19 Application of Photochemical Techniques to Actinide Separation Processes G . L . D E P O O R T E R and C . K. R O F E R - D E P O O R T E R
Downloaded by HARVARD UNIV on June 27, 2014 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch019
Los Alamos Scientific Laboratory, University of California, Los Alamos, Ν M 87545
Photochemical techniques offer a potential for selectivity in systems where chemical methods offer l i t t l e selectivity. Although thermal chemical properties of species to be separated may be similar, spectral differences can be exploited in photochemical separations. A further advantage of photochemical methods is the substitution of light energy for quantities of reagents. Both of these characteristics suggest the applicability of photochemical techniques to the actinides, whose separation and purification is often difficult, and whose radioactivity causes problems in the handling of waste reagents from their processing. In this paper, we review the application of photochemical techniques to actinide separations and related photochemical processes. The advent of the laser has brought about renewed interest in this field. Thus, these studies are in research stages and have not been developed to plant-scale processes. The use of photochemistry in separation processes is fairly recent. An attempt was made in 1922 to separate chlorine isotopes by irradiating a mixture of H and Cl with light filtered through Cl enriched in Cl (1), but the first successful attempt was by irradiation of COCl with an aluminum arc in 1932 (2). A l t h o u g h 2
2
35
2
2
the photochemical r e a c t i o n s o f the uranyl i o n ( U 0 ) were known s i n c e 1833 ( 3 ) , t h e y were n o t a p p l i e d t o s e p a r a t i o n s u n t i l t h e e a r l y p a r t o f t h e M a n h a t t a n P r o j e c t , when t h e s p e c t r a a n d p h o t o c h e m i c a l r e a c t i o n s o f u r a n y l compounds a n d U F 6 were i n v e s t i g a t e d f o r t h e i r p o t e n t i a l i n isotope separation (4). No p h o t o c h e m i c a l p r o c e s s was f o u n d t h a t c o u l d c o m p e t e w i t h g a s e o u s d i f f u s i o n i n e f f i c i e n c y and r a p i d development t o l a r g e s c a l e . 2
2
A l l o f the b a s i c requirements f o r photochemical s e p a r a t i o n s were r e c o g n i z e d i n t h i s e a r l y w o r k : 1. T h e a b s o r p t i o n s o f t h e s p e c i e s t o be s e p a r a t e d must b e significantly different. 2.
A p h o t o c h e m i c a l r e a c t i o n must t a k e p l a c e i n one s p e c i e s t o c h a n g e i t s c h e m i c a l f o r m s o t h a t i t c a n be s e p a r a t e d from the m i x t u r e .
0-8412-0527-2/80/47-117-267$05.00/0 © 1980 A m e r i c a n C h e m i c a l Society In Actinide Separations; Navratil, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
ACTINIDE SEPARATIONS
268 3.
Downloaded by HARVARD UNIV on June 27, 2014 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch019
4.
T h e r e must be no o t h e r i n t e r f e r i n g r e a c t i o n s t h a t w i l l cause a l o s s o f the s e l e c t i v i t y . A l i g h t s o u r c e must be a v a i l a b l e w i t h a s u f f i c i e n t l y n a r r o w w a v e l e n g t h d i s t r i b u t i o n t o d i s c r i m i n a t e among s p e c t r a l f e a t u r e s , a n d i t must h a v e s u f f i c i e n t i n t e n s i t y to cause photochemical r e a c t i o n i n a reasonable t i m e .
