Alkylation - American Chemical Society

the free world refining industry is 1, 098, 000 BPSD. The two principal ... rather than actual consumption. The fresh sulfuric acid catalyst is typica...
1 downloads 0 Views 1MB Size
19

Alkylation: Its Possible Impact on the Sulfuric Acid

Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on July 12, 2018 at 01:38:11 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Industry

WARD A. GRAHAM Stratford/Graham Engineering Corp., 4520 Madison Avenue, Kansas City, MO 64111

I. P r e s e n t world alkylation capacity and the proportion thereof that i s based on s u l f u r i c acid, broken down by r e g i o n (North A m e r i c a , W. Europe, etc.). Approximate annual consumption of s u l f u r i c acid. P r o p o r t i o n of this that is r e c o v e r e d and regenerated. A l k y l a t i o n is here defined as the p r o c e s s of alkylating isobutane with light olefins, which i s the m a j o r petroleum r e f i n e r y p r o c e s s for producing both aviation gasoline and motor c a r gasoline blending iso-octanes. Combining published data (1) with our own job r e c o r d s , the estimated alkylation capacity of the free world refining industry is 1, 098, 000 BPSD. T h e two p r i n c i p a l catalysts used a r e s u l f u r i c acid and h y d r o f l u o r i c acid; the above worldwide capacity i s approximately 5 5 % s u l f u r i c and 4 5 % h y d r o f l u o r i c , as tabulated i n T a b l e I. TABLE I H2SO4

North A m e r i c a Europe Other TOTAL

554,440 7,200 43,460 605,100

HF

436,925 30,200 25, 775 492,900

A c i d consumed i n the p r o c e s s i s also i n need of d e f i n i tion. H y d r o f l u o r i c acid i s l i t e r a l l y consumed; it reacts to f o r m heavy p o l y m e r s and ultimately i s pumped f r o m the s y s t e m to a combustion chamber o r to a neutralization stage where the products of neutralization a r e hauled off to a dump o r used as landf i l l . Sulfuric acid i s consumed i n a s i m i l a r manner but only as a s m a l l f r a c t i o n of that charged to the p r o c e s s . T h e p r i m a r y effect upon s u l f u r i c a c i d is that of dilution, r a t h e r than actual consumption. T h e f r e s h s u l f u r i c a c i d catalyst i s typically 98. 0-

314

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

19.

Impact on Sulfuric Acid Industry

G R A H A M

9 9 . 5% t i t r a t a b l e a c i d i t y .

315

W h e n the a c i d e n t e r s the a l k y l a t i o n

s y s t e m it i s g r a d u a l l y d i l u t e d b o t h w i t h w a t e r a n d h y d r o c a r b o n p o l y m e r s a n d e s t e r s t o a s p e n d i n g s t r e n g t h of a b o u t 9 0 % table acidity.

titra­

A l t h o u g h t h e a l k y l a t i o n r e a c t i o n s w i l l o c c u r at

lower acidities, c o r r o s i v i t y of

the u s u a l 90% c u t - o f f s t r e n g t h i s d i c t a t e d by the

carbon steel with weaker acid.

In a N a t i o n a l

Petroleum Refining Association Question and Answer session in Philadelphia(2),

we r e p o r t e d l a b o r a t o r y data showing

successful

a l k y l a t i o n at a s l o w a s 82% t i t r a t a b l e a c i d i t y w h e r e t h e

water

d i l u e n t w a s l o w a n d the g r e a t e s t d i l u e n t w a s h y d r o c a r b o n p o l y ­ mers.

Some w a t e r is n e c e s s a r y ,

but o n l y a f e w p e r c e n t .

This

c o n f i r m s p r e v i o u s l a b o r a t o r y w o r k at P u r d u e U n i v e r s i t y ^ ) . E c o n o m i c s a r e c o m p l i c a t e d but c o n s t i t u t e t h e f i n a l a n s w e r

in

d e t e r m i n i n g the o p t i m u m a c i d s p e n d i n g s t r e n g t h f o r a g i v e n plant.

T h i s w i l l be d i s c u s s e d i n m o r e d e t a i l b e l o w . K e e p i n g i n m i n d t h e s u l f u r i c a c i d d i l u t i o n r a t e a n d the

actual consumption rate, t i o n i s 0. 5 l b s .

a typical acid dilution rate for a l k y l a ­

a c i d / U . S. g a l l o n of a l k y l a t e p r o d u c e d .

p l a n t p r o d u c i n g 1, 500

Thus,

a

B P S D of a l k y l a t e w o u l d r e q u i r e a f r e s h

a c i d f e e d r a t e o f a b o u t 16 s h o r t t o n s o f a c i d p e r d a y w h i c h w o u l d be d i l u t e d to about 90% b e f o r e r e g e n e r a t i o n . that o n l y 2 - 5 %

It i s

estimated

of this a c i d is a c t u a l l y c o n s u m e d by side

reac­

tions,

t h e r e m a i n d e r i s p u m p e d to s t o r a g e a n d t h e n t o

tion.

T h e e f f i c i e n c y o f r e g e n e r a t i o n v a r i e s b e t w e e n 98. 0 a n d

9 9 . 5%(4).

Thus,

regenera­

i f t h e a c i d d i l u t i o n r a t e i s a s s u m e d at 0. 5 l b s . /

g a l l o n a n d 5% i s a s s u m e d to b e c o n s u m e d i n t h e a l k y l a t i o n a n d regeneration steps,

the w o r l d w i d e a c i d c o n s u m p t i o n i n s u l f u r i c

a c i d a l k y l a t i o n a n d r e g e n e r a t i o n i s j O . 05 (0. 5 χ 605, 100 χ 2 0 0 0 ) ] o r 318

short tons/day.

However,

p l a n t c a p a c i t y m u s t be 20 t i m e s t h i s ,

42/

the a c i d r e g e n e r a t i o n

o r 6, 360 t o n s / d a y to p r o ­

v i d e the total a l k y l a t i o n a c i d r e q u i r e m e n t .

This is,

of

course,

i n a d d i t i o n to t h e a c t u a l a c i d p r o d u c t i o n c a p a c i t y f o r o t h e r u s e s . II.

L i k e l y t r e n d s i n a l k y l a t i o n c a p a c i t y i n view of

lead regulations,

demand patterns,

Likely trends in alkylation capacity are almost b l e to p r e d i c t .

gasoline

etc. impossi­

T h e e n t r y of f e d e r a l a n d l o c a l g o v e r n m e n t s

the c o n t r o l of m o r e a n d m o r e a s p e c t s of i n d u s t r y , the p e t r o l e u m r e f i n i n g i n d u s t r y ,

into

especially

is a l a r m i n g and renders

d e c i s i o n - m a k i n g on t e c h n i c a l a n d e c o n o m i c b a s e s v i r t u a l l y meaningless.

