Article pubs.acs.org/crystal
Aerosol-Assisted Chemical Vapor Deposition of CdS from Xanthate Single Source Precursors Mark A. Buckingham, Amanda L. Catherall, Michael S. Hill,* Andrew L. Johnson,* and James D. Parish Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K. ABSTRACT: Bis-3-methylpyridine and bis-4-methylpyridine complexes of cadmium(II) ethylxanthate have been characterized by elemental analysis, NMR spectroscopy, and thermogravimetric analysis. The single crystal X-ray structures of both methylpyridine derivatives have also been determined and shown to display a cis, cis, cis-configuration of the N- and S-donor ligands. The compounds have been utilized as single source precursors to deposit CdS films on silica-coated glass substrates at 220 and 350 °C by aerosol-assisted chemical vapor deposition. The surface morphology of the films has been examined by scanning electron microscopy analysis and the crystalline phases were studied by powder X-ray diffraction. The films deposited from the 3methylpyridine adduct comprised more densely packed and more highly crystalline hexagonal CdS than those provided by either of the other two precursors. The crystallite sizes were found to be 2σ(I)] = 0.0683, R1 [all data] = 0.0390, wR2 [all data] = 0.0728, measured reflections = 14181, unique reflections = 6903, Rint = 0.0249.
3: C18H24CdN2O4, M = 541.03, triclinic, P1̅, a = 8.3259(5) Å, b = 10.1854(6) Å, c = 14.9599(7) Å, α = 88.239(4), β = 76.555(4)o, γ = 69.579(5), V = 1154.56(12) Å3, Z = 2, ρ = 1.556 g cm−3, R1 [I > 2σ(I)] = 0.0310, wR2 [I > 2σ(I)] = 0.0827, R1 [all data] = 0.0315, wR2 [all data] = 0.0832, measured reflections = 7712, unique reflections = 4467, Rint = 0.0231.
■
ASSOCIATED CONTENT
Accession Codes
CCDC 1521658−1521659 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing
[email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
■
AUTHOR INFORMATION
Corresponding Authors
*(M.S.H.) E-mail:
[email protected]. *(A.L.J.) E-mail:
[email protected]. ORCID
Michael S. Hill: 0000-0001-9784-9649 Notes
The authors declare no competing financial interest.
■ ■
ACKNOWLEDGMENTS We would like to thank the University of Bath for funding of an undergraduate project. REFERENCES
(1) Kumar, S. G.; Rao, K. Energy Environ. Sci. 2014, 7 (1), 45−102. (2) Trindade, T.; O’Brien, P.; Pickett, N. L. Chem. Mater. 2001, 13 (11), 3843−3858. (3) Peter, L. M. Philos. Trans. R. Soc., A 2011, 369 (1942), 1840− 1856. (4) Klein, A. J. Phys. Condensed Matter 2015, 27, 13. (5) Hodes, G.; Cahen, D. Acc. Chem. Res. 2012, 45 (5), 705−713. E
DOI: 10.1021/acs.cgd.6b01795 Cryst. Growth Des. XXXX, XXX, XXX−XXX
Crystal Growth & Design
Article
(6) Fang, Z.; Wang, X. C.; Wu, H. C.; Zhao, C. Z. Int. J. Photoenergy 2011, 2011, 297350. (7) Arjunan, T. V.; Senthil, T. S. Mater. Technol. 2013, 28 (1−2), 9− 14. (8) Mlowe, S.; Lewis, D. J.; Malik, M. A.; Raftery, J.; Mubofu, E. B.; O’Brien, P.; Revaprasadu, N. New J. Chem. 2014, 38 (12), 6073−6080. (9) Mlowe, S.; Nyamen, L. D.; Ndifon, P. T.; Malik, M. A.; Raftery, J.; O’Brien, P.; Revaprasadu, N. Inorg. Chim. Acta 2015, 434, 181−187. (10) Chunggaze, M.; Malik, M. A.; O’Brien, P. Adv. Mater. Opt. Electron. 1997, 7 (6), 311−316. (11) Ramasamy, K.; Malik, M. A.; O’Brien, P.; Raftery, J. Dalton Trans. 2009, 12, 2196−2200. (12) Ramasamy, K.; Malik, M. A.; O’Brien, P.; Raftery, J. Dalton Trans. 2010, 39 (6), 1460−1463. (13) Ramasamy, K.; Malik, M. A.; Helliwell, M.; Raftery, J.; O’Brien, P. Chem. Mater. 2011, 23 (6), 1471−1481. (14) Byrom, C.; Malik, M. A.; O’Brien, P.; White, A. J. P.; Williams, D. J. Polyhedron 2000, 19 (2), 211−215. (15) Marchand, P.; Hassan, I. A.; Parkin, I. P.; Carmalt, C. J. Dalton Trans. 2013, 42 (26), 9406−9422. (16) Hou, X. H.; Choy, K. L. Chem. Vap. Deposition 2006, 12 (10), 583−596. (17) Wildsmith, T.; Hill, M. S.; Johnson, A. L.; Kingsley, A. J.; Molloy, K. C. Chem. Commun. 