t r a t e i o n . This represented a m a j o r m i l e s t o n e i n t h e d e v e l o p m e n t o f new r e a g e n t s f o r s o l v e n t e x t r a c t i o n (4_, 5) . TBP i s p r e s e n t l y b e i n g u s e d i n a n i m p o r t a n t p r o c e s s (Purex) f o r s e p a r a t i n g and p u r i f y i n g u r a n i u m and p l u t o n i u m from spent f u e l s i n n i t r i c a c i d s o l u t i o n . TBP h a s g a i n e d w i d e a c c e p t a n c e i n s e p a r a t i o n s p r o c e s s e s f o r n u c l e a r f u e l r e p r o c e s s i n g and waste h a n d l i n g b e c a u s e o f i t s e x c e l l e n t e x t r a c t i o n c h a r a c t e r i s t i c s and r e a d y a v a i l a b i l i t y ; h o w e v e r , i t h a s some d i s a d v a n t a g e s w i t h r e s p e c t t o r a d i a t i o n s t a b i l i t y a n d aqueous-phase s o l u b i l i t y . A t l e a s t two h o m o l o g s o f T B P , t r i h e x y l p h o s p h a t e (THP) a n d t r i - ( 2 - e t h y l h e x y l ) phosphate (TEHP), a r e e x c e l l e n t e x t r a c t a n t s , a r e l e s s a q u e o u s s o l u b l e , a n d do n o t e x h i b i t t h e t e n d e n c y t o w a r d t h i r d - p h a s e f o r m a t i o n o b s e r v e d when t h o r i u m i s e x t r a c t e d b y TBP ( 6 , 7 ) . Other e l e c t r o n - d o n o r a l k y l phosphates w i t h e x t r a c t i o n p r o p e r t i e s s i m i l a r t o T B P , such as d i b u t y l p h e n y l p h o s p h a t e (DBPP) a n d d i - s e c - b u t y l p h e n y l p h o s p h o n a t e ( D S B P P ) , a r e b o t h r a d i a t i o n - s t a b l e a n d show h i g h e r e x t r a c t i o n power f o r u r a n i u m and p l u t o n i u m . I n s p i t e o f t h e a d v a n t a g e s o f s u c h c o m p o u n d s , TBP r e m a i n s l a r g e l y supreme i n i t s a p p l i c a t i o n b e c a u s e o f e s t a b l i s h e d use and commercial a v a i l a b i l i t y . T h e a l k y l p h o s p h o r i c a c i d s w e r e f i r s t r e c o g n i z e d as e x c e l l e n t a c t i n i d e e x t r a c t a n t s because d i b u t y l p h o s p h o r i c a c i d e x i s t e d as an i m p u r i t y i n TBP ( 8 ) . They e x t r a c t w e l l f r o m u n s a l t e d s o l u t i o n s a n d f r o m s y s t e m s s u c h a s s u l f a t e i n w h i c h TBP i s i n e f f e c t i v e . Organophosphorus a c i d s a r e thus s u i t a b l e f o r uranium h y d r o m e t a l l u r g i c a l a p p l i c a t i o n s where o r e i s l e a c h e d w i t h s u l f u r i c a c i d . T h e Dapex p r o c e s s i s an example i n w h i c h b i s ( 2 - e t h y l h e x y l ) p h o s p h o r i c a c i d (HDEHP) i s u s e d a l o n e o r i n s y n e r g i s t i c c o m b i n a t i o n w i t h n e u t r a l o r g a n o p h o s p h o r u s compounds f o r u r a n i u m a n d v a n a d i u m r e c o v e r y
(9,10). The a l k y l a m i n e s o f f e r g r e a t e r s e l e c t i v i t y t h a n o r g a n o p h o s p h o r u s compounds i n many a p p l i c a t i o n s , p a r t i c u l a r l y i n u r a n i u m h y d r o metallurgy. A m i n e e x t r a c t i o n i s t y p i f i e d b y t h e Amex p r o c e s s , w h i c h u s e s a t e r t i a r y o r b r a n c h e d s e c o n d a r y amine t o e x t r a c t u r a n i u m from s u l f a t e l e a c h l i q u o r s (11). A s i m i l a r process based on the use o f a p r i m a r y o r s t r a i g h t - c h a i n s e c o n d a r y amine (sometimes m o d i f i e d w i t h a n o r g a n i c - s o l u b l e a l c o h o l ) h a s g i v e n good r e s u l t s i n t h o r i u m r e c o v e r y (12). Amines c a n a l s o be used t o s e p a r a t e t h e t r i v a l e n t actinides from the c h e m i c a l l y s i m i l a r t r i v a l e n t l a n t h a n i d e s . I n t h e Tramex p r o c e s s , a t e r t i a r y amine i s u s e d a s t h e e x t r a c t a n t f r o m 10 t o 12 M L i C l , 0.1 t o 0.3 Ν AICI3, a n d 0.01 M HC1 ( 1 3 , 1 4 ) . The development
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
6.
SHOUN
A N D MCDOWELL
Actinide
73
Extradants
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
o f t h e T a l s p e a k p r o c e s s was a n i m p o r t a n t a d v a n c e i n l a n t h a n i d e actinide separation. H e r e , t h e l i q u i d c a t i o n e x c h a n g e r HDEHP i s used to e x t r a c t t h e l a n t h a n i d e s from a s o l u t i o n c o n t a i n i n g c a r b o x y l i c a c i d s and o t h e r a q u e o u s - s o l u b l e c o m p l e x i n g a g e n t s t h a t p r e f e r e n t i a l l y r e t a i n t h e t r i v a l e n t a c t i n i d e s i n t h e aqueous p h a s e . T h i s p r o c e s s , which has the advantage o f b e i n g l e s s c o r r o s i v e than Tramex, has had w i d e s p r e a d a p p l i c a t i o n s i n c e i t s development i n 1964 ( 1 5 , 1 6 ) . A l t h o u g h a v a r i e t y o f e x t r a c t a n t s have been s t u d i e d and t e s t ed f o r t h e i r s u i t a b i l i t y i n a n a l y t i c a l s e p a r a t i o n s o f a c t i n i d e s , p e r h a p s t h e most r e c e n t m i l e s t o n e i n t h e p r o c e s s u s e o f a c t i n i d e extractants i s the a p p l i c a t i o n of the bidentate carbamoylmethylphosphonates ( 1 7 , 1 8 , 1 9 ) . T h e p i o n e e r i n g work o n t h e s e compounds was d o n e 15 y e a r s ago b y S i d d a l l ( 2 0 , 2 1 ) . Their p r i n c i p a l advan tage i s t h e i r a b i l i t y t o e x t r a c t t h e t r i v a l e n t , t e t r a v a l e n t , and h e x a v a l e n t a c t i n i d e s f r o m c o n s i d e r a b l y more c o n c e n t r a t e d n i t r i c a c i d media than other e x t r a c t a n t s . The e x t r a c t i o n c h e m i s t r y o f t h e more i m p o r t a n t r e a g e n t s w i l l be e x a m i n e d , a n d t h e i r c h a r a c t e r i s t i c s c o m p a r e d , i n t h e f o l l o w i n g section. Classes of Coordinative
Extractants
Extractants
A l l neutral, electron-donor extractant ligands, L , bind n e u t r a l metal s a l t s , such as s a l t s o f the t r i v a l e n t a c t i n i d e s , MA3, b y c o m p l e t i n g t h e c o o r d i n a t i o n r e q u i r e m e n t s o f t h e m e t a l , M , to g i v e an adduct ΜΑβ^ηί. T h i s i s true o f e x t r a c t a n t s such as e t h e r s , the a l k y l phosphate e s t e r s , the phosphine o x i d e s , the amine s a l t s , a n d a l l e x t r a c t a n t s t h a t r e q u i r e t r a n s f e r o f a c h a r g e - e q u i v a l e n t amount o f a n i o n t o t h e o r g a n i c p h a s e t o f o r m the e x t r a c t e d s p e c i e s . Ethers. Although ethers hold an important h i s t o r i c a l place i n a c t i n i d e e x t r a c t i o n , they a r e not used e x t e n s i v e l y at p r e s e n t . T h e y a r e w e a k - L e w i s - b a s e c o o r d i n a t i v e e x t r a c t a n t s , whose c h e m i s t r y has been a d e q u a t e l y covered i n e a r l i e r r e v i e w s ( 2 2 ) . Monodentate phosphate compounds. The monodentate phosphate compounds a r e s t r o n g e r L e w i s b a s e s a n d h a v e a h i g h e r c o o r d i n a t i n g a b i l i t y than e t h e r s . Their b a s i c i t y i s i n the order: phosphate < phosphonate < phosphinate < phosphine o x i d e . Typical of t h e i r b e h a v i o r i s t h e e x t r a c t i o n o f a c t i n i d e n i t r a t e s by TBP, which has b e e n r e p o r t e d (23) a s : MA . + 3TBP ± MA - 3 T B P , . 3(aq) +· 3 (org) Q (
E x t r a c t i o n by any t r i a l k y l
phosphate,
or phosphine o x i d e would be s i m i l a r .
.