T h e p e l l - m e l l r u s h to " c o n t r o l " h a s

g r a v e m i s g i v i n g s i n e v e r y s e c t o r of s o c i e t y . a r t i c l e ( 5 ) that " . . .

prompted

It i s s t a t e d i n o n e

p o l i c i e s m a y be a d o p t e d by p o w e r p o l i t i c s

that c o u l d b r i n g o n unknown,

possibly catastrophic

results".

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

316

INDUSTRIAL

O t h e r headlines(6i) a n c e to a n g e r ,

include:

A N D L A B O R A T O R Y

A L K Y L A T I O N S

" F e e l i n g s went f i r s t f r o m

a n d n o w to r a g e . . . , M

annoy­

" G o v e r n m e n t bungling

h e l p e d b r i n g t h e U . S. e n e r g y c r i s i s " ,

" T h e r e is an energy

p o l i c y s t a l e m a t e i n W a s h i n g t o n . . . a n d it s t e m s f r o m t h e f a c t that . . . c r i t i c a l o i l a n d g a s i s s u e s partisan politics".

the a l k y l a t i o n p r o c e s s government

. . . a r e bogged down i n

In t h i s a t m o s p h e r e ,

p r e d i c t i o n of t r e n d s i n

m u s t be b a s e d f i r s t upon m o s t

probable

d e c i s i o n s and then upon t e c h n i c a l / e c o n o m i c

consid­

erations. M a n y excellent a r t i c l e s have a d d r e s s e d various

facets

of the t e c h n i c a l / e c o n o m i c a s p e c t s of a l k y l a t i o n i n r e c e n t

years.

D a t a s h o w n i n T a b l e II w e r e a b s t r a c t e d f r o m a n a r t i c l e p u b ­ l i s h e d i n 1971 (7^ ; t h e s e d a t a i n d i c a t e t h a t r e d u c i n g g a s o l i n e

lead

l e v e l s f r o m 3. 0 to 0. 0 c c T E L / U . S. g a l . , h o l d i n g a c o n s t a n t Μ . Ο. N . o f 86. 0,

could increase alkylation charge rates

from

47 to 6 8 % i n r e f i n e r i e s w i t h c a p a c i t i e s r a n g i n g f r o m 60, 000 t o 240, 000 B P S D ,

a s s u m i n g u n l i m i t e d butane a v a i l a b i l i t y .

refinery process

Other

c h a r g e r a t e s a r e a l s o changed; the r e a d e r i s

r e f e r r e d to the o r i g i n a l a r t i c l e f o r c o m p l e t e

details.

From

T a b l e II, i t c a n b e s e e n that p r e s e n t - d a y r a t i o o f a l k y l a t i o n t o c r u d e o f a b o u t 6% c o u l d i n c r e a s e to a b o u t 9% i n t h e s m a l l e r r e f i n e r i e s a n d about 10% i n the l a r g e r . TABLE Refinery Size, Gasoline

BPSD

II

60,000

120,000

240,000

Properties

Μ . Ο. N .

86. 0 8 6 . 0

86. 0 86. 0

86. 0 8 6 . 0

R. Ο. N .

94. 0 9 6 . 7

94. 0 97. 3

94. 0 96. 3

Lead level,

cc. T E L /

U . S. G a l .

3.0

0.0

0. 0

3.0

0.0

13. 4 19. 7

13.4

22.4

3. 0

Gasoline Pool, % Alkylate

13. 4 19. 7

Alkylation Unit Charge, MBPSD

4. 5

6. 6

9. 0 13. 2

17. 9 30. 0

% I n c r e a s e d at 0 cc T E L In 1 9 7 4 ,

47

47

68

i t w a s r e p o r t e d ( 8 ) that " f o r m e e t i n jg t h e c h a l l e n g e o f un-

leaded gasoline,

U . S. r e f i n e r s h a v e b u i l t u p t h e i r o c t a n e

i n g c a p a b i l i t y to the h i g h e s t l e v e l i n h i s t o r y .

mak­

A r o u g h i n d e x of

t h i s i s the c o m b i n e d c a t a l y t i c r e f o r m i n g a n d a l k y l a t i o n c a p a c i t y as a p e r c e n t of c r u d e c a p a c i t y .

That number has r i s e n f r o m

a b o u t 2 5 % t e n y e a r s a g o to 3 0 % i n 1 9 7 4 " .

It i s u n d e r s t o o d t h a t

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

19.

G R A H A M

Impact on Sulfuric Acid Industry

m o s t of this i n c r e a s e i s i n r e f o r m i n g .

317

However,

reformate has

a l o w e r m o t o r o c t a n e r a t i n g a n d a l k y l a t e r e m a i n s the b e s t b l e n d ­ ing stock for i m p r o v i n g motor In t h i s a r t i c l e (8),

octane.

it is stated,

" A t y p i c a l b l e n d to m a k e

a n u n l e a d e d g a s o l i n e o f 93 R O N a n d 85 M O N c o u l d c o n t a i n t h e following: Vol. Reformate

%

31

(100 R O N )

15

Alkylate Cat-cracked

32

gasoline

15

Light h y d r o c r a c k a t e naphtha

7

Butane

T h e u n l e a d e d g a s o l i n e o f 93 R O N 85 M O N w a s p r e d i c t e d a s a p r o b a b l e r e q u i r e m e n t of 1976-1980 c a r s with c a t a l y t i c ers.

convert­

T h e o r i g i n a l u n l e a d e d r e q u i r e m e n t o f 91 R O N w a s p r e ­

d i c t e d (Ί) to b e i n a d e q u a t e f o r l o n g t e r m u s e i n t h e 1 9 7 4 - 1 9 7 5 m o d e l c a r s i n t h e U . S. a higher percentage

I n i t i a l p r e l i m i n a r y d a t a (9) i n d i c a t e t h a t

of these c a r s w i l l be " n o t s a t i s f i e d "

with

91 R O N , b u t t h e d i f f e r e n c e i s b e l i e v e d t o b e s m a l l . Obviously, stant change.

t h e g a s o l i n e s u p p l y p i c t u r e i s s u b j e c t to c o n ­

T h e E u r o p e a n P a r l i a m e n t h a s r e p o r t e d l y (10)

" u r g e d the C o m m o n M a r k e t C o m m i s s i o n to p o s t p o n e i t s p l a n s f o r r e d u c i n g the l e a d content i n g a s o l i n e . . . " . the U . S. E P A a l t e r e d t h e l e a d p h a s e d o w n

In O c t o b e r ,

1976,

schedule.

If t h e l e a d i s p h a s e d o u t o r r e d u c e d ,

the n e w m a n g a n e s e

a n t i k n o c k c o m p o u n d (11) c o u l d b e c o m e w i d e l y u s e d a n d , i n t h i s event,

the g a s o l i n e b l e n d i n g s c h e d u l e s

The response

w o u l d be r e v i s e d a g a i n .

of a l k y l a t e to the m a n g a n e s e c o m p o u n d i s s i m i l a r

to i t s r e s p o n s e

to l e a d ,

so it appears alkylate would r e m a i n as a

p r i m e octane blending ingredient.

