13 Surface Chemistry of Dental Integuments
Downloaded via UNIV OF ARIZONA on July 22, 2018 at 15:38:17 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
RONALD P. QUINTANA Department of Medicinal Chemistry, College of Pharmacy, University of Tennessee Center for the Health Sciences, Memphis, Tenn. 38163
The acquired pellicle, a proteinaceousfilmadsorbed onto tooth surfaces, plays a significant role in the development of dental plaque which is a prime etiologic factor in dental caries and in periodontal disease. The chemical nature and function of pellicle in plaque genesis are reviewed along with the interactivities contributing to the integrity of plaque. Among antiplaque agents under current investigation is chlorhexidine, 1,1'-hexamethylenebis[5-(p-chlorophenyl)biguanide]. The relevance of surface chemistry to the compound's efficacy is summarized.
^
r e c e n t l y p u b l i s h e d m o n o g r a p h ( 1 ) d e a l t w i t h t h e r e l e v a n c e o f surf a c e c h e m i s t r y a n d p h y s i c s i n the c o n t r o l of d e n t a l - d e p o s i t - m e d i a t e d
diseases, w i t h t h e characteristics a n d n a t u r e o f d e n t a l deposits, t h e i r p r e d i l e c t i o n f o r pathogenesis,
w i t h demographic
and
with
prevalence
patterns o f disorders associated w i t h d e n t a l i n t e g u m e n t s , a n d w i t h c o n -
ORAL
ENVIRONMENT
DENTAL PLAQUE
Miaoflora Matrix
ACQUIRED PELLICLE ////TOOTH SURFACE ' / / / / / / //////^MEL) / / / / / / / / / Figure
1.
Schematic representation integuments
of dental
290
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
13.
Q U I N TA N A
Dental
291
Integuments
v e n t i o n a l p r o p h y l a c t i c practices.
T h i s p a p e r s u m m a r i z e s the c h e m i s t r y
of d e n t a l i n t e g u m e n t s , i n c l u d i n g p e r t i n e n t n e w
findings.
W h i l e there has b e e n c o n s i d e r a b l e c o n f u s i o n i n r e g a r d to n o m e n c l a t u r e of d e n t a l i n t e g u m e n t s , F i g u r e 1 delineates the terms a c q u i r e d p e l l i c l e a n d d e n t a l p l a q u e as t h e y are u s e d i n this c h a p t e r . T h e a c q u i r e d p e l l i c l e is a structureless, colorless, t r a n s l u c e n t , almost i n v i s i b l e
film,
0.05—1μ t h i c k , w h i c h forms r a p i d l y a n d s p o n t a n e o u s l y o n c l e a n t o o t h surfaces a n d adheres there r a t h e r t e n a c i o u s l y ; i t has a s a l i v a r y o r i g i n a n d a p r o t e i n n a t u r e . Its f o r m a t i o n is i n d e p e n d e n t of b a c t e r i a . W h i l e i t m a y b e r e m o v e d b y abrasives or b y s c a l i n g , i t reforms q u i c k l y ( 2 , 3, 4, 5,
6).
D e n t a l p l a q u e , o n the other h a n d , constitutes " a soft a m o r p h o u s g r a n u l a r deposit w h i c h a c c u m u l a t e s o n the surfaces of t e e t h " ( 3 )
(see
Figure 2).
W h e n m a t u r e , i t comprises " a m y r i a d of m i c r o o r g a n i s m s e m b e d d e d i n a r e l a t i v e l y i n s o l u b l e m a t r i x t h a t is l a r g e l y of m i c r o b i a l o r i g i n , b u t is at least p a r t i a l l y of s a l i v a r y o r i g i n . It contains little f o o d d e b r i s a n d o n l y a few epithelial cells" (2).
A
Β
Figure 2. Dental plaque on human teeth: A , unstained dentition; B, the same teeth stained with solution disclosing the presence of plaque (dark areas on tooth surfaces) M a n y factors affect the d e v e l o p m e n t of p l a q u e o n a tooth, i n c l u d i n g ( a ) the l o c a t i o n of the t o o t h i n the m o u t h , ( b ) the a n a t o m y of the t o o t h a n d t h a t of s u r r o u n d i n g tissues, ( c )
the n a t u r e of t h e t o o t h
surface,
(d)
the presence of nutrients f r o m the diet, s a l i v a , a n d g i n g i v a l
fluid,
(e)
the t i m e of exposure of the t o o t h i n the o r a l e n v i r o n m e n t , etc.
(7).
W h i l e p l a q u e forms o n almost a n y s m o o t h e n a m e l surface w h e r e a b r a s i o n is m i n i m a l , i t seems to a c c u m u l a t e m o r e r e a d i l y i n i n t e r p r o x i m a l areas adjacent to g i n g i v a l m a r g i n s , i n e n a m e l defects, a n d at other sites w h i c h are n o t s e l f - c l e a n s i n g . Its a d h e r e n c e to the u n d e r l y i n g s u r f a c e is r e l a t i v e l y strong.