(1) phosphonate, In general,
phosphinate, compounds
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
74
ACTINIDE
SEPARATIONS
c o n t a i n i n g c a r b o n - t o - p h o s p h o r u s bonds g i v e h i g h e r D s than t h e corresponding esters. F o r example, phosphine o x i d e s , w i t h t h r e e c a r b o n - p h o s p h o r u s b o n d s , g i v e h i g h e r D ' s f o r U02(N03>2, UO2SO4, U 0 C l 2 , Th(N0 )4, P u ( ^ 3 ) 4 than does T B P , w h i c h h a s no c a r b o n phosphorus bonds ( 2 4 ) . The o r d e r o f e x t r a c t i o n o f t r i v a l e n t a c t i n i d e s b y TBP a t 5 M HNO3 i s : Am < Cm < Bk < C f i E s ( 2 5 ) . A comparison o f the e f f e c t o f t h e s t r u c t u r e o f phosphate e s t e r s o n u r a n i u m e x t r a c t i o n f r o m n i t r a t e m e d i a shows t h a t t h e e s t e r s from secondary a l c o h o l s g i v e h i g h e r uranium d i s t r i b u t i o n c o e f f i c i e n t s (Djj's) t h a n those from p r i m a r y a l c o h o l s , p h e n y l e s t e r s e x t r a c t uranium l e s s s t r o n g l y than a l k y l e s t e r s , and b e n z y l e s t e r s are intermediate i n e x t r a c t a n t s t r e n g t h f o r uranium ( 2 4 ) . The u s u a l e f f e c t o f i n c r e a s i n g t h e a c i d c o n c e n t r a t i o n i s r e p o r t e d t o b e a n i n c r e a s e i n t h e D ( d u e t o i n c r e a s e d amounts o f t h e e x t r a c t a b l e MA3 i n t h e a q u e o u s p h a s e ) f o l l o w e d b y a d e c r e a s e i n t h e D (due t o f o r m a t i o n o f t h e e x t r a c t a n t - H N C ^ a d d u c t ) , result i n g i n a maximum e x t r a c t i o n a t a n a c i d c o n c e n t r a t i o n b e t w e e n 2 a n d 6 M . However, one s t u d y h a s n o t e d an i n c r e a s e i n americium e x t r a c t i o n a t n i t r i c a c i d c o n c e n t r a t i o n s f r o m 12 t o 16 M . T h e s e data a r e not c o n s i s t e n t w i t h t h e u s u a l view of americium d i s t r i b u t i o n dependence on n i t r i c a c i d and n i t r a t e c o n c e n t r a t i o n , and t h e authors hypothesize that a ΤΒΡ·ΗΝ0 adduct, which i s a stronger e x t r a c t a n t f o r a m e r i c i u m t h a n TBP a l o n e , i s f o r m e d a b o v e 8 M HNO3 and a n o r g a n i c - p h a s e c o m p l e x o f A m i N C ^ ^ ^ n i T B P ^ m H N C ^ ) i s f o r m e d r a t h e r t h a n A m i N C ^ ^ n T B P (26) . W h i l e o n e may n o t a b s o l u t e l y d i s c o u n t t h i s p o s s i b i l i t y , a d d i t i o n a l f a c t o r s such as the e x t r a c t i o n o f HAm(N03)4 a n d d e v i a t i o n s f r o m i d e a l a c t i v i t i e s i n s u c h concentrated a c i d s o l u t i o n s should d e f i n i t e l y be c o n s i d e r e d . T
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
2
a
3
n
d
M
M
3
The p h o s p h i n e o x i d e most commonly u s e d a s a n e x t r a c t a n t i s t r i o c t y l p h o s p h i n e o x i d e (TOPO). The order o f e x t r a c t i o n o f U(VI) f r o m m i n e r a l a c i d b y TOPO i s : HNO3 > HC1 > HCIO4 ( 2 7 ) . Extensive i n f o r m a t i o n on e x t r a c t i o n w i t h t h i s reagent has been compiled ( 2 8 ) . R e c e n t p a p e r s (29) r e p o r t t h e u s e o f TOPO f o r t h e e x t r a c t i o n of a c t i n i u m from n i t r a t e media. T h e maximum e x t r a c t i o n c o e f f i c i e n t f r o m > 2 . 0 M N a N 0 a t pH 2 w i t h 0 . 0 5 M TOPO i n c y c l o h e x a n e was n o t e d t o b e g r e a t e r t h a n 10^, a n d t h e e x t r a c t e d c o m p l e x was r e p o r t e d a s Ac(N0 )3*4TOPO Q0) . The maximum a c t i n i u m e x t r a c t i o n f r o m c h l o r i d e s o l u t i o n s b y 0 . 1 M T O P O — c y c l o h e x a n e was f o u n d t o b e f r o m 8 M L i C l a t pH 2 ( Ac ^) · e x t r a c t e d compound i n t h i s s y s t e m h a s b e e n r e p o r t e d as L Î 2 A c C l 5 2 T O P O ( 3 0 ) . Reagent dependencies f o r a m e r i c i u m e x t r a c t i o n f r o m s l i g h t l y a c i d i c 1 M L i C l w i t h TOPO i n d i c a t e d t h a t t h e e x t r a c t e d s p e c i e s i s A m C l 3 * T 0 P 0 , w h i l e AmCl3»3TOPO i s i n d i c a t e d when t h e a q u e o u s p h a s e i s 5 M L i C l . T h e number o f e x t r a c t a n t m o l e c u l e s a s s o c i a t e d w i t h t h e Am s p e c i e s was n o t c o n s t a n t over t h e L i C l c o n c e n t r a t i o n range 1 t o 5 M , and n o n i n t e g r a l v a l u e s o f 1 . 2 and 2 . 7 were o b t a i n e d a t 1 M L i C l and 5 M L i C l , respectively. These r e s u l t s suggest a mixture o f o r g a n i c - p h a s e species (31). 3
3
D
=
>1
)
T
n
e
e
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
6.
SHOUN
Adinide
A N D MCDOWELL
Extradants
75
B i d e n t a t e p h o s p h a t e compounds. The organophosphorus b i d e n t a t e e x t r a c t a n t s a r e n e u t r a l s p e c i e s e x t r a c t a n t s t h a t undergo no k e t o e n o l i z a t i o n a n d h a v e no e x c h a n g e a b l e h y d r o g e n s ( a s i s t h e c a s e i n e x t r a c t i o n by the b i d e n t a t e d i k e t o n e s ) . They c o n t a i n e i t h e r two P=0 g r o u p s o r o n e P=0 a n d one C=0 g r o u p . The c a r b a m o y l m e t h y l p h o s p h o n a t e s (CMPs) a n d c a r b a m o y l p h o s p h o n a t e s ( C P s ) a r e e x a m p l e s of t h e l a t t e r , w h i l e t h e t e t r a a l k y l d i p h o s p h o n a t e s and t e t r a a l k y l diphosphinedioxides [or b i s - ( d i s u b s t i t u t e d phosphinyl)-alkanes] are examples o f t h e f o r m e r . I t h a s been n o t e d (from a c i d and w a t e r e x t r a c t i o n data) t h a t t h e p h o s p h o r y l g r o u p s o f t h e d i p h o s p h o n a t e s do n o t a c t i n d e p e n d e n t l y o f each o t h e r (20). Thus e x t r a c t i o n power i s n o t a s i m p l e f u n c t i o n o f p h o s p h o r y l group c o n c e n t r a t i o n . W i t h more t h a n o n e b r i d g i n g m e t h y l e n e between p h o s p h o r y l g r o u p s , e x t r a c t i o n i s s i g n i f i c a n t l y poorer than expected f o r that phosphoryl concentra tion. This suggests the n e c e s s i t y of s p e c i a l s t e r i c requirements such as p o s s i b l y t h e c l a s s i c a l six-membered c h e l a t e r i n g (27,32) . N i t r i c a c i d i s e x t r a c t e d b y b i d e n t a t e compounds a n d , i n most c a s e s , competes w i t h t h e m e t a l e x t r a c t i o n a t h i g h e r a c i d i t i e s (>_8 M) . Comprehensive s t u d i e s o f a c i d e x t r a c t i o n and i t s e f f e c t on m e t a l i o n e x t r a c t i o n h a v e b e e n r e p o r t e d (21). The e x t r a c t i o n o f Cm a n d E s b y d i b u t y l ( d i e t h y l c a r b a m o y l ) p h o s p h o n a t e (DBDECP), w h i c h h a s no b r i d g i n g m e t h y l e n e g r o u p between t h e carbamoyl and p h o s p h o r y l g r o u p s , i s i n t h e o r d e r : HCIO4 > HNO3 > HC1. DBDECP a p p e a r s u n i q u e i n t h a t i t shows t h i r d power r e a g e n t d e p e n d e n c e a n d p r o v i d e s a d i s t r i b u t i o n c o e f f i c i e n t w h i c h i n c r e a s e s r a p i d l y w i t h a c i d c o n c e n t r a t i o n even above 8 M . T h i s s u g g e s t s e i t h e r t h a t t h e r e i s no c o m p e t i t i o n f r o m a c i d compound f o r m a t i o n w i t h t h e e x t r a c t a n t o r t h a t a n a c i d o c o m p l e x o f t h e m e t a l i s e x t r a c t e d a s i n E q . (2) (20,33): M
3
+
+ (3+X)A~ + X H + 3DBDECP -> H M A _ (DBDECP) . χ 3+x 3 +
OJ
0
(2)
The l a t t e r p o s s i b i l i t y i s s u p p o r t e d b y r e f e r e n c e s , s u g g e s t i n g t h e existence of anionic t r i v a l e n t actinide species at acid concentra t i o n s greater than 5 M (34). The o r d e r o f e x t r a c t i o n o f U ( V I ) f r o m m i n e r a l a c i d s b y b i s ( d i - n - h e x y l p h o s p h i n y l ) a l k a n e s i s : HCIO4 > HC1 > HNO3. T h e f a c t t h a t t h i s o r d e r i s t h e r e v e r s e o f t h e o r d e r o b s e r v e d f o r TOPO i s e x p l a i n e d b y t h e d i f f e r e n c e i n t h e a b i l i t y o f t h e m o n o d e n t a t e TOPO and t h e b i d e n t a t e compounds t o s a t u r a t e t h e u r a n i u m c o o r d i n a t i o n sphere. A p p a r e n t l y , TOPO i s u n a b l e t o r e p l a c e a l l t h e w a t e r i n t h e w e a k l y bound ( b u t more o r g a n o p h i l i c ) u r a n i u m p e r c h l o r a t e c o m p l e x , w h e r e a s t h e b i d e n t a t e compound h a s t h i s c a p a b i l i t y ( 2 7 ) . Numerous d e s c r i p t i v e s t u d i e s o f t h e e x t r a c t i o n b e h a v i o r o f t h e s e compounds f o r u r a n i u m a n d t h o r i u m s y s t e m s c a n b e f o u n d i n t h e l i t e r a t u r e (27,35-39). Work w i t h t h e o r g a n o p h o s p h o r u s b i d e n t a t e v i n y l e n e d i p h o s p h i n e , i n which t h e p h o s p h o r y l s a r e b r i d g e d !lP(0)CH = H C ( 0 ) P ' , illustrates the importance o f s t e r i c c o n s i d e r a t i o n s i n t h e e x t r a c t i o n o f u r a n y l
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
76
ACTINIDE
nitrate. ent.
