14 Demonstration of the Involvement of Adsorbed Proteins in Cell Adhesion and
Downloaded by UNIV OF ROCHESTER on January 19, 2018 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch014
Cell Growth on Solid Surfaces R. E. BAIER and L. WEISS Department of Biophysics, Roswell Park Memorial Institute, Buffalo, Ν. Y.
Experiments with solids immersed in cell culture media, with and without living cells present, convincingly demon strate the absolute condition that protein-dominated films accumulate at the solid-liquid boundaries prior to cell ad hesion. The reality and speed of this spontaneous, adsorptive event are documented by using infrared-transmitting, mul tiple internal reflection plates as the immersed solid with care to prevent film transfer from gas—liquid interfaces.
*"phis brief report highlights the involvement of adsorbed ( conditioning ) films of proteins in the behavior of cells at solid surfaces, particularly during routine experiments designed to investigate the cell adhesion, cell migration, cell growth, or cell aggregation process. Adsorbable macromolecules, used in supplements to otherwise well-defined culture media, affect such experiments greatly. All our methods have been reported (1,2,3). The cells were derived from Ehrlich-Lettre hyperdiploid ascites tumors (EAT) kept in culture at the Roswell Park Memorial Institute. For details of the culture method, cultured cells, and culture media, see Refs. 4 and 5. ,
Typical
Results
A n I R s p e c t r u m of f r e s h l y p r e p a r e d R P M I 1630 c e l l c u l t u r e m e d i u m s u p p l e m e n t e d w i t h 5 % c a l f s e r u m , the m e d i u m u s e d r o u t i n e l y to c u l t u r e v i a b l e cells, is p r e s e n t e d i n F i g u r e 1.
F i g u r e 1 is a n I R s p e c t r u m of
c e n t r i f u g a l l y c o n c e n t r a t e d a n d w a s h e d E A T cells w h i c h w e r e c u l t u r e d i n this m e d i u m .
T h e I R s p e c t r u m of t h e salt-free r e s i d u e f r o m
the
s u p e r n a t a n t l i q u i d o b t a i n e d after c e n t r i f u g i n g the cells constitutes F i g u r e 300 Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14.
B A I E R A N D WEISS
Downloaded by UNIV OF ROCHESTER on January 19, 2018 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch014
3600
Figure 1.
3.
3200
Adsorbed
?300
2400
301
Proteins FREQUENCY (CM') 2000 1800
1600
1400
1200
IR spectrum of freshly prepared RPMI 1630 cell culture (+ 5% calf serum supplement) with no cells present
1000
medium
C e l l lines u s u a l l y cannot b e successfully p r o p a g a t e d i n v a r i o u s s y n -
thetic media without supplemental acterized)
s e r u m components.
(and, unfortunately, poorly
char-
This requirement for supplemental pro-
t e i n m a t e r i a l s p r o b a b l y reflects—at least i n i t i a l l y — t h e n e e d for a d s o r b a b l e proteinaceous constituents w h i c h w i l l spontaneously a c c u m u l a t e at a n d favorably
modify
(for cell
of t h e c u l t u r e containers.
adhesion
a n d propagation)
t h e surfaces
T h e r e w a s essentially n o spontaneous
film
a d s o r p t i o n f r o m f r e s h l y p r e p a r e d R P M I 1630 c u l t u r e m e d i u m w i t h o u t
FREQUENCY (CM') 2000 1800
Figure 2. IR spectrum of centrifugally concentrated and washed cells which had been cultured in RPMI 1630 medium ( + 5 % calf serum supplement)
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV OF ROCHESTER on January 19, 2018 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch014
302
APPLIED CHEMISTRY AT PROTEIN INTERFACES
a d d e d c a l f s e r u m d u r i n g a 1 0 - m i n i m m e r s i o n of a n i n t e r n a l reflection p r i s m w i t h w h i c h e v e n m o n o l a y e r a m o u n t s of o r g a n i c c o n t a m i n a t i o n c a n b e d e t e c t e d , a n d there w e r e n o significant a b s o r p t i o n b a n d s i n t h e I R spectrum ( F i g u r e 4).