The f i r s t t h r e e r e q u i r e m e n t s r e l a t e t o t h e i n h e r e n t c h e m i c a l p r o p e r t i e s o f t h e m i x t u r e t o be s e p a r a t e d . The r e q u i r e m e n t s f o r t h e l i g h t s o u r c e d e p e n d on t h e p r o p e r t i e s o f t h e m i x t u r e , b u t i t s availability is a technological variable. Lasers, with their n a r r o w w a v e l e n g t h r a n g e s and h i g h i n t e n s i t i e s , h a v e g e n e r a t e d new i n t e r e s t i n photochemical separations. I n f r a r e d l a s e r s have a l s o made p o s s i b l e t h e c o m p l e t e l y new f i e l d o f i n f r a r e d - i n d u c e d chemi s t r y , i n w h i c h some s i g n i f i c a n t i s o t o p e s e p a r a t i o n s h a v e b e e n reported. The f o u r p r i n c i p l e s o f p h o t o c h e m i c a l s e p a r a t i o n a p p l y t o t h e s e p a r a t i o n o f o t h e r c h e m i c a l e n t i t i e s , e l e m e n t s a n d c o m p o u n d s , as much a s t h e y do t o t h e s e p a r a t i o n o f i s o t o p e s . S i n c e the s p e c t r a o f e l e m e n t s and compounds d i f f e r t o a much g r e a t e r d e g r e e t h a n t h e s p e c t r a o f i s o t o p e s , the problem i s s i m p l e r . Several types of a p p l i c a t i o n of photochemistry to separations c a n be d i s t i n g u i s h e d : separation of a chemical species that underg o e s p h o t o c h e m i c a l r e a c t i o n f r o m s p e c i e s t h a t do n o t ; selective i r r a d i a t i o n and p h o t o c h e m i c a l r e a c t i o n o f one o f s e v e r a l p h o t o c h e m i c a l l y a c t i v e s p e c i e s ; changes i n c o n v e n t i o n a l s e p a r a t i o n s r e s u l t i n g from i r r a d i a t i o n ; and p h o t o c h e m i c a l g e n e r a t i o n o f s e p aration reagents. T h i s l i s t does n o t c o v e r a l l p o s s i b i l i t i e s , but i t serves to c a t e g o r i z e the a v a i l a b l e l i t e r a t u r e . The s o l u t i o n p h o t o c h e m i s t r y o f t h e a c t i n i d e s b e g i n s w i t h u r a n i u m ; none h a s b e e n r e p o r t e d f o r a c t i n i u m , t h o r i u m , and p r o t a c tinium. S p e c t r a h a v e b e e n o b t a i n e d f o r most o f t h e a c t i n i d e i o n s through curium i n s o l u t i o n (5). Most s t u d i e s i n a c t i n i d e p h o t o c h e m i s t r y h a v e b e e n done on u r a n y l c o m p o u n d s , l a r g e l y t o e l u c i d a t e t h e n a t u r e o f t h e e x c i t e d e l e c t r o n i c s t a t e s o f t h e u r a n y l i o n and t h e d e t a i l s o f t h e mechanisms o f i t s p h o t o c h e m i c a l r e a c t i o n s (5a). Some s t u d i e s h a v e a l s o b e e n done on t h e p h o t o c h e m i s t r y o f n e p t u n i u m (6) a n d p l u t o n i u m ( 7 ) . Although not a l l o f these s t u d i e s are d i r e c t e d s p e c i f i c a l l y toward s e p a r a t i o n s , the c h e m i s t r y they d e s c r i b e may be a p p l i c a b l e . The s p e c t r a and c h e m i c a l p r o p e r t i e s o f t h e a c t i n i d e s v a r y greatly. For example, the s p e c t r a o f U 0 and U * a r e shown i n F i g . 1. In t h e p r e s e n c e o f f l u o r i d e , U 0 remains i n s o l u t i o n , b u t UFii p r e c i p i t a t e s . T h u s , c o m b i n a t i o n o f p h o t o c h e m i c a l and t h e r m a l c h e m i c a l p r o p e r t i e s c a n be u s e d i n t h e i r s e p a r a t i o n s . B o t h o x i d a t i o n and r e d u c t i o n h a v e b e e n r e p o r t e d i n t h e l i t e r a t u r e as photochemical reactions of a c t i n i d e s . The r e p o r t e d r e a c t i o n s are s u m m a r i z e d i n F i g . 2. The p r o b l e m o f t h e l i g h t s o u r c e i s s i m p l e s t f o r s e p a r a t i n g a compound t h a t u n d e r g o e s a p h o t o c h e m i c a l r e a c t i o n f r o m compounds t h a t do n o t . In t h i s c a s e , a broadband l i g h t s o u r c e , such as the 2
2
2
+
1
2
In Actinide Separations; Navratil, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
19.