T h e percentage

the f i n i s h e d g a s o l i n e w o u l d u n d o u b t e d l y v a r y .

of a l k y l a t e i n

However,

this

p r o d u c t i s n o w b e i n g i n v e s t i g a t e d to d e t e r m i n e i f i t c a n s a t i s ­ factorily replace lead.

T h e s e a r e but two of m a n y e x a m p l e s

new i n f l u e n c e s w h i c h w i l l enter into future d e c i s i o n s

of

concerning

alkylation. In a r e p o r t (12) d a t e d A u g u s t 1 1 ,

1976,

one f i r m

esti­

m a t e d that new o c t a n e - p r o d u c i n g f a c i l i t i e s w o u l d be r e q u i r e d f o r 1978 a n d 1 9 7 9 ,

as

follows:

C a t a l y t i c R e f o r m i n g 540, 000 B P D ; A l k y l a t i o n 2 9 8 , 000 B P D ; I s o m e r i z a t i o n 3 3 2 , 000 B P D ; a n d C r a c k i n g 8 9 9 , 000 B P D .

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

318

INDUSTRIAL

III.

A N D

L A B O R A T O R Y

A L K Y L A T I O N S

D i s c u s s i o n of the b a s i c p r i n c i p l e s of c u r r e n t s u l f u r i c

a c i d a n d H F a l k y l a t i o n t e c h n o l o g y a n d of any l i k e l y

developments

w h i c h c o u l d l e a d to a c h a n g e i n t h e p r e s e n t b a l a n c e b e t w e e n

the

two. T h e b a s i c p r i n c i p l e s of s u l f u r i c a n d h y d r o f l u o r i c a c i d catalyzed alkylation reactions have been d e s c r i b e d in m a n y different a r t i c l e s and books, b i b l i o g r a p h y (13-23).

s o m e of w h i c h a r e t a b u l a t e d i n the

T h e c o m p l e x i t y o f the r e a c t i o n i s

such

that m a n y d e t a i l s c o u l d not be i s o l a t e d u n t i l the advent of ticated analytical equipment and techniques.

sophis-

T h e fact that

c o m m e r c i a l r e f i n e r y a l k y l a t i o n units a l m o s t always

receive

f e e d s of v a r y i n g r a t e a n d / o r c o m p o s i t i o n m a k e s the a n a l y s i s of such plants' performance v e r y difficult. feed,

E v e n with a

constant

the n u m b e r of o l e f i n i c c o m p o u n d s u s u a l l y p r e s e n t i n the

feed promotes

different reactions and s i d e - r e a c t i o n s ,

the p r o -

d u c t s o f w h i c h g e n e r a l l y e n d up i n t h e a l k y l a t e p r o d u c t .

Lab-

o r a t o r y s t u d i e s o f a l k y l a t i o n of i s o b u t a n e w i t h i n d i v i d u a l p u r e olefins have p r o v i d e d significant data on r e a c t i o n rates

and

y i e l d s a s i n f l u e n c e d by the c o m m o n r e a c t i o n v a r i a b l e s

(24).

T h e b a s i c c h e m i c a l r e a c t i o n i n v o l v e d i s b e l i e v e d to be that of c a r b o n i u m i o n p r o d u c t i o n b y the a d d i t i o n of a p r o t o n to a n o l e f i n w h e r e the p r o t o n i s s u p p l i e d by the p r o t o n i c a c i d catalyst,

in this case either sulfuric o r hydrofluoric acid(20).

A f u r t h e r s t a t e m e n t i n t h i s s a m e a r t i c l e e x p l a i n s the i m p o r t a n t addition m a d e by m o d e r n a n a l y t i c a l equipment: development of s p e c t r o s c o p i c a l methods nuclear magnetic resonance portant,

11

. . . the

of a n a l y s i s ,

rapid

of w h i c h

s p e c t r o s c o p y w a s the m o s t i m -

h a s e n a b l e d D e n o (25)

a n d m a n y o t h e r s to show that

c a r b o n i u m i o n s c a n now b e d i r e c t l y o b s e r v e d i n s o l u t i o n .

This

h a s m a d e it p o s s i b l e to d e t e r m i n e the s t r u c t u r e o f s u c h i o n s . D e n o s t a t e s that the H S O 4 s a l t s of s u b s t i t u t e d c y c l o p e n t e n y l c a t i o n s f o r m the s l u d g e i n c o m m e r c i a l a l k y l a t i o n a c i d .

H e d i d not

e n c o u n t e r a n y c a t i o n s p o s s e s s i n g l e s s t h a n 10 c a r b o n a t o m s .

"

A l t h o u g h the b a s i c c h e m i c a l r e a c t i o n s h a v e b e e n thought, for many years,

to b e s i m i l a r w i t h e i t h e r s u l f u r i c o r h y d r o -

fluoric acid catalyst,

extensive work with sulfuric a c i d d e s c r i b -

e d b y A l b r i g h t et a l (24) not the c a s e .

h a s d e m o n s t r a t e d that t h i s i s p r o b a b l y

The need for m o r e detailed w o r k with h y d r o -

fluoric acid is cited.

T h e following s u m m a r i z e s

their report:

" T h e reaction mechanism for hydrogen fluoride alkylation also s e e m s to be r a d i c a l l y different t h a n that f o r s u l f u r i c a c i d a l k y l a tion.

T h e alkylation m e c h a n i s m w h i c h has been widely

accepted

i n the past s e e m s to be s o m e w h a t m o r e s a t i s f a c t o r y f o r h y d r o g e n f l u o r i d e a l k y l a t i o n e v e n t h o u g h it i s not f o r s u l f u r i c a c i d

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

19.

Impact on Sulfuric Acid Industry

G R A H A M

alkylations. "

319

T h e a n n o u n c e m e n t of t h i s A l k y l a t i o n S y m p o s i u m

c o n t a i n e d the f o l l o w i n g :

" S o m e i m p o r t a n t new

developments

h a v e r e c e n t l y c l a r i f i e d to a s i g n i f i c a n t e x t e n t the m e c h a n i s m

of

the a l k y l a t i o n o f b o t h i s o b u t a n e a n d a r o m a t i c s . " O n e p o s s i b l e a d v a n t a g e o f the H F p r o c e s s

in propylene/

b u t y l è n e a l k y l a t i o n i s the p r o d u c t i o n of i s o b u t y l e n e f r o m

iso-

b u t a n e e f f e c t e d b y the h y d r i d e - i o n t r a n s f e r to p r o p y l e n e .

Iso-

b u t y l e n e i s the C 4 o l e f i n i c i s o m e r w h i c h p r o d u c e s a s i g n i f i c a n t l y higher octane alkylate with H F .