R i n s i n g or s p r a y i n g w i t h w a t e r w i l l n o t r e m o v e i t c o m -
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
292
A P P L I E D C H E M I S T R Y A T PROTEIN I N T E R F A C E S
p l e t e l y , b u t m e c h a n i c a l c l e a n s i n g s u c h as t o o t h b r u s h i n g w i t h dentifrices (2, 3) can. Formation
of Acquired
"Pellicle
P e l l i c l e is b e l i e v e d to result f r o m selective a d s o r p t i o n of s a l i v a r y proteins
and
glycoproteins
onto the
p r i s i n g t h e e n a m e l surface. Ca
1 0
(PO )6(OH)2 4
properties). further
(see
hydroxyapatite
crystallites
P u r e h y d r o x y a p a t i t e has the
com-
composition
R e f . 8 for details of its c r y s t a l s t r u c t u r e a n d
W h i l e m a n y details of the c o m p o s i t i o n of p e l l i c l e r e q u i r e
investigation, a
sialic-acid-containing glycoprotein
in
human
s a l i v a appears to h a v e a h i g h affinity for h y d r o x y a p a t i t e , even i n c o m p e t i t i o n w i t h other and
Sonju reported
glycoproteins sulfated
f o r m e d o n teeth in vivo;
(9)
(cf.
glycoproteins
Ref. 5 ) . to
be
Moreover,
present
Rolla
in pellicle
e v i d e n c e was a l r e a d y a v a i l a b l e for the
occur-
rence of s u c h c o m p o u n d s i n s a l i v a a n d for t h e i r affinity for h y d r o x y a p a tite ( J O ) . C o n s i d e r i n g t h e p r o m i n e n t a d s o r p t i o n characteristics of a c i d i c p r o t e i n s or g l y c o p r o t e i n s , a n i m p o r t a n t factor i n the a d s o r p t i o n process m a y be t h e affinity b e t w e e n
c a l c i u m of h y d r o x y a p a t i t e a n d n e g a t i v e l y
c h a r g e d c a r b o x y l a t e ( o r s u l f a t e ) groups of s a l i v a g l y c o p r o t e i n s
(9,
11).
A n a l y s e s for t h e c a r b o h y d r a t e c o m p o n e n t s of p e l l i c l e g l y c o p r o t e i n have
r e v e a l e d the p r e s e n c e of
s i a l i c a c i d , fucose, glucose,
galactose,
m a n n o s e , N - a c e t y l g l u c o s a m i n e , a n d N - a c e t y l g a l a c t o s a m i n e (2, 4). a c i d a n d fucose t y p i c a l l y o c c u r i n t e r m i n a l positions of the
r i d e c h a i n , w h e r e a s N - a c e t y l g l u c o s a m i n e or N - a c e t y l g a l a c t o s a m i n e ties l i n k the s a c c h a r i d e segment to the p r o t e i n core (2).
Sialic
oligosacchamoie-
Schrager and
O a t e s ' studies o n the p r i n c i p a l g l y c o p r o t e i n f r o m h u m a n m i x e d s a l i v a h a v e i n d i c a t e d the latter to possess " a b a s i c h o m o g e n e o u s
composition
a n d s t r u c t u r e b u t [to b e ] p o l y d i s p e r s e w i t h respect to r e a c t i v e e n d groups [sulfate; s i a l i c a c i d ] a n d c h a r g e " (12). a n d q u a n t i t a t i v e differences
It w a s also n o t e d that q u a l i t a t i v e
exist a m o n g
carbohydrate
components
of
t h e p r i n c i p a l s a l i v a r y g l y c o p r o t e i n a n d those d e r i v e d f r o m p l a s m a . G a l a c t o s a m i n e was f o u n d i n the s a l i v a r y g l y c o p r o t e i n b u t n o t i n p l a s m a g l y c o p r o t e i n s ; conversely, mannose was absent i n s a l i v a r y b u t present i n p l a s m a glycoproteins.
T h u s pellicle glycoproteins
comprise
both salivary and
p l a s m a types. T h e a m i n o a c i d c o m p o s i t i o n of the p r o t e i n p o r t i o n of a 2-hour p e l l i c l e a c q u i r e d in vivo o n h u m a n teeth was the subject of a c o m m u n i c a t i o n b y S o n j u a n d R o l l a (13).