DEPOORTER AND ROFER—DEPOORTER
I
Downloaded by HARVARD UNIV on June 27, 2014 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch019
1
Photochemical
I
I
I
I
Techniques
269
Γ
W A V E L E N G T H (nm)
Figure 1. UV-visible absorption spectra of U (IV) and U (VI) at equal concen trations in nitric acid: ( ; 0.042M UO , IN HNO ; ( ; 0.042M U (IV), 4N HNO . U (IV) spectrum from Ref. 28. 2+
t
s
s
Element
O x i d a t i o n State VI
V
IV
III
Uranium
Neptunium
Plutonium
Figure 2. Reported photochemical acti nide oxidations and reductions from Ref. 5,6, and 7.
In Actinide Separations; Navratil, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
ACTINIDE SEPARATIONS
Downloaded by HARVARD UNIV on June 27, 2014 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch019
270
s u n , c a n be u s e d . P r o c e s s e s o f t h i s s o r t c a n be b o t h s i m p l e and cheap. T h i s p r i n c i p l e h a s b e e n a p p l i e d t o wet r e f i n i n g o f u r a n i u m o x i d e (8) a n d t o s e p a r a t i o n o f u r a n i u m f r o m some o f i t s f i s s i o n p r o d u c t s , as a p o t e n t i a l s t e p i n n u c l e a r f u e l r e p r o c e s s i n g (.9). Good s e p a r a t i o n s were r e p o r t e d i n t h e s e e x p e r i m e n t s ( T a b l e I ) , b u t no l a r g e - s c a l e a p p l i c a t i o n s h a v e b e e n r e p o r t e d . W i t h a s i n g l e - l i n e s o u r c e , two p h o t o c h e m i c a l l y a c t i v e compo n e n t s c a n be s e p a r a t e d i n s o l u t i o n b y i r r a d i a t i o n a n d s u b s e q u e n t r e a c t i o n o f one o f t h e c o m p o n e n t s . T h i s t e c h n i q u e has b e e n a p p l i e d t o t h e s e p a r a t i o n o f t h e t r a n s i t i o n m e t a l s c o b a l t and i r o n (10) a n d o f e u r o p i u m f r o m t h e o t h e r l a n t h a n i d e s ( Π ) . A l t h o u g h no s e p a r a t i o n o f t h i s t y p e has b e e n r e p o r t e d f o r t h e a c t i n i d e s , there i s nothing i n p r i n c i p l e that prevents i t . T h i s method c o u l d prove p a r t i c u l a r l y u s e f u l i n s e p a r a t i n g a c t i n i d e s from l a n t h a n i d e s , where t h e r m a l c h e m i c a l methods a r e p a r t i c u l a r l y d i f f i c u l t . I r r a d i a t i o n a l s o a f f e c t s t h e c o u r s e o f more c o n v e n t i o n a l s e p a ration processes. V i s i b l e and u l t r a v i o l e t l i g h t have been f o u n d to a f f e c t p l u t o n i u m s o l v e n t e x t r a c t i o n by photochemical r e d u c t i o n o f the p l u t o n i u m (12). A l t h o u g h t h e r e s u l t s v a r y somewhat w i t h t h e c o n d i t i o n s , g e n e r a l l y p l u t o n i u m ( V I ) c a n be r e d u c e d t o p l u t o n i u m ( I V ) , and p l u t o n i u m ( I V ) t o p l u t o n i u m ( I I I ) . The r e d u c t i o n a p p e a r s t o t a k e p l a c e more r e a d i l y i f t h e u r a n y l i o n i s a l s o p r e s e n t , p o s s i b l y as a r e s u l t o f p h o t o c h e m i c a l r e d u c t i o n o f t h e u r a n y l i o n and s u b s e q u e n t r e d u c t i o n o f p l u t o n i u m b y u r a n i u m ( I V ) . L i g h t h a s a l s o b e e n f o u n d t o b r e a k up t h e u n e x t r a c t a b l e p l u t o n i u m polymer t h a t forms i n s o l v e n t e x t r a c t i o n systems ( 7 b , c ) . The e f f e c t o f v i b r a t i o n a l e x c i t a t i o n r e s u l t i n g from i n f r a r e d l a s e r i r r a d i a t i o n h a s b e e n s t u d i e d f o r a number o f h e t e r o g e n e o u s proc esses, including