Extraction
Extraction
was
greater
has
about
the
the
by c i s
by t h e than
same
and t r a n s
i s o m e r s was m a r k e d l y
cis-tetratolylvinylene
that
shown b y t h e
extraction
trans
power as
The
of magnitude g r e a t e r
than that
organophosphorus b i d e n t a t e
phosphate
(OETAPP),
noted
the
The
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
isomer;
for
a compound o f
extraction
maximum Djj r e p o r t e d
HC1.
The l i k e l y
U 0
2U
+
q )
Alkyl
2
N
0
;
a
(
q
is
+
)
(40).
the
type R 2 P ( 0 ) N H ( 0 ) P R ,
about
105
from 4 to
expression
0 E T A P P
t
(org)
ammonium c o m p o u n d s .
2
U 0
( N
°3Y
is
secondary,
are
commonly u s e d .
coordinators
since
may a l s o
equivalent
w r i t t e n b a s e d on e i t h e r
for
λ
extraction
negatively
by exchange
charged
salt
neutral-metal
under a p p r o p r i a t e Salts
of
the
sulfate
systems
LiCl
of
tertiary recovery
and i n t h e (11,12).
agents,
almost
more r a p i d l y t h a n
can
of
be
the
(4)
n
N
amine s a l t (n i s
neutral
the
for
a
charge
of
a l k y l ammonium
.
(5) equilibrium
shown t h a t
both can
operate
found wide a p p l i c a t i o n i n
They a r e
used e x t e n s i v e l y
of uranium from s u l f a t e
separation ions
amines,
very
is
is
separated
salts
extracted
power o f
example, the L 1 N O 3
the liquors
effectively (43).
from
The t r i v a l e n t from H N O 3 often
t h i r d - p o w e r dependence
For
system
the D
C
m
i n the
increase expected
increases
concentration
Among
concen
s l i g h t l y by secondary
(44).
inextractable
in
leach
o f u r a n i u m and t h o r i u m i n
in a nitrate
Am(III)
but n i t r a t e
the
of M A 3 .
seventh
have
by p r i m a r y amines
are
the
the
Plutonium(IV)
other
by t e r t i a r y
salting-out
to
anion of
amines have
actinides.
um e l e m e n t s
extraction
expressions
t h e m e t a l MAjJjJ^
(42)
transplutonium actinides, negligibly
thought
neutral-species
be d i s t i n g u i s h e d by
studies
f r o m u r a n i u m a n d most trated
amines,
conditions.
hydrometallurgical of uranium ore
are
process
species:
cannot
but k i n e t i c
extraction
often
+ MA , * (R NH) MA . , . n(aq) « - 3 m m+n(org)
two m e c h a n i s m s
studies,
the
assuming a d d i t i o n of
mR NHA. . 3 (org) These
of
)
is, f
complex o f
or,
the
That
N
the m e t a l ) ; to
equilibrium
3
R 3 N , and R^
R2NH,
b e c o n s i d e r e d as
mechanism.
and
(
+ MA~™ + (R NH) MA + TTIAT m+n(aq) • N a > N H j and B e > Mg > Ca . T r i a l k y l a m i n e s f r o m Cg t o C20 h a v e b e e n s t u d i e d f o r t h e i r p o t e n t i a l s u i t a b i l i t y i n t h e e x t r a c t i o n o f Am, Cm, and C f f r o m L 1 N O 3 and NaNO^. With the l o n g e r - c h a i n amines, t h e r e i s a lower dependence o f o n e x t r a c t a n t c o n c e n t r a t i o n and s a l t i n g - o u t a g e n t concentration. T h i s s u g g e s t s t h a t t h e l a r g e r , more s t e r i c a l l y h i n d e r e d e x t r a c t a n t m o l e c u l e s p e r m i t a s m a l l e r number o f l i g a n d s t o surround the m e t a l , thereby l e a v i n g f r e e c o o r d i n a t i o n s i t e s i n t h e complex f i l l e d w i t h w a t e r . A s a n example o f t h i s s e l e c t i v i t y , t r i o c t y l amine p r o v i d e s a s a t i s f a c t o r y Am-Cm s e p a r a t i o n b u t a p o o r A m - C f s e p a r a t i o n ; w i t h l o n g e r - c h a i n a m i n e s , t h e Am-Cm s e p a r a t i o n d e t e r i o r a t e s , w h i l e t h e A m - C f and C m - C f s e p a r a t i o n s i m p r o v e s u b s t a n t i a l l y (45). S e v e r a l p u b l i c a t i o n s on a c t i n i d e s s e p a r a t i o n s by t e r t i a r y a m i n e s a r e a v a i l a b l e s t u d y i n g P u ( V I ) a n d P u ( I I I ) e x t r a c t i o n (46); Np(V), N p ( V I ) ; P u ( V I ) , U(VI) (47); and Am, Cm (48,49). I n c e r t a i n a p p l i c a t i o n s , t h e q u a t e r n a r y ammonium s a l t s h a v e advantages o v e r t e r t i a r y amines f o r a c t i n i d e e x t r a c t i o n s . Quantit a t i v e e x t r a c t i o n of the t r a n s p l u t o n i u m elements from n i t r a t e m e d i a b y q u a t e r n a r y ammonium s a l t s c a n be a c h i e v e d w i t h a l o w e r aqueous-phase n i t r a t e c o n c e n t r a t i o n than i s r e q u i r e d f o r t e r t i a r y a m i n e s ; t h u s , a l u m i n u m n i t r a t e may b e u s e d i n s t e a d o f l i t h i u m nitrate. The s e p a r a t i o n f a c t o r b e t w e e n Am and Cm c a n b e as h i g h as t h r e e i n a q u a t e r n a r y ammonium n i t r a t e s y s t e m ( 5 0 ) . The e f f e c t o f t h e l e n g t h o f t h e a l k y l c h a i n on Cm, Am, B k , C f , and E s e x t r a c t i o n by a l k y l d i o c t y l a m m o n i u m n i t r a t e s s u g g e s t s t h a t s t e r i c factors s u b s t a n t i a l l y i n f l u e n c e the e x t r a c t i o n s e l e c t i v i t y (51). A c o m p a r i s o n of the e x t r a c t i o n of t e t r a v a l e n t and h e x a v a l e n t a c t i n i d e s b y t e t r a h e p t y l ammonium n i t r a t e shows t h a t tetravalent i o n s a r e more e a s i l y e x t r a c t e d t h a n h e x a v a l e n t i o n s : e.g., Pu(IV) > Np(IV) > Th(IV) > Np(VI) > Pu(VI) > U ( V I ) . Symmetrical q u a t e r n a r i e s u s u a l l y show h i g h e r e x t r a c t i o n power t h a n u n s y m m e t r i c a l ones ( 5 2 ) . A n e x c e l l e n t r e v i e w o f amine e x t r a c t i o n may b e found i n (42). C
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
Actinide
A N D MCDOWELL
m
+
+
2 +
2 +
2 +
Sulfoxides. S u l f o x i d e s (R S0) are n e u t r a l e l e c t r o n - d o n o r type m o l e c u l e s s i m i l a r to the phosphine o x i d e s . A significant v o l u m e o f w o r k h a s shown t h a t l o n g - c h a i n d i a l k y l s u l f o x i d e s may have c o n s i d e r a b l e p o t e n t i a l u t i l i t y i n a c t i n i d e s e p a r a t i o n s . E x t r a c t i o n b e h a v i o r from n i t r a t e systems i s s i m i l a r to t h a t of TBP f o r some s u l f o x i d e s ; i n a d d i t i o n , t h e y o f f e r t h e p o s s i b i l i t y of producing l e s s troublesome degradation products than TBP. Howe v e r , t h e s e compounds a r e n o t p r e s e n t l y a v a i l a b l e i n c o m m e r c i a l q u a n t i t i e s , and we l a c k t h e e x p e r i e n c e w i t h them t h a t h a s b e e n amassed w i t h T B P . D i - n - p e n t y l s u l f o x i d e (DPSO) i n b e n z e n e p r e f e r e n t i a l l y e x t r a c t s u r a n i u m o v e r t h o r i u m f r o m 5 M HC1 c o n t a i n i n g a n e u t r a l s a l t i n g 2
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
78
ACTINIDE
SEPARATIONS
out agent, y i e l d i n g a s e p a r a t i o n f a c t o r o f 3690. The e x t r a c t e d s p e c i e s f o r t h o r i u m i s r e p o r t e d t o be ThCl4*2DPSO»HCl. Homologs d i o c t y l s u l f o x i d e (DOSO) a n d d i p h e n y l s u l f o x i d e (DS0) y i e l d c o m p l e x e s w i t h t h e f o r m u l a s T h C l 4 2 D O S O a n d ThCl4*3DSO, r e s p e c t i v e l y . The e x t r a c t i o n o f a m o n o a c i d i c T h C ^ H C l s p e c i e s b y DPSO a n d a n e u t r a l s p e c i e s b y DOSO i s i n d i c a t e d ( 5 3 ) . e
Two p a p e r s r e p o r t t h e u r a n y l s p e c i e s e x t r a c t e d b y DOSO t o b e U0 (N0 ) 2DOSO (54,55). The o r d e r of s t r e n g t h o f e x t r a c t i o n o f uranyl nitrate i s : diheptyl > decyl benzyl > diphenyl: the e x t r a c t i o n c o e f f i c i e n t from three d i l u e n t s i s i n the order: benzene > c a r b o n t e t r a c h l o r i d e > c h l o r o f o r m . In s t u d i e s of the e x t r a c t i o n o f P a ( V ) a n d U ( V I ) f r o m HC1 m e d i a b y DPSO, DS0, a n d DBSO, t h e o r d e r o f e x t r a c t a n t s t r e n g t h was f o u n d t o b e : DPSO > DBSO > DS0. T h i s s u g g e s t s t h a t t h e e x t r a c t e d s p e c i e s were P a O C l 3 3 R S O o r P a ( O H ) C l 3 3 R S O (56) . D i p e n t y l s u l f o x i d e was i n v e s t i g a t e d a s a n e x t r a c t a n t t o s e p a r a t e the a c t i n i d e s T h ( I V ) , U ( V I ) , and Pa(V) f r o m t h e t r i v a l e n t l a n t h a n i d e s L a , C e , Pm, E u , a n d T b . A c t i n i d e e x t r a c t i o n i s a t a maximum a t 7 M H C 1 , a n d t h e r e i s l i t t l e o r no lanthanide e x t r a c t i o n at t h i s a c i d concentration (57).