Their data (Table I)
are significant because,
u n l i k e p r e v i o u s studies i n w h i c h p e l l i c l e films w e r e o b t a i n e d b y
acid
d e m i n e r a l i z a t i o n of t o o t h e n a m e l , t h e i r p e l l i c l e p r e p a r a t i o n w a s r e m o v e d b y c a r e f u l s c a l i n g o n l y . N o significant differences w e r e o b s e r v e d i n
find-
ings f o r v a r i o u s teeth, a n o b s e r v a t i o n that supports selective a d s o r p t i o n
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
13.
Dental
QUINTA N A
293
Integuments
of the s a l i v a r y proteins. S m a l l amounts of g l u c o s a m i n e a n d galactosamine, i n d i c a t i v e of g l y c o p r o t e i n s , w e r e also d e t e c t e d ; no d i a m i n o p i m e l i c a c i d or m u r a m i c a c i d w a s f o u n d , h o w e v e r , p o i n t i n g to the absence of
bac
t e r i a l c o n t a m i n a t i o n . Sonju a n d R o l l a f u r t h e r o b s e r v e d t h a t the a m o u n t of p e l l i c l e d e p o s i t e d o n h u m a n teeth c o n t i n u e d to increase for 1.5 hrs a n d then l e v e l e d off. film
T h i s is consistent w i t h p r i o r findings of others that the
adjacent to the e n a m e l surface h a d a m a x i m u m thickness of
about
1μ e v e n after s e v e r a l days. Table I.
Amino A c i d Composition of 2 - H o u r Pellicle"
Amino
Acid
Content* moles/100 moles
Asp Thr Ser Glu Pro Gly Ala Val Cys He Leu Tyr Phe Orn Lys His Arg
7.3 3.7 9.6 12.8 2.2 17.0 7.3 4.1 0.9 2.9 6.1 1.6 2.9 6.4 7.0 4.1 4.1
« F r o m R e f . 13. A v e r a g e values. h
U s i n g contact angle measurements, B a i e r d e t e r m i n e d the c r i t i c a l surface tension of the s p o n t a n e o u s l y a c q u i r e d films d e p o s i t e d o n a c l e a n i n o r g a n i c s o l i d p l a c e d i n h u m a n m o u t h s for p e r i o d s of 30 sec, 2 m i n , a n d 15 m i n (14)
(see
T a b l e I I ) . C o n c u r r e n t d e t e r m i n a t i o n of m u l t i p l e a t t e n
u a t e d i n t e r n a l reflection I R spectra of the a d s o r b e d films p r o v i d e d e v i d e n c e for the presence of p r o t e i n m a t e r i a l . W h i l e the spectra r e v e a l e d Table II.
D a t a From Contact Angle Experiments on Surface Film Adsorbed onto Clean Solid Placed in the M o u t h α
Exposure in Mouth, min
Critical Surface Tension,* dynes/cm
Slope, cm/dyne
0.5 2 15
33.3 34.3 36.1
-0.014 -0.012 -0.008
« F r o m Ref. h
6
14.
D e t e r m i n e d f r o m Z i s m a n plots
(14)·
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
294 no
APPLIED CHEMISTRY
major
changes
i n composition,
the
AT PROTEIN
progressive
INTERFACES
surface-chemical
changes—i.e., increase i n c r i t i c a l surface tension, decrease i n slope
of
t h e Z i s m a n p l o t s — w e r e i n t e r p r e t e d to m e a n that the c o n f i g u r a t i o n r a t h e r t h a n the c o m p o s i t i o n of the film c o m p o n e n t s
was changing.
S i n c e the
o b s e r v e d changes reflected a t r e n d t o w a r d s g e n e r a l l y greater surface free energies, i t w a s suggested " t h a t d e n t a l i n t e g u m e n t s b e c o m e m o r e a n d m o r e a ' c o m f o r t a b l e ' substrate for a t t a c h m e n t , a d h e s i o n , a n d c o l o n i z a t i o n b y o r a l b a c t e r i a as t i m e lapses." B a i e r also c o n d u c t e d teeth in situ (14).
p r e l i m i n a r y c o n t a c t - a n g l e studies o n h u m a n
H e d e t e r m i n e d values of c r i t i c a l surface t e n s i o n to be
a p p r o x i m a t e l y 32 d y n e s / c m for teeth w h i c h h a d b e e n r e c e n t l y c l e a n e d w i t h toothpaste. cleaned.
A s i m i l a r v a l u e was o b t a i n e d for teeth n o t as r e c e n t l y
T a k i n g other factors i n t o c o n s i d e r a t i o n , a surface energy
30 to 40 e r g s / c m
2
of
represents the n a t u r a l s i t u a t i o n . T h e exact v a l u e s are
c o n t i n g e n t u p o n i n d i v i d u a l e a t i n g a n d o r a l h y g i e n e practices.