solvent extraction (13). I n p a r t i c u l a r , when a s o l v e n t e x t r a c t i o n s y s t e m o f u r a n y l n i t r a t e , a q u e o u s n i t r i c a c i d , and t r i - n - b u t y l p h o s p h a t e (TBP) i n a h y d r o c a r b o n d i l u e n t was i r r a d i a t e d w i t h a C 0 l a s e r , a c h a n g e was o b s e r v e d i n t h e e q u i l i b r i u m d i s t r i b u t i o n o f u r a n y l n i t r a t e between the phases (14J. When t h e s o l u t i o n was i r r a d i a t e d a t 944 c m " , c l o s e t o t h e u r a n y l a s y m m e t r i c s t r e t c h i n g f r e q u e n c y , t h e e f f e c t was o b s e r v e d . When a n o n r e s o n a n t f r e q u e n c y was u s e d o r t h e e n e r g y was a b s o r b e d i n t h e s o l v e n t , no e f f e c t was o b s e r v e d . L i t t l e h e a t i n g c o u l d be e x p e c t e d , a n d , i n a n y c a s e , h e a t i n g e f f e c t s s h o u l d have been i n the o p p o s i t e d i r e c t i o n from t h a t o b s e r v e d . 2
1
S i n c e we h a d p r o p o s e d a s i m i l a r e x p e r i m e n t w i t h i r r a d i a t i o n i n the u l t r a v i o l e t - v i s i b l e a b s o r p t i o n band o f the u r a n y l i o n (15), we t r i e d t o r e p r o d u c e t h e s e r e s u l t s , b u t w i t h o u t s u c c e s s (16). C o l l i s i o n s i n t h e l i q u i d p h a s e o c c u r so r a p i d l y ( a b o u t 1 0 s ) t h a t v i b r a t i o n a l e x c i t a t i o n o f t h e u r a n y l i o n s w o u l d be d i s s i p a t e d l o n g b e f o r e any s i g n i f i c a n t f r a c t i o n o f e x c i t e d u r a n y l i o n s c o u l d r e a c h t h e i n t e r f a c e and t h e r e f o r e c h a n g e t h e d i s t r i b u t i o n between t h e two p h a s e s . Rapid loss of v i b r a t i o n a l e x c i t a t i o n i n r e l a t i o n to other processes i s a generic problem f o r i n f r a r e d l a s e r e f f e c t s i n any s y s t e m o f c o n d e n s e d p h a s e s . However, d i f f e r e n c e s between e x p e r i m e n t a l s e t u p s may a c c o u n t f o r t h e d i f f e r e n c e s i n r e s u l t s , 1 2
In Actinide Separations; Navratil, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
1
In Actinide Separations; Navratil, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
in S u l f u r i c Acid.
Spanish Yellow Cake dissolved
2
3
U0 (N0 )
3
Aqueous
2
U0 (N0 )
Aqueous
Starting Solution
2
2
Ethyl Alcohol Hydrazine Sulfate 5
2.5
NH FHF Alcohol
4
4.7
4
pH_
NH FHF Alcohol
Additions
4
U F
F U F
Hydrated Uranous Oxide
4
4
NH F
N H
4
Product
H 2
2
0
H 0
#
f
C d , B P, C u , Cr, Fe, Pb, Mg Z n , Na, Sn
Fe V Be Zr
AI Th, Ce, La
Separated F r o m
Table I. Solar Uranium Separations
Downloaded by HARVARD UNIV on June 27, 2014 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch019
%
88 90 97 97
99 95
Recovery
Purity
99.9 99.9 Not Given Not Given
100 100
%
ACTINIDE SEPARATIONS
Downloaded by HARVARD UNIV on June 27, 2014 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch019
272
although p o s s i b l e reasons are obscure. F u r t h e r e x p e r i m e n t s have shown no o t h e r e x t r a c t a n t s t h a t b e h a v e i n t h i s way u p o n i n f r a r e d irradiation (17). P h o t o c h e m i s t r y c a n a l s o be u s e d i n t h e g e n e r a t i o n o f r e a g e n t s for actinide separations. In t h e f i r s t s t e p o f solvent-extraction r e p r o c e s s i n g methods, u r a n i u m and p l u t o n i u m a r e e x t r a c t e d i n t o the o r g a n i c p h a s e f r o m most o f t h e o t h e r a