T h i s shift,

however,

converts

a s m u c h a s 22% of the p r o p y l e n e to p r o p a n e a n d i s a d e b i t . S o m e n o r m a l b u t a n e i s a l s o p r o d u c e d f r o m b u t y l è n e s but t h i s i s e s t i m a t e d at o n l y 4 - 6 % .

T h e higher octane isobutylene

alkylate

and a c l a i m e d y i e l d i n c r e a s e m u s t be c o n t r a s t e d with n o r m a l paraffin p r o d u c t i o n f r o m olefins and a h i g h e r isobutane r e q u i r e ment.

The typical mixed 03 = ^ 4 =

f e e d c a n be m a d e to p r o d u c e

a h i g h o c t a n e a l k y l a t e with e i t h e r a c i d c a t a l y s t by the o p t i m i z a t i o n of o t h e r v a r i a b l e s .

T h e highest alkylate octane

r e p o r t e d a r e p r o d u c e d with s u l f u r i c a c i d catalyst,

numbers

alkylating

with a t y p i c a l cat c r a c k e r butylène olefin. T h e c o s t of the a c i d s ,

the r e l a t i v e h a z a r d s of e a c h ,

the

a c t u a l a l k y l a t e y i e l d a n d q u a l i t y a l l m u s t be c o n s i d e r e d w h e n s e l e c t i n g the a l k y l a t i o n p r o c e s s

to u s e .

T h e i n s t a l l e d c o s t of

the p l a n t a n d o p e r a t i n g c o s t s a l s o m u s t b e c o n s i d e r e d . s a v i n g s c a n be r e a l i z e d i f o c t a n e q u a l i t y i s Supplemental processes

Cost

lowered.

w h i c h c a n be o p e r a t e d i n c o n -

junction with a l k y l a t i o n a n d / o r s u l f u r i c a c i d p r o d u c t i o n can i n f l u e n c e the o v e r a l l e c o n o m i c s .

E x a m p l e s a r e (1) the i n t e g r a -

t i o n of n o r m a l b u t a n e - t o - i s o b u t a n e

i s o m e r i z a t i o n with alkylation,

u t i l i z i n g c o m m o n f r a c t i o n a t i o n e q u i p m e n t a n d (2),

u t i l i z i n g 65%

s u l f u r i c a c i d e x t r a c t i o n of i s o b u t y l e n e o r i s o a m y l ë n e f r o m

ole-

f i n s f e d to a l k y l a t i o n , j u s t i f i e d b y m o n e t a r y r e t u r n o n s a l e o f the h i g h p u r i t y i s o - o l e f i n as a p e t r o c h e m i c a l f e e d s t o c k ,

which r e -

d u c e s q u a n t i t y of a l k y l a t e p r o d u c e d a n d r e d u c e s i s o b u t a n e

re-

q u i r e d while p r o d u c i n g s t i l l higher quality alkylate with s u l f u r i c acid

catalyst. A t the p r e s e n t t i m e ,

the t r e n d s e e m s to be t o w a r d r e -

d u c e d a l k y l a t e p r o d u c t i o n a n d r e d u c t i o n o r e l i m i n a t i o n of p r o p y l e n e as a f e e d s t o c k . gasoline demands cal.

In a n y e v e n t ,

creases,

T h i s is based upon c u r r e n t l y r e d u c e d

a n d h i g h v a l u e of p r o p y l e n e a s a p e t r o c h e m i i f the p e r c e n t a g e

of b u t y l è n e s i n the f e e d i n -

sulfuric acid alkylation will assume a more

a d v a n t a g e o n the b a s i s of b a r r e l - o c t a n e

clear-cut

superiority.

N u m e r o u s factors have always r e q u i r e d c o n s i d e r a t i o n in a t t e m p t i n g to e v a l u a t e w h i c h a l k y l a t i o n p r o c e s s

to u s e .

New

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

320

INDUSTRIAL

A N D

L A B O R A T O R Y

A L K Y L A T I O N S

r e a c t i o n e q u i p m e n t h a s b e e n p a t e n t e d (27, 28) w h i c h r e p o r t e d l y promotes

i n t i m a t e m i x i n g w i t h r e d u c e d p o w e r input;

c l a i m s a r e m a d e f o r a l k y l a t i o n of i s o p e n t a n e w i t h

some

isopentene

u s i n g e i t h e r s u l f u r i c o r h y d r o f l u o r i c a c i d as the c a t a l y s t . duced plant a n d operating costs would obviously i m p r o v e r e l a t i v e p o s i t i o n of a l k y l a t i o n i n t h e r e f i n e r y ' s scheme.

processing

A r e c e n t v e r b a l r e p o r t f r o m one r e f i n e r i n d i c a t e d H F

acid consumption over a two-year

period was

extremely

p e r h a p s o n l y o n e - t e n t h of that n o r m a l l y r e p o r t e d . ments

Rethe

i n s u l f u r i c a c i d effluent

New

low, develop-

refrigerated alkylation indicate

r e d u c t i o n s in o p e r a t i n g c o s t s c a n be m a d e .

Another verbal r e -

port indicates s t i l l higher octane alkylate is being p r o d u c e d in a p i l o t plant t h a n r e p o r t e d at a n y t i m e i n the D:>GM-S;OH o f effluent

existh.M

p.ants

is

an î n t e r e s i . Î M u

refrigeration alkylation process

aco Development oration features

past.

Corporation and Stratford Engineering C o r p -

r i c h in isobutane,

is c o m p r e s s e d

propane and other light ends,

and,

This

50-70%.

after r e m o v a l of

i s r e t u r n e d to the r e a c t o r ; t h i s

If a n e x i s t i n g a l k y l a t i o n p l a n t ,

i s not effluent

refrigerated,

this means

the

much

either H F or H2SO4, deisobutanizer

t o w e r i s about t w i c e the s i z e r e q u i r e d w i t h effluent tion.

cool

flashed

step c a n r e d u c e the u s u a l C4 f r a c t i o n a t i o n t o w e r s i z e a s as

refrigera-

S u c h a p l a n t c a n be e x p a n d e d i n a l k y l a t e c a p a c i t y t w o

three times cally,

b y c o n v e r t i n g to e f f l u e n t

refrigeration.

patents

to date,

A l t h o u g h effluent

Information

p u b l i s h e d by the O i l I n s u r a n c e A s s o c i a t i o n ,

titled "Alkylation U n i t s " . " D u r i n g the p e r i o d f r o m

T h i s r e p o r t i n c l u d e s the 1961

t o 1972

O f t h i s t o t a l o f 18 l o s s e s ,

u n i t s a n d 13 i n H F u n i t s .