Development
of Dental
Plaque
S u b s e q u e n t to the d e p o s i t i o n of p e l l i c l e , p r e d o m i n a n t l y
coccoidal
bacteria appear a n d proliferate. T h e y originate, apparently, from enamel defects, f r o m adjacent o r a l tissues, a n d f r o m the s a l i v a (2, 15). c o n n e c t i o n , s c a n n i n g e l e c t r o n m i c r o s c o p e studies (16)
I n this
suggest that g i n g i -
v a l fluid is i m p o r t a n t for tooth-surface c o l o n i z a t i o n . B a c t e r i a l a c c u m u l a tions o c c u r r e d o n a c l e a n e d t o o t h w i t h i n five m i n u t e s w h e n r e a d i l y a v a i l a b l e ( f r o m severely i n f l a m e d g i n g i v a e )
fluid
was
whereas, i n other
instances, m i c r o o r g a n i s m s w e r e e v i d e n t after a f e w h o u r s , " s m a l l colonies of
organisms
[being]
readily observed
after 24 hours of
continuous
exposure to the o r a l e n v i r o n m e n t . " More
specifically, streptococci
c o l o n i z e o n the t o o t h surface.
are a m o n g
the
first
organisms
to
I n the o r a l c a v i t y of m a n , Streptococcus
mutans is p a r t i c u l a r l y i m p o r t a n t since some correlations b e t w e e n caries a c t i v i t y a n d the presence of this o r g a n i s m i n p l a q u e h a v e b e e n m a d e
(17).
A s n o t e d b y G i b b o n s a n d S p i n e l l , t w o m o d e s of a d h e s i o n o c c u r i n the d e v e l o p m e n t of d e n t a l p l a q u e : ( a )
a d h e s i o n of the m i c r o o r g a n i s m s
to the tooth surface ( o r to t h e a c q u i r e d p e l l i c l e ) a n d ( b ) the m i c r o b i a l cells to one a n o t h e r (18).
a d h e s i o n of
O n e of the m o s t d i s t i n g u i s h i n g
characteristics of S. mutans is the a b i l i t y to p r o d u c e e x t r a c e l l u l a r p o l y saccharides f r o m sucrose, a n d a v a i l a b l e d a t a suggest that these
com-
p o u n d s p l a y a significant r o l e i n p l a q u e genesis. T h e m e c h a n i s m r e q u i r e s e l u c i d a t i o n , b u t one e x p l a n a t i o n proposes that the a b i l i t y of h i g h - m o l e c u l a r - w e i g h t dextrans to t r i g g e r a g g l u t i n a t i o n of S. mutans is i n v o l v e d
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
(19).
13.
Q U I N TA N A
Dental
295
Integuments
S i n c e l o w - m o l e c u l a r - w e i g h t dextrans d o n o t p r o m o t e
aggregation,
the
process r e q u i r e s m o l e c u l e s of d i m e n s i o n s so as to effect b i n d i n g of m o r e t h a n one s t r e p t o c o c c a l c e l l p e r m o l e c u l e of d e x t r a n . T h e n a t u r e of the r e c e p t o r sites o n the surface of the m i c r o o r g a n i s m s is not clear, b u t they m a y b e associated w i t h dextransucrase, the e n z y m e r e s p o n s i b l e for dext r a n synthesis. It is present as a cell-associated f o r m a n d is k n o w n to h a v e a h i g h affinity for dextrans (19). t r e a t m e n t of
oral streptococci
L i l j e m a r k a n d Schauer's w i t h proteolytic enzymes
finding
that
reduced
the
m i c r o o r g a n i s m s ' a d h e r e n c e to s a l i v a - c o a t e d or d e x t r a n - c o a t e d h y d r o x y apatite supports p r o t e i n i n v o l v e m e n t o n t h e b a c t e r i a l c e l l surface i n the r e a c t i v e site b i n d i n g the b a c t e r i a to h y d r o x y a p a t i t e (20). ments
also
demonstrated
that m i c r o o r g a n i s m s
not
Their experi-
subjected
to
any
p r e t r e a t m e n t a d h e r e d c o n s i d e r a b l y better to s a l i v a - c o a t e d a n d to d e x t r a n c o a t e d h y d r o x y a p a t i t e t h a n to u n c o a t e d h y d r o x y a p a t i t e . A c c o r d i n g to R o l l a , i o n i c b o n d s are i m p o r t a n t i n the associations b e t w e e n b a c t e r i a l p o l y s a c c h a r i d e s a n d p r o t e i n - c o a t e d t o o t h surfaces T h i s w a s b a s e d o n in vitro hydroxyapatite powder
(21).