c t i n i d e s and t h e f i s s i o n p r o d u c t s , w h i c h r e m a i n i n the aqueous p h a s e . In subsequent s t e p s o f r e p r o c e s s i n g , p l u t o n i u m and u r a n i u m a r e s e p a r a t e d and p u r i f i e d . The r e p r o c e s s i n g schemes v a r y i n t h e d e g r e e s o f s e p a r a t i o n achieved i n these steps. F o r e x a m p l e , C i v e x p r o p o s e s t h a t a much h i g h e r c o n c e n t r a t i o n o f f i s s i o n p r o d u c t s be c a r r i e d w i t h t h e u r a n i u m a n d p l u t o n i u m t h a n i n t h e P u r e x p r o c e s s (IS); i n cop r o c e s s i n g , t h e u r a n i u m and p l u t o n i u m a r e t o be i m c o m p l e t e l y s e p a r a t e d from each o t h e r (19). A p l u t o n i u m r e d u c t a n t i s needed f o r t h e c o m p l e t e o r p a r t i a l s e p a r a t i o n o f u r a n i u m and p l u t o n i u m . P l u t o n i u m ( I V ) e x t r a c t s more r e a d i l y i n t o t h e o r g a n i c p h a s e , and p l u t o n i u m ( I I I ) , i n t o t h e aqueous phase o f the t y p i c a l s o l v e n t e x t r a c t i o n system (20). U r a n i u m ( I V ) i s a good r e d u c t a n t for t e t r a v a l e n t p l u t o n i u m (21), and i t can be p r o d u c e d by t h e p h o t o c h e m i c a l r e d u c t i o n o f u r a n y l b y o r g a n i c compounds, i n c l u d i n g s e v e r a l compounds t h a t a r e u s e d i n n o r m a l r e p r o c e s s i n g operations (22). P h o t o c h e m i c a l methods c a n p r o d u c e s o l u t i o n s o f u r a n i u m ( I V ) i n e i t h e r t h e aqueous o r the o r g a n i c phase ( 2 2 , 2 3 ) . TBP i s a good p h o t o c h e m i c a l r e d u c t a n t f o r the u r a n y l i o n , the r e a c t i o n p r o d u c t b e i n g e i t h e r u r a n i u m ( I V ) o r u r a n i u m ( V ) , d e p e n d i n g on t h e experimental conditions (22c,d,e). U r a n i u m ( V ) , by i t s redox p o t e n t i a l , s h o u l d a l s o be a p l u t o n i u m r e d u c t a n t (24). The r e a c t i o n f o r r e d u c t i o n o f p l u t o n i u m ( I V ) by uranium(IV) i s 2 Pu
k+
or,
+ U
4
+
+ 2 H 0 + 2 Pu 2
3 +
+ U0
2
2 +
+ 4 H
+
(1)
f o r r e d u c t i o n by u r a n i u m ( V ) , Pu**
+ U0
2
+
+ Pu
3 +
+ U0
2
2 +
.
(2)
A l t h o u g h t h e r e d o x p o t e n t i a l s f o r aqueous s o l u t i o n i n d i c a t e t h a t u r a n i u m ( I V ) s h o u l d r e d u c e p l u t o n i u m ( I V ) , a n i o n s and o t h e r c o m p l e x i n g a g e n t s can change t h e p o t e n t i a l s s u f f i c i e n t l y t h a t u r a n i u m ( I V ) and p l u t o n i u m ( I V ) can c o e x i s t i n s o l u t i o n (25). Since one o f t h e p r o d u c t s o f p h o t o c h e m i c a l r e d u c t i o n o f u r a n y l b y TBP i s d i b u t y l phosphate (DBP), which complexes p l u t o n i u m ( I V ) s t r o n g l y , e x p e r i m e n t s were done t o t e s t t h e p h o t o c h e m i c a l l y p r o d u c e d u r a n i um(IV) s o l u t i o n s as p l u t o n i u m ( I V ) r e d u c t a n t s (26). Bench-scale s t a t i o n a r y t e s t s showed t h e s e s o l u t i o n s t o be e q u i v a l e n t t o hydroxylamine n i t r a t e s o l u t i o n s s t a b i l i z e d with hydrazine (27). The r e s u l t s o f t h e s e e x p e r i m e n t s a r e shown i n T a b l e I I . For these e x p e r i m e n t s , t h e u r a n i u m ( I V ) was i n t h e o r g a n i c p h a s e a n d t h e p l u t o n i u m ( I V ) was i n t h e a q u e o u s p h a s e . A l t h o u g h l a r g e amounts o f n i t r i t e were p r e s e n t i n t h e a q u e o u s p h a s e , no n i t r i t e suppressors were n e c e s s a r y . I n r e d u c t i o n s i n w h i c h b o t h t h e u r a n i u m ( I V ) and