5 o c c u r r e d in H2SO4

T h i s indicates m o r e than a two

i n 1965

4

u n i t s s i n c e 1967,

to

Another

s i g n i f i c a n t f e a t u r e i s the fact that no l o s s e s have b e e n 2

17

o f at l e a s t o n e a d d i ­

one edge of l o s s e s i n H F units o v e r H 2 S O 4 u n i t s . in H S 0

en-

following:

the Ο Ι Α e x p e r i e n c e d

a l k y l a t i o n unit l o s s e s and has knowledge tional loss.

numerous

(29)

One disturbing factor is r e v e a l e d in a L o s s B u l l e t i n (30)

but

refrigera-

b e e n a p p l i e d to H F a l k y l a t i o n ,

have been i s s u e d for such use.

to

Metallurgi-

H F a l k y l a t i o n p l a n t s c a n be c o n v e r t e d to H 2 S O 4 ,

H 2 S O 4 c a n n o t be c o n v e r t e d t o H F . t i o n has not,

recorded

w h i l e H F unit l o s s e s f i r s t o c c u r r e d

and have i n c r e a s e d i n s u c c e s s i v e

y e a r s i n both m a g n i ­

tude and n u m b e r . These

18 o c c u r r a n c e s i n a g g r e g a t e

property damage

The

Tex-

the e v a p o r a t i o n of the r e a c t o r effluent to

a n d r e m o v e the r e a c t i o n heat f r o m the r e a c t o r . vapor,

potential.

jointly offered by

losses exceeding

represent

$6, 800, 0 0 0 .

total

T h i s d o e s not

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

19.

Impact on Sulfuric Acid Industry

G R A H A M

321

include loss of earnings resulting f r o m these events. Interruption coverage was not p r o v i d e d f o r a l l these

Business instances,

b u t i n t h e t h r e e c a s e s w h e r e it w a s i n v o l v e d , t h e l o s t

earnings

r e p r e s e n t e d a n a d d i t i o n a l t o t a l o f a p p r o x i m a t e l y $1, 400, 000. Losses aggregate

i n H F u n i t s a c c o u n t f o r a b o u t $ 5 , 6 0 0 , 000 o f t h e

property damage total,

a n d of this a m o u n t

nearly

$4, 0 0 0 , 000 i s a c c o u n t a b l e t o t h e p a s t t w o a n d a h a l f y e a r s . " Thus,

82% of t h e l o s s e s i n the p e r i o d 1961-1972

r e d i n H F plants.

A f u r t h e r s e t o f l o s s r e p o r t s (31),

t h e p e r i o d f r o m 1973 t h r o u g h N o v e m b e r

1976 i n d i c a t e s t h i s h a s

continued and, i f anything, has i n c r e a s e d . p a s t 15 y e a r s ,

Therefore,

sulfuric a c i d alkylation has been

to be a m u c h s a f e r

occur-

covering f o r the

demonstrated

process.

So the c o m p e t i t i o n w i l l a p p a r e n t l y c o n t i n u e , f i n e r y a l k y l a t i o n plant a n d c a t a l y s t s e l e c t i o n being

each r e evaluated

on a n individual basis. IV. tion

Developments

in sulfuric acid recovery and regenera-

methods. T h e r e g e n e r a t i o n of spent s u l f u r i c a c i d f r o m a l k y l a t i o n

h a s h i s t o r i c a l l y (32) b e e n t h a t o f d e c o m p o s i t i o n i n a c o m b u s t i o n c h a m b e r to r e d u c e the a c i d to e s s e n t i a l l y SO2 a n d H 2 O ,

oxidiz-

i n g the S O 2 to S O 3 c a t a l y t i c a l l y , a n d a b s o r b i n g the S O 3 i n w e a k a c i d to p r o d u c e f r e s h a c i d a n d e v e n o l e u m s . widely used.

This process

is

T h e t y p i c a l s u l f u r i c a c i d plant m u s t be d e s i g n e d

to i n c l u d e the c a p a b i l i t y f o r h a n d l i n g spent a l k y l a t i o n a c i d . plant m a k i n g a c i d f r o m m o l t e n s u l f u r i s the m o s t

A

economical

a n d e a s i e s t to o p e r a t e b e c a u s e o f t h e r e l a t i v e p u r i t y of the S O 2 produced.

If s p e n t a l k y l a t i o n a c i d i s b u r n e d ,

carbon oxides

and w a t e r vapor a r e also p r o d u c e d and this complicates the plant.

T h e w a t e r v a p o r m u s t be r e m o v e d p r i o r to the c a t a l y t i c

oxidation step.

T h e g a s b a l a n c e to c a t a l y t i c o x i d a t i o n m u s t be

c a r e f u l l y a d j u s t e d to a c c o m m o d a t e

the c a r b o n oxides

while

maintaining the surplus oxygen/ sulfur dioxide ratios r e q u i r e d f o r efficient o x i d a t i o n of the S O 2 to S O 3 .

(Although spent

lation a c i d has been used i n f e r t i l i z e r m a n u f a c t u r e , t i c e i s p h a s i n g out b e c a u s e of the o d o r s e m i t t e d f r o m

alky-

this p r a c such

plants a n d a l s o b e c a u s e of the g r a y i s h c o l o r i m p a r t e d to the final fertilizer product. ) Independent

chemical companies

of the s u l f u r i c a c i d p l a n t s .

own and operate

most

Plant capacities a r e generally in

the r a n g e of 500-1500 tons f r e s h s u l f u r i c a c i d / d a y .

However,

a n u m b e r of a c i d plants a r e installed within, o r i m m e d i a t e l y a d j a c e n t t o , the p e t r o l e u m r e f i n e r y a r e a ; m o s t of t h e s e a c i d

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

322

INDUSTRIAL

A N D L A B O R A T O R Y

p l a n t s a r e o w n e d o u t r i g h t b y the r e f i n i n g c o m p a n y . o f t h e s e p l a n t s r a n g e f r o m 50 t o a s m u c h a s 600

A L K Y L A T I O N S

Capacities

tons/day.

The economic importance of the refinery-owned a c i d plant i s i n c r e a s i n g . duced acid costs,

sulfuric

T h e i m m e d i a t e benefit i s that of r e -

both handling costs a n d p r o d u c t i o n

costs.

E c o n o m i c d a t a w e r e p u b l i s h e d i n 1972 i n a n a r t i c l e b y t h e a u t h o r (33) a n d s h o w e d t h a t n e t d i r e c t m a n u f a c t u r i n g c o s t s o f a r e f i n e r y - o w n e d a c i d p l a n t w e r e about acid market price.

1/4 t o 1/2 o f that of the

T h e industry p r a c t i c e i n the past has been

to allow a c r e d i t f o r t h e spent a l k y l a t i o n a c i d r e t u r n e d f o r r e g e n e r a t i o n ; t o d a y that p r a c t i c e i s c h a n g i n g i n s o m e a r e a s a n d a n additional charge is being made f o r handling the spent T h i s has happened because

acid.

of pollution control laws which r e -

q u i r e the a c i d plant o p e r a t o r s to t u r n down t h e i r p r o d u c t i o n r a t e a n d / o r to i n s t a l l expensive atmospheric Thus, today's

stack g a s cleanup s y s t e m s to a v o i d

pollution. a new a c i d plant w i t h i n the r e f i n e r y ,

built to m e e t

standards f o r conversion efficiency and non-polluting

emissions,

h a s a n e v e n g r e a t e r p o t e n t i a l e c o n o m i c benefit to

the r e f i n e r .