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
2
3
2
#
e
#
2
2
2
C a t i o n Exchange
Extractants
A l k y l phosphoric a c i d s . Perhaps the l a r g e s t s i n g l e group of extractants f o r a c t i n i d e s are the a l k y l p h o s p h o r i c acids of three main t y p e s : d i a l k y l p h o s p h o r i c a c i d s , d i a l k y l p h o s p h o n i c a c i d s , and d i a l k y l p h o s p h i n i c a c i d s ( R 0 ) P ( 0 ) 0 H , ( R 0 ) R P ( 0 ) 0 H , and R P ( 0 ) 0 H , respectively. M o n o a l k y l ( d i a c i d i c ) r e p r e s e n t a t i v e s of each type e x i s t , b u t t h e s e compounds a r e r a r e l y u s e d b e c a u s e o f t h e i r w a t e r s o l u b i l i t y and d i f f i c u l t y i n s t r i p p i n g . A l k y l phosphoric acids u s u a l l y form dimers o r h i g h e r aggregates i n nonpolar s o l v e n t s such as benzene o r n-hexane ( 5 8 ) . The e x t r a c t i o n o f a t r i v a l e n t a c t i n i d e b y a d i a l k y l p h o s p h o r i c a c i d s u c h a s HDEHP i n a n o n p o l a r d i l u e n t may b e d e s c r i b e d b y t h e r e a c t i o n T
2
M^ . (aq) +
In a p o l a r a monomer, M^ . (aq) +
2
+ n(HA) , •> Μ Α · ( η - 3 ) Η Α , . + 3H* . . 2(org) 3 (org) (aq) 0 /
0
(6)
s o l v e n t i n which the d i a l k y l p h o s p h o r i c a c i d i s p r i m a r i l y t r i v a l e n t a c t i n i d e e x t r a c t i o n has been d e s c r i b e d as ( 5 9 ) : + 3HA, ν -*· M A + 3H^ . ( o r g ) «3 (org) (aq) 0 f
N
N
(7)
The d i a l k y l p h o s p h o r i c a c i d m o s t commonly u s e d and s t u d i e d f o r t r i v a l e n t a c t i n i d e e x t r a c t i o n i s p r o b a b l y HDEHP. Even though t h i s compound i s n o t a s s t r o n g a n e x t r a c t a n t a s some o t h e r s t r a i g h t c h a i n a n a l o g s , i t o f f e r s advantages s u c h as l o w a q u e o u s - p h a s e s o l u b i l i t y , l e s s t e n d e n c y t o t h i r d - p h a s e f o r m a t i o n , and r e a d y a v a i l ability. I n americium and c u r i u m e x t r a c t i o n from c h l o r i d e s o l u t i o n s b y HDEHP i n η - h e p t a n e , d e p e n d e n c e o f t h e e x t r a c t i o n c o e f f i c i e n t on h y d r o g e n i o n c o n c e n t r a t i o n a n d HDEHP c o n c e n t r a t i o n i n d i c a t e s a n
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
6.
SHOUN
Actinide
A N D MCDOWELL
79
Extractants
e x t r a c t e d s p e c i e s s t o i c h i o m e t r y o f ΜΑ(ΗΑ2)2· benzene, the i n d i cated s p e c i e s i s M(HA2)3« ^ a m p l of the e f f e c t of s t e r i c h i n d r a n c e may b e s e e n f o r t h e e x t r a c t i o n o f Am^+ a n d C m ^ b y t h e i s o m e r s b i s - n - o c t y l p h o s p h o r i c a c i d (HDOP), b i s - 2 - e t h y l h e x y l p h o s p h o r i c a c i d (HDEHP), a n d b i s - 2 , 2 - d i m e t h y l h e x y l p h o s p h o r i c a c i d (HDNOP); t h e o r d e r o f d e c r e a s i n g 1 ^ f o r a m e r i c i u m i s HDOP > HDEHP > HDNOP (60). D i i s o d e c y l p h o s p h o r i c a c i d (HDIDP) i s r e p o r t e d t o b e a s t r o n g e r e x t r a c t a n t t h a n HDEHP f o r t h e t r i v a l e n t a c t i n i d e s ( 6 1 ) . HDEHP i s a l s o u s e d a s a t o o l i n t h e s t u d y o f a q u e o u s c o m p l e x a tion. One o f t h e more u n u s u a l o f s u c h s t u d i e s i s t h e e x a m i n a t i o n of t h e complex f o r m a t i o n o f n o b e l i u m w i t h c i t r a t e , o x a l a t e , and a c e t a t e i o n s and comparison w i t h other d i v a l e n t i o n s . Nobelium was f o u n d t o r e s e m b l e C a a n d S r , b e i n g s l i g h t l y more l i k e S r ( 6 2 ) . S i n c e HDEHP i s b o t h a c a t i o n e x c h a n g e r a n d a c o o r d i n a t o r i n most e x t r a c t i o n s i t u a t i o n s , c o o r d i n a t e d w a t e r must b e removed f r o m the metal i o n i n the e x t r a c t i o n . Because t h i s sometimes l e a d s t o a s l o w r e a c t i o n s t e p , t h e k i n e t i c s o f HDEHP e x t r a c t i o n i s i m p o r t a n t . The k i n e t i c s o f t h e T a l s p e a k p r o c e s s ( 1 4 , 1 5 ) h a s b e e n i n v e s t i g a t e d ( 6 3 ) ; t h e k i n e t i c s o f A m ( I I I ) a n d T h ( I V ) e x t r a c t i o n b y HDEHP i n a n u n s t i r r e d system has a l s o been s t u d i e d ( 6 4 ) . D i o c t y l p h e n y l p h o s p h o r i c a c i d (HDOPP) h a s b e e n f o u n d t o b e a more p o w e r f u l e x t r a c t a n t f r o m m i n e r a l a c i d s t h a n HDEHP ( 6 5 , 6 6 ) . The d i s t r i b u t i o n c o e f f i c i e n t o f U ( V I ) f r o m s u l f u r i c a c i d s o l u t i o n s i s t h r e e t o f i v e t i m e s h i g h e r w i t h HDOPP t h a n w i t h HDEHP u n d e r t h e same c o n d i t i o n s . E x t r a c t i o n o f U ( V I ) f r o m m i n e r a l a c i d s b y HDOPP i s i n the order: HCIO4 3 > 2S04 (67). A c i d i t y and r e a g e n t d e p e n d e n c i e s a t l o w r e a g e n t l o a d i n g s and m e t a l - t o - r e a g e n t r a t i o s under f u l l y loaded c o n d i t i o n s i n d i c a t e the f o r m a t i o n of compounds s u c h a s UO2A4H2 a n d ( U 0 2 ) A 2 2 f ° respective c o n d i t i o n s , a s h a s b e e n t h e c a s e f o r HDEHP i n e a r l i e r work ( 6 8 ) . The a d d i t i o n o f a n e t h e r l i n k a g e i n t h e a l k y l c h a i n s o f d i a l k y l p h o s p h o r i c a c i d s has been found to i n c r e a s e i t s e x t r a c t i v e power f o r t r i v a l e n t a c t i n i d e s , r e s u l t i n g i n a n e x t r a c t a n t t h a t i s more e f f e c t i v e f r o m a c i d s o l u t i o n s t h a n i s H D E H P (69) . Bis(hexoxye t h y l ) p h o