experiments o n the affinity of d e x t r a n for
c o a t e d w i t h s a l i v a r y g l y c o p r o t e i n ; specifically,
a d s o r p t i o n of d e x t r a n was i n h i b i t e d b y 0 . 5 M . P r i o r t r e a t m e n t of the c o a t e d h y d r o x y a p a t i t e w i t h n e u r a m i n i d a s e also r e d u c e d a d s o r p t i o n of d e x t r a n . N e u r a m i n i d a s e w o u l d be e x p e c t e d to r e d u c e the negative c h a r g e of the p r o t e i n coat b y r e m o v i n g i o n i z e d sialic a c i d moieties. O f course, r e d u c e d a d s o r p t i o n of d e x t r a n c o u l d result f r o m c o n f o r m a t i o n a l changes i n d u c e d i n the p e l l i c l e p r o t e i n b y the n e u r a m i n i d a s e t r e a t m e n t , as w a s a p p a r e n t l y effected b y 4M or 8 M u r e a , i n o t h e r e x p e r i m e n t s . W h i l e i m p o r t a n t , d e x t r a n - m e d i a t e d a d h e s i o n is not the o n l y f a c t o r i n v o l v e d i n d e n t a l p l a q u e f o r m a t i o n . I n fact, most types of p l a q u e b a c teria n e i t h e r elaborate
d e x t r a n n o r are a g g l u t i n a t e d b y i t .
Thus, in
e x p l o r i n g other m o d e s of i n t e r b a c t e r i a l a d h e s i o n i n the e v o l v i n g p l a q u e , G i b b o n s a n d S p i n e l l h a v e o b t a i n e d e v i d e n c e suggesting a r o l e for s a l i v a r y proteins (18).
T h e s a l i v a r y p o l y m e r s t h e y s t u d i e d i n t e r a c t e d w i t h the
m i c r o o r g a n i s m s ' surfaces w h i l e effecting a g g r e g a t i o n .
The
composition
of the c o m p o u n d s a n d the m e c h a n i s m of t h e i r interactions w e r e t h o u g h t to b e " v i t a l for a n u n d e r s t a n d i n g of p l a q u e f o r m a t i o n . " Thus, i n plaque, both carbohydrate and protein material contribute to the m a t r i x . W h i l e the origins of these components h a v e b e e n i n d i c a t e d , other hypotheses
w e r e a d v a n c e d to e x p l a i n i n c o r p o r a t i o n of s a l i v a r y
proteins i n p l a q u e (18).
F o r e x a m p l e , L e a c h has p r o p o s e d that p l a q u e
proteins arise as a result of the a c t i o n of glycosidases dase) on salivary glycoproteins ( 5 ) .
(e.g., n e u r a m i n i -
D a t a of B r i s c o e et al. suggest, h o w -
ever, that n e u r a m i n i d a s e does not m o d i f y a d s o r p t i o n b e h a v i o r of s a l i v a r y proteins
(22).
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
296
APPLIED CHEMISTRY
Surface-Chemical
Aspects of Chlorhexidine
A T PROTEIN
INTERFACES
in Plaque Control
D e n t a l p l a q u e constitutes a p r i m a r y e t i o l o g i c factor i n b o t h d e n t a l caries a n d i n p e r i o d o n t a l diseases; a n d since these c o n d i t i o n s a r e a m o n g the most p r e v a l e n t affecting m a n k i n d (23), one c o u l d n o t o v e r e s t i m a t e the v a l u e o f t r u l y effective p l a q u e - c o n t r o l agents
Among
(24, 25, 26).
c o m p o u n d s u n d e r c u r r e n t i n v e s t i g a t i o n f o r c l i n i c a l use is t h e b i s b i g u a n i d e chlorhexidine biguanide]
(Structure I ) , lJ'-hexamethylenebisCS-p-ichlorophenyl)-
(e.g., 24, 27-37).
I t is n o r m a l l y u s e d
as a d i g l u c o n a t e ,
diacetate, or d i h y d r o c h l o r i d e salt. NH C I - \ 0 / ¥ ' ^
'
Η
C
^
N H N
/
Η
C
X
N
N H
—° ^Η ΟΗ ΟΗ ΟΗ Η
2
2
2
2
C H r - N ^
Η
Η
C
v
N H N ^
Η
C
x
N y Q V c i
Η ^
'
I C h l o r h e x i d i n e has a b r o a d s p e c t r u m of a n t i m i c r o b i a l a c t i o n w h i c h , u n d o u b t e d l y , is associated w i t h its a n t i p l a q u e effects.
T h e mechanism
has b e e n s t u d i e d extensively b y H u g o a n d L o n g w o r t h w h o r e p o r t t h a t c h l o r h e x i d i n e behaves s i m i l a r l y to c a t i o n i c a n t i b a c t e r i a l agents s u c h as surface-active quaternary a m m o n i u m compounds
(38, 39, 40; cf. 41).