T h e fact that a m a j o r W e s t C o a s t ( U . S. A . ) r e f i n e r

b u i l t (in 1972-1973) a n d n o w o p e r a t e s stringent L o s Angeles

an a c i d plant w i t h i n the

pollution-control area,

that t h e plant

produces fresh acid from H2Sand also regenerates tion acid,

a t t e s t s to t h i s .

mately 275-300

spent a l k y l a -

T h e c a p a c i t y of this plant i s a p p r o x i -

tons/day.

Other a c i d plants a r e under serious f i n e r s at this t i m e .

consideration by r e -

P l a n t s a s s m a l l a s 15 t o n s / d a y

q u o t e d i n the f o u r t h q u a r t e r o f 1976.

have

been

Once the f i r s t s m a l l

has been built and operated successfully,

plant

it is the w r i t e r ' s

s i d e r e d o p i n i o n that m a n y of t h e s e plants w i l l be b u i l t .

con-

This

w i l l definitely influence the ratio of s u l f u r i c / h y d r o f l u o r i c a l k y lation plants; many s m a l l H F alkylation plants were built s i m p l y because

sulfuric acid was unavailable. A n a d d i t i o n a l e c o n o m i c benefit to the r e f i n e r i s b a s e d

upon the g o v e r n m e n t - i m p o s e d

r e q u i r e m e n t to d e s u l f u r i z e a l -

m o s t a l l the products leaving the r e f i n e r y .

T h i s has resulted in

the i n s t a l l a t i o n of s u l f u r - r e c o v e r y plants i n a high of the U . S. A . the w o r l d . sulfur.

percentage

r e f i n e r i e s a n d w i l l undoubtedly follow i n m o s t of

H y d r o t r e a t i n g i s the p r i m a r y p r o c e s s

H y d r o g e n sulfide i s the p r i m a r y p r o d u c t .

for removing P l a n t s to

convert hydrogen sulfide to sulfur i n quantities as s m a l l as 4 tons/day are i n operation within petroleum refineries; a s l a r g e a s 3 7 5 t o n s / d a y h a v e a l s o b e e n r e p o r t e d (34).

plants

(It i s

e s t i m a t e d that s u l f u r f r o m p e t r o l e u m w i l l a c c o u n t f o r 10% of the

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

19.

323

Impact on Sulfuric Acid Industry

G R A H A M

f r e e w o r l d s u p p l y b y 1980.

) (35)

O n c e the f i r s t s u l f u r plant has b e e n r e q u i r e d , a s t a n d b y plant i s u s u a l l y r e q u i r e d to p r o v i d e a b s o l u t e for handling a l l sulfur-containing streams f i r s t plant shutdown. law,

second

capability

i n the event of the

If s u l f u r o x i d e e m i s s i o n s

are limited by

t h e n the r e f i n e r i s f a c e d w i t h shutting down the

refinery

if the f i r s t s u l f u r plant i s down a n d a s e c o n d plant i s not a v a i l able.

H y d r o g e n s u l f i d e c a n no l o n g e r be d i s p o s e d of b y b u r n i n g

w h e r e the s u l f u r o x i d e s a r e d i s c h a r g e d to the

atmosphere.

T h i s i s w h e r e the s u l f u r i c a c i d plant m e r i t s consideration.

additional

If t h e s u l f u r i c a c i d p l a n t i s e c o n o m i c a l l y

favor-

a b l e on the i n i t i a l b a s i s of s u p p l y i n g a n d r e g e n e r a t i n g a l k y l a t i o n c a t a l y s t , the e c o n o m i c s

become even m o r e favorable

if the a c i d

p l a n t i s d e s i g n e d w i t h e n o u g h c a p a c i t y to s e r v e a s the sulfur plant".

it c a n be c o n v e r t e d to f r e s h s u l f u r i c a c i d .

i n sufficient

c a n e l i m i n a t e the n e e d f o r s u p p l e m e n t a l f u e l i n the One t o n of H2S p r o d u c e s a l m o s t

t h a t s a m e t o n of H 2 S c a n p r o d u c e a l m o s t Thus,

sulfur,

H2S is i d e a l fuel i n

a n a l k y l a t i o n a c i d r e g e n e r a t i n g plant and, chamber.

"standby

I n s t e a d o f c o n v e r t i n g h y d r o g e n s u l f i d e to

quantities

combustion

one t o n of s u l f u r but

3 tons of s u l f u r i c a c i d .

the s u l f u r i c a c i d plant w i t h i n the r e f i n e r y c a n p r o v i d e

a l k y l a t i o n a c i d c a t a l y s t at l o w e s t p r i c e s a n d c a n p e r m i t r e f i n e r to m a r k e t h i s b y - p r o d u c t s u l f u r o p t i o n a l l y a s a c i d i f the m o n e t a r y r e t u r n is

the

sulfuric

greater.

A f u r t h e r p r o c e s s i n g a d v a n t a g e i s a v a i l a b l e to the

re-

f i n e r if a s u l f u r i c a c i d plant has been built for handling both a l k y l a t i o n a c i d a n d a l l the r e f i n e r y H 2 S .

W h e n the m a r k e t

con-

d i t i o n s d i c t a t e c o n v e r t i n g H2S to s u l f u r i n s t e a d of s u l f u r i c a c i d , the i d l e c a p a c i t y w i t h i n the a c i d plant c a n be u t i l i z e d by p u m p i n g t h e a c i d t h r o u g h a l k y l a t i o n at a f a s t e r r a t e ,

r a i s i n g the f i n a l

a c i d spending strength w h i c h produces a higher octane (especially w i t h butylènes alkylate).

alkylate

T h e extra utilities cost

r e g e n e r a t i n g m o r e a c i d m u s t be offset by the i n c r e a s e d of the h i g h e r octane a l k y l a t e . vantage w i l l be

In m o s t c a s e s ,

for

value

this economic

ad-

significant.

T h e newest improvement

i n f u r t h e r r e d u c i n g the

sulfur

d i o x i d e i n the s t a c k gas f r o m a contact s u l f u r i c a c i d plant d e s c r i b e d i n 1974

(36).

was

T o the best of o u r knowledge the plant

d e s c r i b e d i s the c l e a n e s t a c i d p l a n t ,

i . e. , n o n - p o l l u t i n g ,

in

the w o r l d today. A Soviet p r o c e s s acid-making costs".

r e p o r t e d i n 1971

was

c l a i m e d to

T h i s was based upon p r o c e s s

t i o n s a n d a new c a t a l y s t .