s p h o r i c a c i d ( H D H Q E P ) i s a compound o f t h i s t y p e t h a t h a s been s t u d i e d e x t e n s i v e l y ( 7 0 , 7 1 ) . T h e e t h e r l i n k a g e may c o n t r i bute to the c o o r d i n a t i o n o f the metal i o n , r e s u l t i n g i n the forma t i o n o f a seven-membered r i n g . In the e x t r a c t i o n of t r i v a l e n t a c t i n i d e s , the d i a l k y l p h o s p h o n i c a c i d s b e h a v e i n a manner s i m i l a r t o t h a t o b s e r v e d f o r t h e d i a l k y l phosphoric a c i d s . H o w e v e r , i n some s y s t e m s , t h e y o f f e r a g r e a t e r i n t e r g r o u p s e p a r a t i o n between l a n t h a n i d e s and a c t i n i d e s . The s e p a r a t i o n o f C f a n d Cm f r o m n i t r i c a c i d s o l u t i o n s h a s b e e n s t u d i e d u s i n g 2 - e t h y l h e x y l p h e n y l p h o s p h o n i c a c i d [ΗΕΗ(ΦΡ)] and 1 - m e t h y l h e p t y l p h e n y l p h o s p h o n i c a c i d [HMeH(P)]. ORNL h a s d e v e l o p e d a process f o r i n t e r g r o u p a c t i n i d e s e p a r a t i o n , c a l l e d Hepex, based on t h e u s e o f ΗΕΗ(ΦΡ) ( 7 2 , 7 3 ) . One s t u d y c o n c l u d e s t h a t t h e o r g a n i c - p h a s e s p e c i e s r e s u l t i n g f r o m A m ( I I I ) a n d C m ( I I I ) e x t r a c t i o n b y ΗΕΗ(ΦΡ) a r e a 3 : 2 m i x t u r e o f ΜΑο·ΗΑ a n d Μ Α · 2 Η Α , w h i l e C f i s e x t r a c t e d e x c l u s i v e l y a s MA3·ΗΑ ( 7 4 ) . I
n
e x
n
e
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
+
>
H N 0
>
H
C
1
H
n
n +
H
r
t
n
e
t
w
o
3
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
80
ACTINIDE
SEPARATIONS
Sulfonic acids. S u l f o n i c a c i d s a r e v e r y s t r o n g c a t i o n exchange e x t r a c t a n t s f o r a wide v a r i e t y of metal i o n s . However, t h e i r use i n p r o c e s s a p p l i c a t i o n s as l i q u i d e x t r a c t a n t s ( a l t h o u g h e x t e n s i v e l y u s e d as r e s i n o u s c a t i o n e x c h a n g e r s ) h a s b e e n q u i t e l i m i t e d b e c a u s e of the d i f f i c u l t y o f o b t a i n i n g r e a g e n t s t h a t have s u f f i c i e n t l y h i g h o r g a n i c s o l u b i l i t y and s u f f i c i e n t l y l o w d i s t r i b u t i o n t o t h e a q u e o u s p h a s e when i n t h e s a l t ( p a r t i c u l a r l y t h e a l k a l i s a l t ) f o r m . T h e u s a b l e compounds t h a t a r e p r e s e n t l y a v a i l a b l e a r e d i n o n y l n a p h t h a l e n e s u l f o n i c a c i d (HDNNS) and d i d o d e c y l n a p h t h a l e n e s u l f o n i c a c i d (HDDNS). The f i r s t o f t h e s e has been used e x t e n s i v e l y i n s t u d y i n g aqueous complexes o f a c t i n i d e s ( 7 5 , 7 6 ) . Stability c o n s t a n t s f o r t h e s u l f a t e and f l u o r i d e c o m p l e x i n g o f U ( V I ) , N p ( V I ) , and P u ( V I ) w e r e f o u n d t o f o l l o w t h e o r d e r : U(VI) > Np(VI) > Pu(VI) (77). Diketones. B e t a - d i k e t o n e s s u c h as a c e t y l a c e t o n e , benzoyla c e t o n e , and i s o p r o p y l t r o p o l o n e a r e w e l l known f o r t h e i r a p p l i c a t i o n s i n a n a l y t i c a l e x t r a c t i o n of a c t i n i d e s . T h e s e compounds a r e weak a c i d s due t o t a u t o m e r i z a t i o n ; t h u s t h e y c a n a c t a s c a t i o n exchange e x t r a c t a n t s . T r i v a l e n t a c t i n i d e [M(III)] e x t r a c t i o n by t h e r e a g e n t (HA) a t l o w a q u e o u s a c i d c o n c e n t r a t i o n w h e r e t h e c o m pound b e h a v e s b o t h a s c a t i o n e x c h a n g e r a n d c o o r d i n a t o r p r o b a b l y f o l l o w s the r e a c t i o n Μ* + (aq) +
λ
(i+n)HA, •> MA. (HA) , + iH* . . ( o r g ) «i 'n(org) (aq) x
v
N
(8)
I n h i g h - a c i d s y s t e m s w h e r e t h e compound c a n b e o n l y a n e u t r a l b i d e n t a t e c o o r d i n a t o r , the r e a c t i o n would be expected to b e : MX
±
+ nHA J Μ Χ · η Η Α .
(9)
±
S i n c e f l u o r i n a t e d β - d i k e t o n e s a r e more a c i d i c t h a n n o n f l u o r i n a t e d compounds, t h e y h a v e u s e f u l e x t r a c t i o n c o e f f i c i e n t s f r o m more acidic solutions (78). T h e e x t r a c t i o n o f P a ( I V ) b y b e n z o y l a c e t o n e (HBA) f r o m p e r c h l o r i c a c i d and s o d i u m p e r c h l o r a t e was i n v e s t i g a t e d i n a r e c e n t study of the e q u i l i b r i a i n d i k e t o n e e x t r a c t i o n . The i n d i c a t e d r e a c t i o n i s r e p o r t e d t o be t h e same a s t h a t g i v e n i n E q . (8), where M?- = P a 0 ^ " o r P a ( 0 H ) | (79) . D i k e t o n e s have a l s o been used i n the s t u d y of aqueous c o m p l e x a t i o n . Oxalate (80), s u l f a t e , and f l u o r i d e c o m p l e x i n g o f N p ( I V ) , P u ( I V ) and T h ( I V ) have b e e n s t u d i e d b y t h e n o y l t r i f l u o r o a c e t o n e (TTA) e x t r a c t i o n . The 1 ^ i s a l w a y s h i g h e r when TTA i s d i s s o l v e d i n b e n z e n e t h a n when i t i s d i s s o l v e d i n n-hexane (81), which i s c o n t r a r y to the u s u a l o b s e r v a t i o n of higher D's i n a l i p h a t i c d i l u e n t s . +
Synergistic mixtures. A s o l v e n t e x t r a c t i o n system i s s a i d t o b e s y n e r g i s t i c when t h e d i s t r i b u t i o n c o e f f i c i e n t o b t a i n e d f r c m a m i x t u r e o f e x t r a c t a n t s i s g r e a t e r t h a n t h e sum o f d i s t r i b u t i o n c o e f f i c i e n t s of each e x t r a c t a n t a l o n e . Such systems a r e u s u a l l y
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
6.