2013, 49 (78), 8773−8775. (18) Ahmet, I. Y.; Hill, M. S.; Johnson, A. L.; Peter, L. M. Chem. Mater. 2015, 27 (22), 7680−7688. (19) Knapp, C. E.; Carmalt, C. J. Chem. Soc. Rev. 2016, 45 (4), 1036−1064. (20) Tiekink, E. R. T.; Haiduc, I. Progress in Inorganic Chemistry; Karlin, K. D., Ed.; Wiley: New York, 2005; Vol. 54, pp 127−319. (21) Barreca, D.; Gasparotto, A.; Maragno, C.; Seraglia, R.; Tondello, E.; Venzo, A.; Krishnan, V.; Bertagnolli, H. Appl. Organomet. Chem. 2005, 19 (1), 59−67. (22) Alam, N.; Hill, M. S.; Kociok-Koehn, G.; Zeller, M.; Mazhar, M.; Molloy, K. C. Chem. Mater. 2008, 20 (19), 6157−6162. (23) Akhtar, M.; Revaprasadu, N.; Malik, M. A.; Raftery, J. Mater. Sci. Semicond. Process. 2015, 30, 368−375. (24) Johnson, A. L.; Hill, M. S.; Kociok-Kohn, G.; Molloy, K. C.; Sudlow, A. L. Inorg. Chem. Commun. 2014, 49, 8−11. (25) Clark, J. M.; Kociok-Koehn, G.; Harnett, N. J.; Hill, M. S.; Hill, R.; Molloy, K. C.; Saponia, H.; Stanton, D.; Sudlow, A. Dalton Trans. 2011, 40 (26), 6893−6900. (26) Akhtar, J.; Malik, M. A.; O’Brien, P.; Helliwell, M. J. Mater. Chem. 2010, 20 (29), 6116−6124. (27) Chaudhari, K. R.; Dey, S.; Wadawale, A. P.; Jain, V. K. J. Organomet. Chem. 2016, 813, 119−124. (28) Nair, P. S.; Radhakrishnan, T.; Revaprasadu, N.; Kolawole, G.; O’Brien, P. J. Mater. Chem. 2002, 12 (9), 2722−2725. (29) Li, Y. C.; Li, X. H.; Yang, C. H.; Li, Y. F. J. Mater. Chem. 2003, 13 (10), 2641−2648. (30) Leventis, H. C.; King, S. P.; Sudlow, A.; Hill, M. S.; Molloy, K. C.; Haque, S. A. Nano Lett. 2010, 10 (4), 1253−1258. (31) Dowland, S.; Lutz, T.; Ward, A.; King, S. P.; Sudlow, A.; Hill, M. S.; Molloy, K. C.; Haque, S. A. Adv. Mater. 2011, 23 (24), 2739−2744. (32) Lutz, T.; MacLachlan, A.; Sudlow, A.; Nelson, J.; Hill, M. S.; Molloy, K. C.; Haque, S. A. Phys. Chem. Chem. Phys. 2012, 14 (47), 16192−16196. (33) Bansal, N.; Reynolds, L. X.; MacLachlan, A.; Lutz, T.; Ashraf, R. S.; Zhang, W.; Nielsen, C. B.; McCulloch, I.; Rebois, D. G.; Kirchartz, T.; Hill, M. S.; Molloy, K. C.; Nelson, J.; Haque, S. A. Sci. Rep. 2013, 3, 1531. (34) MacLachlan, A. J.; O’Mahony, F. T. F.; Sudlow, A. L.; Hill, M. S.; Molloy, K. C.; Nelson, J.; Haque, S. A. ChemPhysChem 2014, 15 (6), 1019−1023. (35) Raston, C. L.; White, A. H. Aust. J. Chem. 1976, 29 (4), 739− 742. (36) Glinskaya, L. A.; Lvov, P. E.; Klevtsova, R. F.; Larionov, S. V. Z. Neorganich. Khim. 1990, 35 (4), 911−917.
(37) Larionov, S. V.; Glinskaya, L. A.; Leonova, T. G.; Klevtsova, R. F. J. Struct. Chem. 2005, 46 (6), 1023−1030. (38) Klevtsova, R. F.; Leonova, T. G.; Glinskaya, L. A.; Larionov, S. V. J. Struct. Chem. 2007, 48 (2), 267−274. (39) Zhang, W. G.; Jiang, X. H.; Zhong, Y.; Tan, M. Y.; Wang, S. L. Collect. Czech. Chem. Commun. 2002, 67 (11), 1623−1628. (40) Chen, D. L.; Lai, C. S.; Tiekink, E. R. T. Appl. Organomet. Chem. 2003, 17 (4), 247−248. (41) Cusack, J.; Drew, M. G. B.; Spalding, T. R. Polyhedron 2004, 23 (14), 2315−2321. (42) Campian, M. V.; Haiduc, I.; Tiekink, E. R. T. Z. Kristallogr. Cryst. Mater. 2013, 228 (4), 187−198. (43) Jeremias, L.; Demo, G.; Kubat, V.; Travnicek, Z.; Novosad, J. Phosphorus, Sulfur Silicon Relat. Elem. 2014, 189 (10), 1475−1488. (44) Jiang, X. H.; Zhang, W. G.; Zhong, Y.; Wang, S. L. Molecules 2002, 7 (7), 549−553. (45) Pan, A. L.; Liu, R. B.; Yang, Q.; Zhu, Y. C.; Yang, G. Z.; Zou, B. S.; Chen, K. Q. J. Phys. Chem. B 2005, 109 (51), 24268−24272. (46) Singh, V.; Sharma, P. K.; Chauhan, P. Mater. Chem. Phys. 2010, 121 (1−2), 202−207. (47) Spanier, J. E.; Robinson, R. D.; Zhang, F.; Chan, S. W.; Herman, I. P. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 64 (24), 2454071−245407-8. (48) Bandaranayake, R. J.; Wen, G. W.; Lin, J. Y.; Jiang, H. X.; Sorensen, C. M. Appl. Phys. Lett. 1995, 67 (6), 831−833. (49) Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmuller, A.; Weller, H. J. Phys. Chem. 1994, 98 (31), 7665−7673.
F
DOI: 10.1021/acs.cgd.6b01795 Cryst. Growth Des. XXXX, XXX, XXX−XXX