In Actinide Separations; Navratil, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by HARVARD UNIV on June 27, 2014 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch019
DEPOORTER AND ROFER—DEPOORTER
Photochemical
Techniques
Table II. Organic U (IV)-Aqueous Pu (IV) Reductions Experiments
Pu After Reduction Aqueous Organic
U(IV) Pu(IV)
Aqueous
Organic
Pu(o) Pu(a)
Pu(a) Pu(o)
0.73
2.34
1.93 g/8
0.0544
0.0282
35.48
0.29
5.86
1.90
0.0408
0.0215
46.57
0.15
11.72
1.84
0.0245
0.0133
75.10
Initial Solution Concentrations Aqueous: 2.04 g/fi Pu (0.0085 M), 1.5 Ν Η Ν 0 Organic: U(IV) 0.0147 M, U(VI) 0.0187 M, 33 v% Τ BP in CCI, No Nitrite suppressors used in either phase 3
In Actinide Separations; Navratil, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
ACTINIDE SEPARATIONS
274
Downloaded by HARVARD UNIV on June 27, 2014 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch019
p l u t o n i u m ( I V ) were i n i t i a l l y i n t h e o r g a n i c p h a s e , t h e p h o t o c h e m i c a l l y p r o d u c e d u r a n i u m ( I V ) was a l s o e f f e c t i v e i n r e d u c i n g t h e p l u t o n i u m ( I V ) and a l l o w i n g i t t o be s t r i p p e d i n t o t h e aqueous phase. We c o n c l u d e t h a t t h e amount o f DBP p r o d u c e d i n t h e p h o t o l y s i s was n o t s u f f i c i e n t t o i n t e r f e r e i n t h e s t r i p p i n g o f p l u t o n i u m (III) from the organic phase. F u r t h e r e x p e r i m e n t s s h o u l d b e done t o d e t e r m i n e t h e amounts o f DBP a n d o t h e r p o t e n t i a l l y d e l e t e r i o u s byproducts generated by the various photochemical u r a n y l reductions. The p h o t o c h e m i c a l r e d u c t i o n o f a s o l u t i o n c o n t a i n i n g b o t h uranium(VI) and p l u t o n i u m ( I V ) i s a l s o o f i n t e r e s t f o r r e p r o c e s sing applications. E a r l y experiments (12a) showed a s i g n i f i c a n t reduction o f plutonium(IV) by l i g h t i n Purex-type process s o l u tions. S i n c e t h e quantum y i e l d f o r p l u t o n i u m r e d o x r e a c t i o n s i s a b o u t o n e - t e n t h t h a t f o r u r a n y l r e d u c t i o n ( 7 b , c ) t h e most l i k e l y path o f plutonium(IV) r e d u c t i o n i n these experiments appears to have been by uranium(IV) o r uranium(V) g e n e r a t e d b y p h o t o c h e m i c a l r e d u c t i o n o f u r a n y l b y o t h e r components o f t h e s o l u t i o n s . Further experiments i n t h i s a r e a would be u s e f u l . P h o t o c h e m i c a l s e p a r a t i o n , w i t h t h e new c a p a b i l i t i e s o f l a s e r s as l i g h t s o u r c e s , p r o v i d e s many new a r e a s o f i n v e s t i g a t i o n . Appli c a t i o n of photochemical techniques to a c t i n i d e separations alone h a s an enormous p o t e n t i a l . A s l a s e r s become more r e l i a b l e a n d e c o n o m i c a l , p h o t o c h e m i c a l s e p a r a t i o n s h o u l d become a n a t t r a c t i v e t e c h n i q u e f o r many s y s t e m s . Acknowledgement We t h a n k D . T . V i e r a n d E . L . Z e b r o s k i ( E l e c t r i c Power Research I n s t i t u t e ) f o r h e l p f u l d i s c u s s i o n s o f e a r l y photochemical actinide research. T h e s k i l l o f J . M . F u r n i s h i n l o c a t i n g some o f t h e o l d e r r e f e r e n c e s was i n v a l u a b l e .