(The "technology

"slash

modifica-

is being offered

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

by

324

INDUSTRIAL

A N D

L A B O R A T O R Y A L K Y L A T I O N S

Newton C h a m b e r s E n g i n e e r i n g L i m i t e d , Sheffield,

England". .. )

(37). O t h e r patents have been i s s u e d c l a i m i n g i n c r e a s e d ciency in acid production.

One c l a i m s " a n important

effi-

advantage"

a c h i e v e d b y u s i n g r e a c t i o n h e a t to p r e h e a t r e c y c l e d t a i l g a s f i n a l c o n v e r s i o n to S O 3

A n a r t i c l e p u b l i s h e d i n E u r o p e i n 1972 sure process

for

(38).

for making H2SO4".

described a

T h e c o n v e r s i o n of S 0

S O 3 w a s c i t e d a s 99. 8 5 % a n d t h e i n v e s t m e n t

"presto

2

cost as about

10%

l e s s t h a n t h a t of a c o n v e n t i o n a l p l a n t . (39) One patented p r o c e s s

(40) w a s

i n t r o d u c e d i n the

mid-'60s

to r e d u c e t h e a m o u n t o f s u l f u r i c a c i d r e q u i r e d b y a l k y l a t i o n ; i t was

c a l l e d the S u l f u r i c A c i d R e c o v e r y P r o c e s s

jointly licensed by Texaco Development ford Engineering Corporation. c l a i m s m a d e f o r it.

(SARP) and was

Corporation and S t r a t -

Chemically,

S A R P proved all

U t i l i z e d only with propylene/butylène

a l k y l a t i o n the a c i d r e q u i r e m e n t w a s r e d u c e d as m u c h as a c t u a l a c i d d i l u t i o n r a t e s w e r e l o w e r t h a n 0. 2# alkylate.

However,

70%;

acid/gallon

the spent a c i d f r o m S A R P w a s

different

a n d c o u l d not b e r e g e n e r a t e d at t h e s a m e r a t e a s r e g u l a r alkylation acid.

spent

T h i s c a u s e d the c h e m i c a l c o m p a n i e s to i n -

c r e a s e the c h a r g e s f o r r e g e n e r a t i n g the S A R P spent a c i d to a p o i n t w h e r e t h e r e w a s no e c o n o m i c

i n c e n t i v e to o p e r a t e

SARP.

T h e two c o m m e r c i a l S A R P i n s t a l l a t i o n s a r e not i n u s e at the p r e s e n t t i m e a l t h o u g h new p o s s i b i l i t i e s f o r S A R P have j u s t i n the p a s t few V.

arisen

months.

T a k i n g i n t o a c c o u n t II.

Ill and IV,

l i k e l y future t r e n d i n

sulfuric a c i d consumption and regeneration. As

stated e a r l i e r ,

p r e d i c t i o n s of f u t u r e t r e n d s i n a l k y l a -

t i o n a n d a c i d u s e a r e too dependent u p o n p o l i t i c a l d e c i s i o n s to be even attempted on a p r a c t i c a l basis. are ignored,

then an estimate

If p o l i t i c a l

considerations

of a m a x i m u m a l k y l a t i o n capacity

a n d m a x i m u m a c i d r e q u i r e m e n t c a n be attempted,

although such

a p r e d i c t i o n m u s t b e v e r y g e n e r a l a n d s u b j e c t to c h a l l e n g e many

from

sources. A s s u m i n g the p r e d i c t e d w o r l d w i d e p e t r o l e u m

increases

4 5 % b y t h e y e a r 1990 (41),

that g a s o l i n e

refining

is 40% of the

r e f i n e r y o u t p u t a n d t h a t t e t r a e t h y l l e a d i s r e d u c e d to z e r o 60% of the g a s o l i n e , tion,

in

w h i c h r e s u l t s i n a 40% i n c r e a s e i n a l k y l a -

t h e p r e s e n t d a y a l k y l a t i o n c a p a c i t y of 1, 098, 000

w i l l i n c r e a s e b y a f a c t o r o f 1. 45 χ 1. 4 to 2, 229, 000 i n c r e a s e o f 1, 131, 000

BPSD.

BPSD

B P S D , or an

If t h e p r e s e n t r a t i o o f 5 5 %

i c / 4 5 % h y d r o f l u o r i c is maintained,

sulfur­

then 622,000 B P S D of this

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

19.

G R A H A M

Impact on Sulfuric Acid Industry

i n c r e a s e w i l l be s u l f u r i c a c i d c a t a l y z e d . m o s t of t h i s i s butylène a l k y l a t e , r a t e of 0 . 4 # / g a l l o n a l k y l a t e ,

325 If w e f u r t h e r

assume

with a typical acid dilution

the a c t u a l new a c i d

p l a n t c a p a c i t y r e q u i r e d w i l l b e 5225 t o n s / d a y .

regeneration

If n e w

develop-

m e n t s i n s u l f u r i c a c i d a l k y l a t i o n r e s u l t e d i n its u s e i n a l l the n e w a l k y l a t i o n , n e w a c i d p l a n t c a p a c i t y w o u l d b e a b o u t 10,

000

tons / day. O t h e r u s e s f o r s u l f u r i c a c i d i n the F r e e W o r l d have r e p o r t e d a s 82, 0 0 0 , 000

s h o r t t o n s i n 1970,

c r e a s e o f 2 5 % t h r o u g h 1975 1980.

been

with a predicted i n -

a n d a f u r t h e r i n c r e a s e of 25%

by

T h i s w o u l d i n d i c a t e new a c i d p r o d u c t i o n r e q u i r e m e n t s

a b o u t 2 8 , 0 0 0 , 000 t o n s / y e a r 7 9 , 000 t o n s / d a y .

Thus,

1976-1980,

or

of

approximately

the new c a p a c i t y f o r a l k y l a t i o n a c i d

w o u l d be i n the r a n g e of 7 - 1 2 %

of the t o t a l .

Literature Cited 1. 2. 3.

4. 5. 6. 7. 8. 9.

10. 11. 12.