T h e p r i m a r y a c t i o n i n v o l v e s a d s o r p t i o n of the c o m p o u n d
onto t h e c e l l
surface, t h e r e a c t i v e sites b e i n g a n i o n i c . T h i s is f o l l o w e d b y a d i s r u p t i v e effect o n t h e c y t o p l a s m i c m e m b r a n e ,
changes i n p e r m e a b i l i t y of t h e
latter, a n d l e a k a g e of i n t r a c e l l u l a r c o m p o n e n t s . chlorhexidine,
however,
m a y inhibit
leakage
H i g h concentrations of b y inhibiting
autolytic
e n z y m e s , b y f o r m i n g a s e a l i n g l a y e r ( o r l a y e r s ) o n t h e c e l l surface, b y c o n g e a l i n g t h e c y t o p l a s m i c m e m b r a n e , or b y p r e c i p i t a t i n g i n t r a c e l l u l a r components (proteins, nucleic a c i d ) . O t h e r studies h a v e s h o w n a p p r o p r i a t e concentrations of c h l o r h e x i d i n e to i n h i b i t adenosine t r i p h o s p h a t a s e of Streptococcus faecalis m e m b r a n e . E l e c t r o n m i c r o g r a p h s h a v e s h o w n a s o - c a l l e d b l i s t e r i n g of b a c t e r i a l c e l l w a l l s (42) b y c h l o r h e x i d i n e . T h i s w a s a t t r i b u t e d to " c e l l u l a r e x t r u sion o r to t h e a c c u m u l a t i o n of d r u g aggregates o n t h e c e l l s u r f a c e "
(43).
I n a d d i t i o n to a n t i m i c r o b i a l a c t i v i t y , c o n t i n u i n g i n v e s t i g a t i o n reveals other i m p o r t a n t m o d e s of a n t i p l a q u e efficacy.
F o r example:
( a ) C h l o r h e x i d i n e adsorbs onto t o o t h surfaces, p e l l i c l e a n d p l a q u e , and provides an antimicrobial milieu for a period of time through gradual release of t h e c o m p o u n d (28). ( b ) T h e agent m a y also affect a d h e r e n c e of o r a l s t r e p t o c o c c i to teeth, as K o r n m a n et al. h a v e f o u n d t h a t c h l o r h e x i d i n e s i g n i f i c a n t l y r e d u c e d affinity of d e x t r a n - e n c a p s u l a t e d S. mutans f o r p r o t e i n - c o a t e d h y d r o x y a p a t i t e (44). T h e c o m p o u n d m a y r e a c t w i t h a n i o n i c f u n c t i o n s o f
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
13.
Q U I N TA N A
Dental
297
Integuments
the p r o t e i n , b l o c k i n g sites of a t t a c h m e n t n o r m a l l y a v a i l a b l e to the d e x t r a n e n c a p s u l a t e d b a c t e r i a . C h l o r h e x i d i n e , a d s o r b e d onto t o o t h surfaces, m a y act as a s u r f a c e - m o d i f y i n g agent (24). ( c ) I n v i e w of the i m p o r t a n c e of s a l i v a r y g l y c o p r o t e i n s i n p l a q u e d e v e l o p m e n t , the c o i n c i d e n c e (45) of c h l o r h e x i d i n e concentrations p r e c i p i t a t i n g s a l i v a r y g l y c o p r o t e i n s a n d those effecting c l i n i c a l efficacy is significant. T h e p H - d e p e n d e n c e of c h l o r h e x i d i n e - p r o t e i n i n t e r a c t i o n suggests the i m p o r t a n c e of the n e t n e g a t i v e c h a r g e of the proteins. ( d ) I n a d d i t i o n to c h l o r h e x i d i n e ' s efficacy i n p r e v e n t i n g a c c u m u l a tions of p l a q u e a n d c a l c u l u s , the c o m p o u n d has c a p a b i l i t i e s of affecting a l r e a d y f o r m e d p l a q u e o n teeth (24). I n this c o n n e c t i o n , T a n z e r et al. n o t e d p a r t i a l d i s r u p t i o n of in vitro p l a q u e p r e p a r a t i o n s w h e n these w e r e t r e a t e d w i t h c h l o r h e x i d i n e (46). A d e t a i l e d s t u d y of c h l o r h e x i d i n e ' s s u r f a c e - c h e m i c a l was u n d e r t a k e n i n our laboratories.
characteristics
T h i s i n c l u d e d w o r k w i t h a series of
c a r e f u l l y selected analogs c o m p r i s i n g segments of the p a r e n t
molecule
( S t r u c t u r e I I ; R = n - h e x y l , η-propyl, or H ) or extensions of these ( S t r u c ture I I ; R =
n - o c t y l or n - d o d e c y l ) .
II
T h e g r a d u a l changes i n the c h e m i c a l s t r u c t u r e a n d p h y s i c a l properties of the congeners f a c i l i t a t e d i d e n t i f i c a t i o n of m o l e c u l a r
functions
and/or
physicochemical
characteristics associated w i t h c h l o r h e x i d i n e ' s
surface-
active b e h a v i o r .