Literature Cited 1. 2. 3. 4.
5.
Hartley, H.; Ponder, A. O.; Bowen, E. J.; Merton, T. R. Phil. Mag. (1922) 43(6), 430. (a) Kuhn, W.; Martin, H. Naturwiss. (1932) 20, 772. (b) Kuhn, W.; Martin, H. Z. Physik. Chem. (1932) B21, 93. Brewster, D. Trans. Roy. Soc. Edinburgh (1833), 12. (a) Lipkin, D.; Weissman, S. I. Jan 1943, Columbia University Report 100XR-79. (b) Urey, H. C. Jul 1943, Columbia University Report 2C-R-135. (c) Crist, R. H. Feb 1944, Columbia University Report 2R-1241. (d) Dieke, G. H. Mar 1945, Manhattan District Report A-3227. (e) Dieke, G. H.; Duncan, A. B. F. "Spectroscopic Properties of Uranium Compounds"; McGraw-Hill: New York, 1949. For example: (a) Uranyl ion. Rabinowitch, E.; Belford, R. L. "Spectroscopy and Photochemistry of Uranyl Compounds"; Macmillan: New York, 1964. Burrows, H. D.; Kemp, T. J. Chem. Soc. Rev. (1974), 139. (b) Uranium(V). Newton, T. W.;
In Actinide Separations; Navratil, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by HARVARD UNIV on June 27, 2014 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch019
19. DEPOORTER AND ROFER—DEPOORTER
6.
7.
8. 9.
10. 11. 12.
13. 14. 15. 16. 17. 18.
Photochemical Techniques
275
Baker, F. B. Inorg. Chem. (1965) 4(8), 1166. Ekstrom, A. Inorg. Chem. (1974) 13(9), 2237. (c) Uranous. Ahrland, S.; Liljenzin, J. O.; Rydberg, J. In "Comprehensive Inorganic Chemistry" , Bailar, J. C., Ed.; Pergamon Press: New York, 1973; Vol. 5. (d) Trivalent uranium. Drozdzynski, J . J. Inorg. Nucl. Chem. (1973) 40, 319. (e) Plutonium III, IV, V, and VI. Costanzo, D. Α.; Biggers, R. E.; Bell, J. T. J. Inorg. Nucl. Chem. (1973) 35, 609. (f) Neptunium IV, V, and VI. Hindman, J. C.; Magnusson, L. B.; LaChapelle, T. J. In "The Transuranium Elements", Seaborg, G. T.; Katz, J. J.; Manning, W. M., Eds., McGraw-Hill: New York, 1949. (g) Americium III and Curium III. Penneman, R. Α.; Keenan, T. K. "The Radiochemistry of Americium and Curium", Nuclear Science Series 1960 NAS-NS-3006. (a) Nemodruck, Α. Α.; Bezrogova, Ε. V.; Ivanova, S. Α.; Novikov, Yu. P. Zh. Anal. Khim. (1972) 27(1), 73; 27(7), 1270; 27(12), 2414; (1973) 28(2), 379. (b) Toth, L. M.; Friedman, Η. Α.; Bell, J . T. private communication. (a) Palei, P. N.; Nemodruk, Α. Α.; Bezrogova, Ε. V. Radiokhimiya (1969) 11(3), 300. (b) Bell, J. T.; Friedman, H. A. J. Inorg Nucl. Chem. (1976) 38, 831. (c) Friedman, Η. Α.; Toth, L. M.; Bell, J . T. J . Inorg. Nucl. Chem. (1977) 39, 123. Zaki, M. R.; Farah, M. Y.; El-Fekey, S. Α., Acta Chim. (Budapest) (1974) 80(2), 167. (a) Singh, K.; Sahoo, B.; Patnaik, D. Proc. Indian Acad. Sci. (1959) 50A, 129. (b) Singh, K.; Patnaik, D. Proc. Indian Acad. Sci. (1959) 50A, 358. (c) Singh, K.; Sahoo, B.; Patnaik, D. J . Sci. Ind. Res. (1960) 19B, 31. Donohue, T. Chem. Phys. Lett. (1977) 48(1), 119. Donohue, T. J. Chem. Phys. (1977) 67(11), 