"Worldwide D i r e c t o r y , Refining and Gas P r o c e s s i n g , 1974-1975", (32nd Edition), Oil and Gas J o u r n a l . 1975 ΝPRA Q & A S e s s i o n on Refining and P e t r o ­ c h e m i c a l Technology, Pg. 4. Albright, L. F. et a l , " A l k y l a t i o n of Isobutane with Butenes: Effect of Sulfuric A c i d Compositions", Ind. Eng. Chem., P r o c e s s Des. Develop. (1972) V o l . 11, (No. 3), pp. 446-450. Donovan, J. R. & Stuber, P.J., C h e m i c a l Engineering, (Nov. 3, 1970), pp. 47-49. Thompson, R. G. and Lievano, R.J., Hydrocarbon P r o c e s s i n g , (October, 1975) pg. 73 V e r v a l i n , C. Η., H y d r o c a r b o n P r o c e s s i n g , (November, 1975), pg. 9. Dunmyer, J r . , J. C., et al, The O i l and Gas Journal, (May 17, 1971, pp. 132-150. Aalund, L. R., T h e O i l and Gas Journal, (August 26, 1974), pp. 41-44. "Octane Requirements of 1975 M o d e l Y e a r Automobiles F u e l e d with Unleaded Gasoline", U. S. E n v i r o n m e n t a l P r o t e c t i o n Agency, Report 75-28JLB, (August, 1975). Unzelman, G. Η., T h e O i l and Gas Journal, (November 17, 1975), pp. 49-57. The O i l Daily, No. 6, 024, (November 20, 1975), pg. 6. Bonner & M o o r e A s s o c i a t e s , Inc. " T e c h n o l o g i c a l F e a s i ­ b i l i t y of Reducing L e a d A n t i - K n o c k Additives in Gaso­ line 1976-1980", (August 11, 1976).

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

326

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25. 26.

INDUSTRIAL

A N D L A B O R A T O R Y A L K Y L A T I O N S

M r s t i k , A. V., Smith, K. A., and Pinkerton, R. D., " C o m m e r c i a l A l k y l a t i o n of Isobutane", P r o g r e s s i n P e t r o l e u m Technology, A m e r i c a n C h e m i c a l Society, A C S #5, (August 7, 1951). Schmerling, L o u i s , " A l k y l a t i o n of Saturated H y d r o ­ carbons", T h e C h e m i s t r y of P e t r o l e u m Hydrocarbons, pp. 363-408, Reinhold. 1955. Iverson, J . O. & Schmerling, L., " A l k y l a t i o n of P a r a ­ f f i n s " , Advances i n P e t r o l e u m C h e m i s t r y and Refining, Interscience, (1958), pp. 336-383. Payne, R. Ε., " A l k y l a t i o n - What you Should Know About T h i s Process"., P e t r o l e u m Refiner, V o l . 37, (No. 9), (Sept. 1958), pp. 316-329. Putney, D. Η., " S u l f u r i c A c i d A l k y l a t i o n of P a r a f f i n s " , Advances in P e t r o l e u m C h e m i s t r y and Refining, Interscience, (1959), pp. 315-355. Hofmann, J. E. and S c h r i e s h e i m , A., "Ionic Reactions Occurring During Sulfuric A c i d Catalyzed Alkylation", J o u r n a l A m e r i c a n C h e m i c a l Society, X X X I V , ( M a r c h 20, 1962), pp. 953-961. Cupit, C. R., Gwyn, J. E . & Jernigan, E. C., " C a t a l y t i c A l k y l a t i o n " , P e t r o / C h e m Engineer, (December, 1961), pp. 42-55, & (January, 1962), pp. 49-59. Buiter, P., Van't Spikjer, P., V a n Zoonen, D., "Ad­ vances in A l k y l a t i o n " , P.D. No. 17, 7th W o r l d P e t r o ­ l e u m Congress, (1965). Jernigan, E .C.,Gwyn, J. E . & C l a r i d g e , " O p t i m i z i n g Alkylation Processes", Chemical Engineering Progress, V o l . 61, (No. 11), (November, 1965), pp. 94-98. Albright, L. F., " C o m p a r i s o n s of A l k y l a t i o n P r o c e s s e s " , C h e m i c a l Engineering, (October 10, 1966) No. 7, pp. 209215. M c G o v e r n , L. J . , "Developments i n C o m m e r c i a l A l k y l a ­ tion of Isobutane the P a s t 25 Years,", presented at the 164th National A m e r i c a n C h e m i c a l Society meeting, (August, 1972). L i , K. W., E c k e r t , R. Ε., & Albright, L. F., " A l k y l a ­ tion of Isobutane with Light Olefins U s i n g Sulfuric A c i d " , I, II and III, presented at the A m e r i c a n C h e m i c a l Society Meeting, (Sept. 7-12, 1969). Deno, N. C., C h e m i c a l E n g i n e e r i n g News, (May 10, 1964), 42 (40), pp. 88-100. P r i v a t e correspondence, (November 24, 1975).

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

19. 27.

28. 29. 30. 31. 32. 33. 34. 35.

36.

37. 38.

39. 40.

41.

G R A H A M

Impact on Sulfuric Acid Industry

327

Clonts, K.E., " L i q u i d - l i q u i d M a s s T r a n s f e r P r o c e s s and Apparatus", U.S. Patent No. 3, 758, 404, (Sept. 11, 1973). Clonts, Κ. Ε . , " A l k y l a t i o n U t i l i z i n g F i b e r s in a Conduit Reactor", U.S. Patent No, 3, 839, 487, (Oct. 1, 1974). U. S. Patent Nos. 2, 906, 796 (1959); 2, 949, 494 (1960); 2, 977, 397 (1961); and 3, 925, 501 (Dec. 9, 1975). O i l Insurance A s s o c i a t i o n r e p o r t (November, 1972). P r i v a t e Communication. Duecker, W. W. & West, J. R., "The Manufacture of S u l f u r i c A c i d " , (1959), Reinhold. Graham, W. A., " A l k y l a t i o n Integrates A c i d Plant", H y d r o c a r b o n P r o c e s s i n g , (August, 1972). Anon., "Why R e c o v e r Sulfur f r o m H S?", The Oil and Gas J o u r n a l , (Oct. 28, 1968), pp. 88-101. Buckingham, P. A. & Homan, H. R., "Sulfur and the E n e r g y Industry", H y d r o c a r b o n P r o c e s s i n g , (August, 1971), pp. 121-125. C o l l i n s , J . J . et a l , "The P u r a S i v S Process For Re­ moving A c i d Plant T a i l Gas", C h e m i c a l E n g i n e e r i n g P r o g r e s s , V o l . 70, (No. 6), (June, 1974), pp. 58-62. L a w r i e , Ν., "Soviet P r o c e s s Slashes S u l p h u r i c - A c i d M a k i n g Costs", C h e m i c a l E n g i n e e r i n g (Mar. 8, 1971). Jaeger, W., " P r o c e s s f o r the production of Sulfur Tri­ oxide by the C o l d Gas P r o c e s s " , U. S. Patent No. 3, 647, 360 (Mar. 7, 1972). Vidon, Β., C h e m i c a l & P r o c e s s Engineering, (July, 1972), pp. 34-35. U.S. Patents, Nos. 3, 234, 301; 3, 227, 774; 3, 227, 775; 3, 442, 972; 3, 534, 118; 3, 544, 653; and 3, 665, 050 (19661970). Anon., " O i l Still The K e y F u e l " , The Oil and Gas Journal, (Nov. 10, 1975), pp. 159-178. 2

Albright and Goldsby; Industrial and Laboratory Alkylations ACS Symposium Series; American Chemical Society: Washington, DC, 1977.