W h i l e the s t u d y e x p l o r e d p r i n c i p a l l y interactions
be
t w e e n the évaluant entities a n d m o n o m o l e c u l a r films p r o v i d i n g c a r b o x y l , h y d r o x y l , a n d a m i d e groups at the m o n o l a y e r / w a t e r interface, the c o m p o u n d s ' c o m p a r a t i v e effects at a i r / w a t e r , n - h e x a n e / w a t e r , a n d h y d r o x y a p a t i t e / w a t e r interfaces w e r e also i n v e s t i g a t e d (47, 48, The work w i t h monolayer N-octadecylacetamide)
systems
(stearic
49).
acid, stearyl alcohol,
r e v e a l e d the i m p o r t a n c e of interactions
d i c a t i o n i c c h l o r h e x i d i n e molecules
and anionic carboxylate
between
groups
in
effecting s u b s t a n t i a l increases i n the surface pressure of the films, a n d , i n the i n s t a n c e of the c h l o r h e x i d i n e analogs, also p o i n t e d to the significance of a sufficiently l e n g t h y N - a l k y l substituent ( S t r u c t u r e I I , R = 5
n-hexyl)
i n effecting film p e n e t r a t i o n . L a c k i n g the structure of a c l a s s i c a l surfactant, c h l o r h e x i d i n e , w i t h its a l t e r n a t i n g h y d r o p h o b i c
and hydrophilic
moieties, has b e e n designated as a specific surface-active
agent,
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
some
298
APPLIED CHEMISTRY A T PROTEIN
specific (50).
INTERFACES
g r o u p ( s ) b e i n g r e s p o n s i b l e f o r its a c c u m u l a t i o n at interfaces T h e c o m p a r a t i v e e v a l u a t i o n o f t h e effect o f c h l o r h e x i d i n e a n d t h e
d e l i n e a t e d congeners o n surface a n d i n t e r f a c i a l tension a n d o n a d s o r p t i o n o n t o h y d r o x y a p a t i t e suggested that t h e h e x a m e t h y l e n e c h a i n is a m a j o r c o n t r i b u t o r to t h e surface a c t i v i t y of c h l o r h e x i d i n e . D e t a i l s o f studies o n the c o m p o u n d s '
a n t i p l a q u e efficacy in vitro
(51) w i l l be reported
else
where. Acknowledgment T h e a u t h o r thanks James W . C l a r k f o r t h e p h o t o g r a p h s c o n s t i t u t i n g F i g u r e 2.
Literature Cited 1. Lasslo, Α., Quintana, R. P., Eds., "Surface Chemistry and Dental Integu ments," Charles C. Thomas, Springfield, Illinois, 1973. 2. Burnett, G. W., Pennel, Β. M., "Surface Chemistry and Dental Integu ments," A. Lasslo and R. P. Quintana, Eds., pp. 3-73, Charles C. Thomas, Springfield, Illinois, 1973. 3. Glickman, I., "Clinical Periodontology," 4th ed., pp. 291-314, W. B. Saunders, Philadelphia, 1972. 4. Mayhall, C. W., Aeromed. Rev., Review 5-71, United States Air Force School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, Texas, 1971. 5. Leach, S. Α., Ala. J. Med. Sci. (1968) 5, 247-255. 6. Meckel, A. H., Arch. Oral Biol. (1965) 10, 585-597. 7. Egelberg, J., "Dental Plaque," W. D. McHugh, Ed., pp. 9-16, E. and S. Livingstone, Edinburgh, 1970. 8. Zimmerman, S., "Dental Biochemistry," E. P. Lazzari, Ed., pp. 70-91, Lea and Febiger, Philadelphia, 1968. 9. Rölla, G., Mathiesen, P., "Dental Plaque," W. D. McHugh, Ed., pp. 129140, E. and S. Livingstone, Edinburgh, 1970. 10. Rölla, G., Sönju, T., J. Dent. Res. (Special Issue) (1973) 52, 133, 193. 11. Bernardi, G., Kawasaki, T., Biochim. Biophys. Acta (1968) 160, 301-310. 12. Schrager, J., Oates, M. D. G., Arch. Oral Biol. (1971) 16, 287-303. 13. Sönju, T., Rölla, G., Caries Res. (1973) 7, 30-38. 14. Baier, R. E., "Surface Chemistry and Dental Integuments," A. Lasslo and R. P. Quintana, Eds., pp. 337-391, Charles C. Thomas, Springfield, Illinois, 1973. 15. Kleinberg, I., "Advances in Oral Biology," Vol. 4, P. H. Staple, Ed., pp. 43-90, Academic, New York, 1970. 16. Saxton, C. Α., Caries Res. (1973) 7, 102-119. 17. Krasse, B., Ala. J. Med. Sci. (1968) 5, 267-268. 18. Gibbons, R. J., Spinell, D. M., "Dental Plaque," W. D. McHugh, Ed., pp. 207-215, E. and S. Livingstone, Edinburgh, 1970. 19. Gibbons, R. J., Fitzgerald, R. J., J. Bacteriol. (1969) 98, 341-346. 20. Liljemark, W. F., Schauer, S. V., J. Dent. Res. (Special Issue) (1973) 52, 130. 21. Rölla, G., Arch. Oral Biol. (1971) 16, 527-533. 22. Briscoe, Jr., J. M., Pruitt, Κ. M., Caldwell, R. C., J. Dent. Res. (1972) 51, 819-824.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
13.