SHOUN
A N D MCDOWELL
Actiniae Extradants
81
m i x t u r e s o f c a t i o n exchange e x t r a c t a n t s and c o o r d i n a t i v e e x t r a c t a n t s , and t h e s y n e r g i s t i c e f f e c t i s t h o u g h t to o p e r a t e by a n enhancement o f t h e e a s e w i t h w h i c h t h e c o o r d i n a t i o n s p h e r e o f t h e m e t a l can be s a t i s f i e d . Two methods o f a c c o m p l i s h i n g t h i s h a v e been proposed f o r t r i v a l e n t a c t i n i d e s ( 7 8 ) . In the f i r s t , the s y n e r g i s t , S, r e p l a c e s c o o r d i n a t e d w a t e r on an e x t r a c t e d m e t a l c o m p l e x , t h u s m a k i n g t h e r e s u l t i n g c o m p l e x more o r g a n o p h i l i c . In the s e c o n d , t h e o r i g i n a l e x t r a c t e d complex i s s i m p l y c o o r d i n a t i v e l y u n s a t u r a t e d a n d t h e s y n e r g i s t adds t o t h e c o m p l e x , t h e r e b y e n h a n c ing i t s s t a b i l i t y . T h e r e a r e a number o f p r a c t i c a l s y n e r g i s t i c s y s t e m s t h a t make use o f organophosphorus compounds. A c l a s s i c e x a m p l e i s t h e com b i n a t i o n o f HDEHP a n d TOPO. T h e TOPO i s t h o u g h t t o r e p l a c e w a t e r o r HDEHP i n t h e c o o r d i n a t i o n s p h e r e o f t h e m e t a l . Some e a r l y w o r k i n t h i s area i n c l u d e d a study of the e x t r a c t i o n of uranium i n such systems ( 8 2 ) . C o m m e r c i a l p r o c e s s e s now e x i s t f o r t h e r e c o v e r y o f uranium from wet-process phosphoric a c i d u t i l i z i n g s y n e r g i s t i c systems ( 8 3 , 8 4 ) . D e s c r i p t i v e s t u d i e s of such systems have a l s o b e e n made ( 8 5 , 8 6 ) . E x a m p l e s o f TTA s y n e r g i s m w i t h A l i q u a t 3 3 6 - S c h l o r i d e show a s t r o n g s y n e r g i s t i c e f f e c t f o r Am, Cm, a n d C f . T h e e x t r a c t e d s p e c i e s i s r e p r e s e n t e d as an o r g a n i c - p h a s e i o n p a i r [ M ( T T A ) 3 C l ] " A , w h e r e A i s t h e q u a t e r n a r y ammonium i o n ( 8 7 ) . F o r TTA-TOPO e x t r a c t i o n o f Cm, t h e e x t r a c t e d s p e c i e s i s r e p o r t e d as Cm(TTA)2 X · ( T O P O ) , w h e r e X i s NO3 o r H S 0 g (88) . S y n e r g i s m was f i r s t r e p o r t e d i n t h e o p e n l i t e r a t u r e (TTA + TBP) i n 1954 ( 8 9 ) , a n d t h e i n v e s t i g a t i o n o f a d d i t i o n a l s y n e r g i s t i c s y s t e m s was d e s c r i b e d soon t h e r e a f t e r (90,82). S y n e r g i s t i c systems have a l s o been r e p o r t e d i n which one o f the a d d u c t s i s i n t h e aqueous p h a s e . T h e c o m b i n a t i o n o f TOPO ( i n CCI4) a n d b e n z o i c a c i d ( i n a q u e o u s a n d o r g a n i c ) was shown t o e x t r a c t uranium w i t h a s y n e r g i s t i c e f f e c t . The o r g a n i c - p h a s e adduct was r e p o r t e d t o b e I K ^ i C l O ^ « 0 6 ^ 0 0 0 · 2 T 0 P 0 . A n optimum b e n z o i c a c i d / T 0 P 0 r a t i o e x i s t s , a b o v e w h i c h compound f o r m a t i o n b e t w e e n T0P0 a n d b e n z o i c a c i d d e c r e a s e s t h e s y n e r g i s t i c e f f e c t (91). I n r e c e n t y e a r s , t h e p y r a z o l o n e s h a v e b e e n shown t o b e e x c e l l e n t e x t r a c t a n t s i n s y n e r g i s t i c c o m b i n a t i o n w i t h TBP a n d T 0 P 0 . The e x t r a c t i o n o f b o t h P u ( I V ) (92) a n d Am (93) b y l - p h e n y l - 3 m e t h y l - 4 - b e n z o y l - 5 - p y r a z o l o n e (ΦΜΒΡ) w i t h TBP shows s i g n i f i c a n t synergistic effects. T h r e e p y r a z o l o n e s i n c o m b i n a t i o n w i t h T0P0 and TBP a r e compared f o r t h e e x t r a c t i o n o f U ( V I ) i n ( 9 4 ) . Two pyrazolones e x h i b i t i n g improved s o l u b i l i t y characteristics, l - p h e n y l - 3 - m e t h y l - 4 - d e c a n o y l - 5 - p y r a z o l o n e (ΦΜ0Ρ) a n d l - p h e n y l - 3 m e t h y l - 4 - t e r t - b u t y l b e n z o y l - 5 - p y r a z o l o n e (ΦΜΒΒΡ), h a v e b e e n s y n t h e s i z e d and t e s t e d i n s y n e r g i s t i c c o m b i n a t i o n w i t h T0P0. The r e s u l t s show t h a t ΦΜ0Ρ i s s i g n i f i c a n t l y more s o l u b l e i n n - h e x a n e a n d t h u s a l l o w s h i g h e r e x t r a c t a n t c o n c e n t r a t i o n s t o be p r e p a r e d . The r e a g e n t d e p e n d e n c e i s 3 . 2 power t o ΦΜ0Ρ a n d 5 power f o r ΦΜΒΒΡ w i t h 2 : 1 p y r a z o l o n e : T 0 P 0 s o l u t i o n s i n DEB f o r a m e r i c i u m e x t r a c t i o n f r o m g l y c o l i c acid or n i t r i c a c i d (95). e
+
2
2
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
+
82
ACTINIDE
SEPARATIONS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
Future A c t i n i d e Extractants I n c o n s i d e r i n g t h e p o s s i b i l i t i e s f o r new and b e t t e r a c t i n i d e e x t r a c t a n t s , one must a s k t h e q u e s t i o n , " I n what way i s t h e e x t r a c t a n t t o b e made b e t t e r ? " T h e answer w i l l v a r y , o f c o u r s e , d e p e n d i n g on the p a r t i c u l a r need o r a p p l i c a t i o n . For example, h y d r o m e t a l l u r g i s t s may want a r e a g e n t t h a t i s more s e l e c t i v e f o r u r a nium o v e r i r o n i n s u l f a t e s y s t e m s . N u c l e a r f u e l r e p r o c e s s i n g may require high radiation s t a b i l i t y . N u c l e a r w a s t e management w o u l d need a r e a g e n t which would e x t r a c t a c t i n i d e s f r o m h i g h l y a c i d n i t r a t e systems, p o s s i b l y h a v i n g the a b i l i t y to r e j e c t t r i v a l e n t lanthanides. How a r e t h e s e v a r i o u s r e q u i r e m e n t s t o b e met? S e l e c t i v i t y a p p e a r s t o be b e s t i n t h o s e systems w h i c h t a k e advantage of d i f f e r e n c e s i n c o o r d i n a t i v e requirements of the m e t a l i o n ( e . g . , i n the e x t r a c t i o n by alkylammonium s a l t s ) . The c o o r d i n a t i v e n e u t r a l s p e c i e s e x t r a c t a n t s a r e t h e n e x t most s e l e c tive. L e a s t s e l e c t i v e a r e the c a t i o n exchange e x t r a c t a n t s ; h o w e v e r , t h o s e t h a t o f f e r c o o r d i n a t i v e p o s s i b i l i t i e s a r e more s e l e c t i v e t h a n t h o s e t h a t do n o t . Bidentate extractants offer enhanced e x t r a c t i o n s t r e n g t h because o f t h e i r a b i l i t y to f o r m chelate-type rings. No c l a s s o f e x t r a c t a n t s i s known t o h a v e c l e a r l y superior r a d i a t i o n s t a b i l i t y , although aromatic molecules a r e g e n e r a l l y t h o u g h t t o b e l e s s s u s c e p t i b l e t o r a d i a t i o n damage. R e a g e n t s t h a t a r e b o t h c a t i o n e x c h a n g e r s and s t r o n g a c i d s , s u c h as the s u l f o n i c a c i d s , s h o u l d be s u p e r i o r e x t r a c t a n t s from h i g h l y acid solutions. U n f o r t u n a t e l y , no member o f t h i s s u l f o n i c a c i d c l a s s t h a t i s s u f f i c i e n t l y o r g a n o p h i l i c h a s b e e n made a v a i l a b l e . Added t o the p r i m a r y e f f e c t o f t h e f u n c t i o n a l group a r e the e f f e c t s o f t h e s i z e , p l a c e m e n t , and b r a n c h i n g o f the o r g a n i c p o r t i o n of the m o l e c u l e . S u f f i c i e n t o r g a n i c " w e i g h t " must be a d d e d t o t h e f u n c t i o n a l g r o u p ( s ) so t h a t t h e e x t r a c t a n t m o l e c u l e , a n d w h a t e v e r s a l t s and a d d u c t s i t f o r m s i n t h e e x t r a c t i o n process, are s o l u b l e i n a reasonably simple h i g h - f l a s h - p o i n t organic diluent. A l s o , t h e r e a g e n t as w e l l a s i t s s a l t s and a d d u c t s must have a v e r y low d i s t r i b u t i o n t o the aqeuous phases to be u s e d . A r o u g h a p p r o x i m a t i o n i s t h a t a m o l e c u l a r w e i g h t o f a b o u t 300 i s r e q u i r e d , but the e f f e c t of a g i v e n organic l o a d i n g i s h i g h l y dependent on i t s f o r m . S t r a i g h t - c h a i n a l i p h a t i c s t e n d t o make m o s t compounds t o o i n s o l u b l e i n t h e o r g a n i c p h a s e b e f o r e t h e i r d i s t r i b u t i o n t o t h e a q u e o u s p h a s e becomes l o w e n o u g h ; t h u s a r o m a t i c , and e s p e c i a l l y b r a n c e d a l i p h a t i c , r a d i c a l s a r e much b e t t e r g r o u p s t o add t o an e x t r a c t a n t m o l e c u l e . The a d d i t i o n o f b r a n c h e d r a d i c a l s , however, l i m i t s the a b i l i t y of the f u n c t i o n a l group to a p p r o a c h t h e m e t a l i o n a n d t h e number o f e x t r a c t a n t m o l e c u l e s t h a t can be grouped around t h e i o n . For t h i s reason, i t i s often d e s i r a b l e t h a t t h e b r a n c h i n g b e somewhat removed f r o m t h e f u n c t i o n a l group. The s e l e c t i v i t y o f e x t r a c t a n t s may be a l t e r e d b y t h e t y p e o f o r g a n i c g r o u p s s u b s t i t u t e d on t h e f u n c t i o n a l g r o u p , w i t h t h e more s t e r i c a l l y h i n d e r e d ( h i g h l y branched) e x t r a c t a n t s t e n d i n g to favor larger ions or ions having strong coordinative bonding.