5402. (a) Haas, W. O.; Zebroski, E. L. Aug 1950, General Electric Report KAPL-375. (b) Burger. L. L.; Rehn, I. M.; Slansky, C. M. Feb 1952, General Electric Report HW-19949. (c) Ghosh Mazumdar, A. S.; Sivaramakrishnan, C. K. J. Inorg. Nucl. Chem. (1965) 27, 2423. Karlov, Ν. V.; Prokhorov, A. M. Usp. Fiz. Nauk (1977) 123(1), 57. Karlova, Ε. K.; Karlov, Ν. V.; Kuz'min, G. P.; Laskorin, B. N.; Prokhorov, A. M.; Stupin, N. P.; Shurmel', L. B. Pis'ma Zh. Eksp. Teor. Fiz. (1975) 22, 459. DePoorter, G. L.; Rofer-DePoorter, C. K. Jan 1976, Los Alamos Scientific Laboratory Report LA-5630-MS, Vol. II. DePoorter, G. L.; Rofer-DePoorter, C. K., J. Inorg. Nucl. Chem. (1977) 39, 2061. Karlov, Ν. V., private communication, June 1978. For example, Levenson, M.; Zebroski, E. "A Fast Breeder System Concept: A Diversion Resistant Fuel Cycle", presented at the Fifth Energy Technology Conference, Washington, D. C., Feb 1978.
In Actinide Separations; Navratil, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
276
19. 20. 21.
Downloaded by HARVARD UNIV on June 27, 2014 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch019
22.
23. 24.
25. 26. 27. 28.
ACTINIDE SEPARATIONS
For example, Okamoto, M. S.; Thompson, M. C. Nucl. Tech. (1979) 43, 126. Best, G. F.; McKay, H. A. C.; Woodgate, P. R., J. Inorg. Nucl. Chem. (1957) 4, 315. For example, Jenkins, Ε. N.; Streeton, R. J. W. 1959 Report AERE-R-3158. (a) Carroll, J. L.; Burns, R. E.; Warren, H. D. 1961 General Electric Report HW-70543. (b) Toth, L. M.; Friedman, Η. Α.; Bell, J. T. In "Proceedings of the ANS Topical Meeting on the Plutonium Fuel Cycle", 1977 CONF-7705061. (c) Rofer-DePoorter, C. K.; DePoorter, G. L. J. Inorg. Nucl. Chem. (1977) 39, 631. (d) DePoorter, G. L.; Rofer-DePoorter, C. K. J. Inorg. Nucl. Chem. (1978) 40, 1895. (e) Rofer-DePoorter, C. K.; DePoorter, G. L. J. Inorg. Nucl. Chem. (1979) 41, 215. (f) DePoorter, G. L.; Rofer-DePoorter, C. K. U. S. Patent 4 080 273, 1978. Bhat, T. R.; Mathur, B. S. Indian J. Technol. (1963) 1, 14. Fuger, J.; Oetting, F. L. "The Chemical Thermodynamics of Actinide Elements and Compounds", part 2, "The Actinide Aqueous Ions"; International Atomic Energy Agency: Vienna, 1976. (a) Marcus, Y. J. Phys. Chem. (1958) 62, 1314. (b) Yanir, E.; Givon, M.; Marcus, Y. J. Inorg. Nucl. Chem. (1968) 32, 1322. DePoorter, G. L.; Rofer-DePoorter, C. K.; Hayter, S. W. Nucl. Tech. (1979) 43, 132. (a) Richardson, G. L.; Swanson, J. L. 1975 Report HEDL-TME-7531. (b) Barney, G. S. 1971 Report ARH-SA-100. Keder, W. E.; Ryan, J. L.; Wilson, A. S. J. Inorg. Nucl. Chem. (1961) 20, 131.
RECEIVED
August 31, 1979.
Work performed under the auspices of U.S. Energy Research and Development Administration under contract number W-7405-eng-36.
In Actinide Separations; Navratil, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.