QUINTANA
Dental
Integuments
299
23. Donnelly, C. J., "Surface Chemistry and Dental Integuments," A. Lasslo and R. P. Quintana, Eds., pp. 74-192, Charles C. Thomas, Springfield, Illinois, 1973. 24. Quintana, R. P., Lasslo, Α., Clark, J. W., Baier, R. E., "Surface Chemistry and Dental Integuments," A. Lasslo and R. P. Quintana, Eds., pp. 392413, Charles C. Thomas, Springfield, Illinois, 1973. 25. Clark, J. W., Jurand, J. G., Miller, C. D., "Surface Chemistry and Dental Integuments," A. Lasslo and R. P. Quintana, Eds., pp. 193-275, Charles C. Thomas, Springfield, Illinois, 1973. 26. McHugh, W. D., J. Periodont. Res. (1972) Suppl. 10, 40-41. 27. Ochsenbein, H., Schweiz. Mschr. Zahnheilk. (1973) 83, 819-827. 28. Hamp, S., Lindhe, J., Löe, H., J. Periodont. Res. (1973) 8, 63-70. 29. Warner, V. D., Mirth, D. B., Turesky, S. S., Glickman, I., J. Pharm. Sci. (1973) 62,1189-1191. 30. Turesky, S., Glickman, I., Sandberg, R., J. Periodontol. (1972) 43, 263-269. 31. Cumming, B. R., Löe, H., J. Periodont. Res. (1973) 8, 57-62. 32. Löe, H., Mandell, M., Derry, Α., Schiøtt, C. R., J. Periodont. Res. (1971) 6, 312-314. 33. Löe, H., Int. Dent.J.(1971) 21, 41-45. 34. Löe, H., Schiøtt, C. R., J. Periodont. Res. (1970) 5, 79-83. 35. Schiøtt, C. R., Löe, H., Jensen, S. B., Kilian, M., Davies, R. M., Glavind, K., J. Periodont. Res. (1970) 5, 84-89. 36. Rölla, G , Löe, H., Schiøtt, C. R., J. Periodont. Res. (1970) 5, 90-95. 37. Davies, R. M., Jensen, S. B., Schiøtt, C. R., Löe, H., J. Periodont. Res. (1970) 5, 96-101. 38. Hugo, W. B., Longworth, A. R., J. Pharm. Pharmacol. (1966) 18, 569-578. 39. Ibid. (1964) 16, 751-758. 40. Ibid. (1964) 16, 655-662. 41. Emilson, C. G., Ericson, T., Heyden, G ., Lilja, J., J. Periodont. Res. (1972) 189-191. 42. Franklin, T. J., Snow, G. Α., "Biochemistry of Antimicrobial Action," pp. 51-53, Academic, New York, 1971. 43. Hugo, W. B., Longworth, A. R., J. Pharm. Pharmacol. (1965) 17, 28-32. 44. Kornman, K. S., Clark, W. B., Kreitzman, S. N., J. Periodont. Res. (1972) Suppl. 10, 33-34. 45. Hjeljord, L. G., Rölla, G., Bonesvoll, P., J. Dent Res. (Special Issue) (1973) 52, 191. 46. Tanzer, J. M., Reid, Y., Reid, W., Antimicrob. Ag. Chemother. (1972) 1, 376-380. 47. Quintana, R. P., Fisher, R. G., Lasslo, Α., J. Dent. Res. (1972) 51, 1687. 48. Fisher, R. G., Quintana, R. P., Boulware, Μ. Α., J. Dent. Res., in press. 49. Fisher, R. G., Quintana, R P., J. Dent. Res., in press. 50. Heard, D. D., Ashworth, R. W., J. Pharm. Pharmacol. (1968) 20, 505-512. 51. Dr. J. M. Tanzer, Department of General Dentistry, School of Dental Medi cine, University of Connecticut Health Center, private communication. RECEIVED December 4, 1973. This work was supported by the National Insti tute of Dental Research, National Institutes of Health, through Grant DE-03139.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.