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
6.
SHOUN
A N D MCDOWELL
Actinide
Extractants
83
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
T h e q u e s t i o n t h e n a r i s e s , " I s i t p o s s i b l e t o t a i l o r new, more p o w e r f u l , and more s e l e c t i v e e x t r a c t a n t s f o r t h e a c t i n i d e e l e m e n t ? " T h e answer must c e r t a i n l y b e y e s , A w e a l t h o f i n f o r m a t i o n now e x i s t s as a b a s i s f o r f u t u r e r e s e a r c h and d e v e l o p m e n t i n new e x t r a c t i o n s y s t e m s , and t h e p o s s i b i l i t i e s h a v e h a r d l y b e e n t o u c h e d . It d o e s a p p e a r , h o w e v e r , t h a t a more o r g a n i z e d a p p r o a c h t o t h e p r o b l e m w i l l be r e q u i r e d t h a n h a s b e e n t y p i c a l i n t h e p a s t . The s y s t e m a t i c c h a n g e s t o be made i n t h e s t r u c t u r e o f e x t r a c t a n t m o l e c u l e s , u s i n g p a s t e x p e r i e n c e as a b a s i s , w i l l r e q u i r e t h e c o o p e r a t i o n o f s y n t h e t i c o r g a n i c c h e m i s t s and s o l v e n t e x t r a c t i o n c h e m i s t s . Such e f f o r t s s h o u l d b e p u r s u e d more i n t e n s i v e l y i n t h e f u t u r e . W h i c h f u n c t i o n a l g r o u p s a p p e a r t o b e most p r o m i s i n g i n t h e p r e p a r a t i o n o f new and b e t t e r e x t r a c t a n t s ? B o t h s u l f o n i c a c i d s and s u l f o x i d e s o f f e r p r o m i s i n g , u n e x p l o r e d p o s s i b i l i t i e s because of the v e r y s t r o n g l y a c i d i c n a t u r e o f t h e f o r m e r and t h e c o o r d i n a t i n g a b i l i t y of the l a t t e r . F l u o r i n a t e d β - d i k e t o n e s a p p e a r p r o m i s i n g as v e r s a t i l e c h e l a t i n g e x t r a c t a n t s i f the aqueous s o l u b i l i t y can be r e d u c e d t o a s u f f i c i e n t l y l o w v o l u m e f o r p r o c e s s a p p l i c a t i o n s and a c i d s t r e n g t h c a n be i n c r e a s e d t o t h e p o i n t where t h e y a r e u s e f u l from a c i d i c s o l u t i o n s . S y n e r g i s t i c combinations o f f e r continuing f i e l d s f o r i n t e r e s t i n g e x p l o r a t i o n , even w i t h a v a i l a b l e r e a g e n t s . One o f t h e more i n t e r e s t i n g p o s s i b i l i t i e s may be t h e c o m b i n a t i o n of o r g a n i c - p h a s e c a t i o n e x c h a n g e r s w i t h t h e s i z e - s p e c i f i c crown ethers to produce s i z e - s p e c i f i c or s e l e c t i v e s y n e r g i s t i c m i x t u r e s . Many y e a r s a g o , someone i n t h e AEC o r g a n i z a t i o n commented t h a t , " S u r e l y t h i s s o l v e n t e x t r a c t i o n problem has been s o l v e d by now." T h e p o s s i b i l i t i e s o f s o l v e n t e x t r a c t i o n a p p e a r t o be a v e r y l o n g way f r o m e x h a u s t i o n e v e n now. Acknowledgment Research Department of
sponsored by the D i v i s i o n
of
Chemical Sciences,
Energy under c o n t r a c t W-7405-eng-26 w i t h the
U.S.
Union
Carbide Corporation.
5.
Literature Cited
1. 2. 3. 4.
Bucholz, C. F. J. Chem. von. A. F. Gehlen 1805, 4(17), 134. Peligot, E. Ann. Chim. Phys. 3rd Series 1842, 5, 5-47. Seaborg, G. T. Berkeley, CA, May 1978, USERDA Report PUB-112. Coleman, C. F.; Leuze, R. E. J. Tenn. Acad. Sci. 1978, 53(3), 102-107. References [1], [2], [3] contained therein. Warf, J. C. J. Am. Chem. Soc. 1949, 71, 3257-3258. Private communication, W. D. Arnold, Oak Ridge National Laboratory, Oak Ridge, TN, January 1979. Arnold, W. D. In: Oak Ridge, TN, November 1975, USERDA Report ORNL-5111, p. 56. Stewart, D. C. Livermore, CA, January 1950, Report UCRL-585. Blake, C. Α.; Brown, Κ. B.; Coleman, C. F. Oak Ridge, TN, May 1955, AEC Report ORNL-1903.
5. 6. 7. 8. 9.
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
84
10. 11. 12. 13.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.
ACTINIDE SEPARATIONS
Blake, C. Α.; Crouse, D. J.; Coleman, C. F.; Brown, Κ. B.; Kelmers, A. D. Oak Ridge, TN, December 1956, AEC Report ORNL2172. Brown, Κ. B.; Coleman, C. F.; Crouse, D. J.; Denis, J . O.; Moore, J. G. Oak Ridge, TN, May 1954, AEC Report ORNL-1734. Crouse, D. J.; Brown, Κ. B.; Arnold, W. D. Oak Ridge, TN, December 1956, AEC Report ORNL-2173. Baybarz, R. D.; Weaver, B. S.; Kinser, Η. B. Nucl. Sci. Eng. 1963, 17, 457-462. Leuze, R. E.; Baybarz, R. D.; Weaver, B. Nucl. Sci. Eng. 1963, 17, 252-258. Weaver, B.; Kappelmann, F. A. Oak Ridge, TN, 1964, AEC Report ORNL-3559. Weaver, B.; Kappelmann, F. A. J . Inorg. Nucl. Chem. 1968, 30, 263-272. McIsaac, L. D.; Baker, J. D.; Tkachyk, J . W. Idaho Falls, ID, August 1975, ERDA Report ICP-1080. Schulz, W. W. Hanford, WA, 1973, ERDA Report ARH-2901. Schulz, W. W. Hanford, WA, 1974, ERDA Report ARH SA-203. Siddall, III, T. H. J . Inorg. Nucl. Chem. 1963, 25, 883-892. Siddall, III, T. H. J . Inorg. Nucl. Chem. 1964, 26, 1991-2003. Sekine, T.; Hasegawa, Y. "Solvent Extraction Chemistry"; Marcel Dekker, Inc.; New York and Basel, 1977. Healy, T. V.; McKay, H. A. C. Rec. Trav. Chem. des Pay-bas 1956, 75, 730-736. Higgins, C. E.; Baldwin, W. H.; Ruth, J. M. Oak Ridge, TN, July 1952, AEC Report ORNL-1338. Best, G. F.; Hesford, E.; McKay, H. A. C. J . Inorg. Nucl. Chem. 1959, 12, 136. Zemlyanukhin, V. I.; Savoskina, G. P. Radiokhimiya 1961, 3(4), 411-416. English Translation: Sov. Radiochem. 3, 182-188. Mrochek, J . R.; Banks, C. F. J . Inorg. Chem. 1965, 27, 589-601. White, J. C.; Ross, W. J . Oak Ridge, TN, February 1961, NAS -NRC Report NAS-NS 3102. Karlova, Ζ. K.; Rodionova, L. M.; Pyzhova, Ζ. I.; Myasoedov, B. F. Radiokhimiya 1977, 19(1), 38-41. English Translation: Sov. Radiochem. 19, 31-33. Karolova, Ζ. K.; Rodionova, L. M.; Pyzhova, Ζ. I.; Myasoedov, B. F. Radiokhimiya 1977, 19(1), 42-45. English Translation: Sov. Radiochem. 19, 34-36. Harmon, H. D.; Peterson, J. R.; McDowell, W. J.; Coleman, C. F. J. Inorg. Nucl. Chem. 1976, 38, 155-159. Shoun, R. R.; McDowell, W. J.; Weaver, B. "Proceedings of ISEC '77," Toronto, Sept. 1977, in press. Aly, H. F.; Latimer, R. M. J. Inorg. Nucl. Chem. 1970, 32, 3081-3089. Horwitz, E. P.; Bloomquist, C. Α. Α.; Sauro, L. J.; Henderson, D. J. J . Inorg. Nucl. Chem. 1966, 28, 2131-2324.
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
6. SHOUN AND MCDOWELL 35. 36. 37. 38. 39. Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
40.
41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58.
Actinide Extractants
85
Mrochek, J. E.; O'Laughlin, J . W.; Sakurai, H.; Banks, C. V. J. Inorg. Nucl. Chem. 1963, 25, 955-962. Mrochek, J. E.; O'Laughlin, J . W.; Banks, C. V. J. Inorg. Nucl. Chem. 1965, 27, 603-623. Mrochek, J . E.; Richard, J . J.; Banks, C. V. J. Inorg. Nucl. Chem. 1965, 27, 625-629. Parker, J . R.; Banks, C. V. J . Inorg. Nucl. Chem. 1965, 27, 583-587. Parker, J. R.; Banks, C. V. J . Inorg. Nucl. Chem. 1965, 27, 631-640. Berkman, Ζ. Α.; Bertina, L. E.; Kabachnik, M. I.; Kossykh, V. G.; Medved, T. Ya.; Nesterova, N. P.; Rozen, A. M.; Yudina, K. S. Radiokhimiya 1975, 17(2), 210-214. English Translation: Sov. Radiochem. 17, 213-216. Jankowska, M.; Kulawik, J.; Mekulski, J. J . Radioanal. Chem. 1976, 31, 9-29. Coleman, C. F. At. Energy Rev. 1964, 2(2), 3-54. Wilson, A. S. Progress in Nuclear Energy Series, III, Process Chemistry 1961, 3, 211. Moore, F. L. Anal. Chem. 1966, 38, 510. Derevyanko, E. P.; Chudinov, E. G. Radiokhimiya 1977, 19(2), 205-214. English Translation: Sov. Radiochem. 19, 172-179. Juznic, S.; Senegacnik, M. J. Radioanal. Chem. 1976, 30, 419424. Swarup, R.; Patil, S. K. J . Inorg. Nucl. Chem. 1976, 38, 1203-1206. Myasoedov, B. F.; Shkimev, V. M.; Kochetkova, Ν. E.; Chmutova, M. K.; Spivakov, B. Ya. Radiokhimiya 1975, 17(2), 234-237. English Translation: Sov. Radiochem. 17, 237-240. Nikolaev, V. M.; Lebedev, V. M.; Kovantsev, V. N. Radiokhimiya 1977, 19(5), 692-697. English Translation: Sov. Radiochem. 19, 575-580. Chudinov, E. G.; Pirozkhov, S. V.; Stepanchikov, V. I. Radio khimiya 1971, 13(2), 208-215. English Translation: Sov. Radiochem. 13, 208-214. Derevyanko, E. P.; Pirozkhov, S. V.; Shudinov, E. G. Radio khimiya 1975, 17(2), 291-296. English Translation: Sov. Radiochem. 17, 295-299. Swarup, R.; Patil, S. K. Radiochem. Radioanal. Lett. 1977, 29(2), 73-82. Mohanty, S. R.; Reddy, A. S. J . Inorg. Nucl. Chem. 1975, 37, 1977-1982. Korpak, W. Nukleonika 1964, 9, 1. Fedoezzhina, R. P.; Buchikhin, E. P.; Zarubin, A. I.; Kaneviskii, E. A. Radiokhimiya 1974, 16(5), 638-641. English Translation: Sov. Radiochem. 16, 626-629. Reddy, A. S.; Ramakrishna, V. V.; Patil, S. K. Radiochem. Radioanal. Lett., 1977, 28(5-6), 445-452. Reddy, A. S.; Reddy, L. K. Sep. Sci. 1977, 12(6), 641-644. Peppard, D. F.; Mason, G. W.; Driscoll, W. J.; Sironen, R. J. J. Inorg. Nucl. Chem. 1958, 7, 276-285.
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
86 59. 60. 61. 62.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
63. 64. 65.
66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78.
ACTINIDE SEPARATIONS
Marcus, Y.; Kertes, A. S. "Ion Exchange and Solvent Extrac tion of Metal Complexes"; Wiley-Interscience: London, New York, Sydney, Toronto, 1969. Mason, G. W.; Metta, D. N.; Peppard, D. F. J . Inorg. Nucl. Chem. 1976, 38, 2077-2079. Tachimori, S.; Sato, Α.; Nakamura, H. J. Nucl. Sci. Technol. 1978, 15(6), 421-425. McDowell, W. J.; Keller, O. L . ; Dittner, P. E.; Tarrant, J . R.; Case, G. N. J . Inorg. Nucl. Chem. 1976, 38, 1207-1210. Kasimov, F. D.; Nikolaev, V. M.; Kasimov, V. Α.; Skobelev, N. G. Radiokhimiya 1977 19(4), 442-446. English Translation: Sov. Radiochem. 19, 363-366. Choppin, G. R.; Nash, K. L. Rev. Chim. Miner. 1977, 14(2), 230-236. Barketov, E. S.; Vorob'eva, V. V.; Zaitsev, Α. Α.; Petukhova, I. V.; Spiryakov, V. I.; Filimonov, V. T. Radiokhimiya 1977, 19(4), 467-471. English Translation: Sov. Radiochem. 19, 382-385. Elesin, Α. Α.; Karaseva, V. Α.; Ivanovich, Ν. Α.; Zaitsev, A. A. Radiokhimiya 1974, 16(6), 772-777. English Transla tion: Sov. Radiochem. 16, 758-761. Nagle, R. Α.; Murthy, T. K. S. Sep. Sci. Technol. 1978, 13(7), 597-612. Baes, Jr., C. F.; Zingaro, R. Α.; Coleman, C. F. J. Phys. Chem. 1958, 62, 134. Horwitz, E. P. In: Oak Ridge, TN, October 1977, ERDA Report ORNL/TM-6056, Ed. Tedder, D. W.; Blomeke, J . O. Peppard, D. F.; Mason, G. W.; Griffin, G. J . Inorg. Nucl. Chem. 1965, 27, 1683-1691. Mason, G. W.; Bollmeier, A. F.; Peppard, D. F. J. Inorg. Nucl. Chem. 1967, 29, 1103-1112. Weaver, Boyd; Shoun, R. R. J. Inorg. Nucl. Chem. 1971, 33, 1909-1917. Weaver, Boyd; Shoun, R. R. Ind. Eng. Chem. Proc. Des. Dev. 1971, 10(4), 582. Barketov, E. S.; Zaitsev, Α. Α.; Filinonov, V. T. Radiokhimiya 1975, 17(3), 338-393. English Translation: Sov. Radiochem. 17, 383-387. Baisden, P. Α.; Choppin, G. R.; Kinard, W. F. J. Inorg. Nucl. Chem. 1972, 34(6), 2029-2032. Khopkar, P. K.; Narayankutty, P. J. Inorg. Nucl. Chem. 1968, 30, 1957-1962. Patil, S. K.; Ramakrishna, V. V. J . Inorg. Nucl. Chem. 1976, 38, 1075-1078. Myasoedov, B. F.; Guseva, L. I.; Lebeder, I. Α.; Milyukov, M. S.; Chmutova, M. K. "Analytical Chemistry of Transplutonium Elements," John Wiley and Sons, New York and Israel Program for Scientific Translations, Jerusalem, 1974. A translation from Russian of "Analiticheskaya Khimiya Transplutonievykh Elementov", Izdatel'stvo "Nauka", Moskova, 1972.
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
6. SHOUN AND MCDOWELL
Actinide Extractants
87
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 5, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch006
79. 80.
Ludqvist, R. Acta Chem. Scand. 1975, 29(2), 231-235. Bagawde, S. V.; Ramakrishna, V. V.; Patil, S. K. J. Inorg. Nucl. Chem. 1976, 38, 1669-1672. 81. Bagawde, S. V.; Ramakrishna, V. V.; Patil, S. K. J. Inorg. Nucl. Chem. 1976, 38, 2085-2089. 82. Blake, C. Α.; Horner, D. E.; Schmitt, J. M. Oak Ridge, TN, February 1959, USAEC Report ORNL-2259. 83. Hurst, F. J.; Crouse, D. J.; Brown, Κ. B. Ind. Eng. Chem. Proc. Des. Dev. 1972, 11(1), 122. 84. Hurst, F. J.; Crouse, D. J . Ind. Eng. Chem. Proc. Des. Dev. 1974, 13(3), 286. 85. Bunus, F. T.; Talanta 1977, 24, 117-120. 86. Bunus, F. T.; Pomocos, V. C.; Pumitrescu, P. J. Inorg. Nucl. Chem. 1978, 40, 117-121. 87. Khopkar, P. K.; Mathur, J . N. J . Inorg. Nucl. Chem. 1977, 39, 2063-2067. 88. Fardy, J. J.; Buchanan, J. M. J. Inorg. Nucl. Chem. 1976, 38, 149-154. 89. Cunningham, J . G.; Scargill, P.; Willis, H. H. 1950, British Report AERE, C/M215. 90. Blake, C. Α.; Coleman, C. F.; Brown, K. B.; Baes, C. F.; White, J. C. Proc. 2nd U.N. Intern. Conf. Peaceful Uses At. Energy, Geneva 1959, 28, 289. 91. Konstantinova, M. Anal. Chim. Acta 1977, 90, 195-197. 92. Chmutova, M. K.; Pribylova, G. Α.; Myasoedov, B. F. Radio khimiya 1975, 17(2), 220-226. English Translation: Sov. Radiochem. 17, 224-229. 93. Chmutova, M. K.; Pribylova, G. Α.; Myasoedov, B. F. Radio khimiya 1977, 19(2), 215-221. English Translation: Sov. Radiochem. 19, 180-185. 94. Rao, G. N.; Arora, H. C. J . Inorg. Nucl. Chem. 1977, 39, 2057-2060. 95. Weaver, B.; Shoun, R. R. Oak Ridge National Laboratory unpublished data, January 1979. RECEIVED
June 20, 1979.
Research sponsored by the Division of Chemical Sciences, U.S. Department of Energy under contract W-7406-eng-26 with the Union Carbide Corporation.
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.