B y contrast, a n o r g a n i c film w a s s p o n t a n e o u s l y
a d s o r b e d onto another p r i s m d u r i n g a 1 0 - m i n i m m e r s i o n i n a f r e s h l y p r e p a r e d c e l l c u l t u r e m e d i u m w i t h a 5%
calf serum supplement ( F i g u r e 5 ) .
T h i s s p o n t a n e o u s l y a d s o r b e d film w a s d o m i n a t e d b y a g l y c o p r o t e i n c o m -
FREQUENCY (CM) 2000 1800
1400
1200
1000
Figure 4. IR spectrum demonstrating essential absence of spontaneous film adsorption from freshly prepared RPMI 1630 cell culture medium (without added calf serum) during 10-min immersion with no cells present Technique:
MA1R,
sensitive to even a monolayer of organic
contamination
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14.
B A I E R A N D WEISS
Adsorbed
303
Proteins
p o n e n t . O n c e a d s o r b e d , i t w a s c o m p l e t e l y i n s o l u b l e i n w a t e r a n d i n saline m e d i a ; thus a d s o r p t i o n h a d d e n a t u r e d t h e film sufficiently so t h a t its o r i g i n a l s o l u b i l i t y characteristics h a d b e e n lost. W a t e r o r s a l i n e e x t r a c t i o n u s u a l l y removes g l y c o p r o t e i n o r p r o t e o g l y c a n films w h i c h are not s t r o n g l y b o u n d to the s o l i d - l i q u i d b o u n d a r y ( 3 ) . S i m i l a r l y a film w a s s p o n t a n e ously adsorbed
during a 10-min prism immersion i n used
s i d e r e d e x h a u s t e d ) c u l t u r e m e d i u m i n w h i c h cells h a d b e e n
(often
con-
propagated
for some t i m e ( F i g u r e 6 ) ; g l y c o p r o t e i n a d s o r p t i o n , e v e n f r o m t h e exhausted m e d i u m , was r a p i d a n d irreversible.
Downloaded by UNIV OF ROCHESTER on January 19, 2018 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch014
4000
3600
3200
2800
2400
FREQUENCY (CM ') 2000 1800
1600
1400
1200
1000
100
Figure 5. IR spectrum of film spontaneously adsorbed during 10-min immersion in freshly prepared cell culture medium (RPMI 1630 + 5 % calf serum supplement) with no cells present T h e presence o f these s p o n t a n e o u s l y a d s o r b e d (i.e. a d s o r b e d d u r i n g m i n i m u m exposure
t i m e s ) , t h i n films o n p o l y m e r i c substrates s u c h as
p o l y s t y r e n e c u l t u r e dishes a n d glass plates u s u a l l y c a n n o t b e d e m o n strated b y other spectroscopic
methods.
F o r example, the modified i n -
t e r n a l reflection spectroscopic t e c h n i q u e , i n w h i c h a n a u x i l i a r y salt p r i s m ( u s u a l l y the m a l l e a b l e salt K R S - 5 ) is pressed against t h e d e m o n s t r a b l y ( b y other t e c h n i q u e s )
p r o t e i n - c o a t e d substrates, a l w a y s f a i l s ; this t e c h -
n i q u e is not sensitive e n o u g h f o r the near m o n o l a y e r ranges r e q u i r e d f o r this d e m o n s t r a t i o n .
T h e r e q u i r e d s e n s i t i v i t y is a c h i e v e d o n l y w h e n a d -
s o r p t i o n occurs d i r e c t l y o n the face of a c l e a n , o r t h i n
film-coated,
internal
reflection element. A c u r r e n t g o a l is to establish l o n g t e r m b i o c o m p a t i b i l i t y o f engineeri n g a n d s t r u c t u r a l m a t e r i a l s , e s p e c i a l l y f o r p r o s t h e t i c devices, b y p r o m o t i n g the r a p i d a t t a c h m e n t a n d p r o l i f e r a t i o n o f l i v i n g cells c o m p a t i b l e w i t h t h e site o f u l t i m a t e i m p l a n t a t i o n . F i n e f a b r i c meshes a r e of great u t i l i t y i n this a p p l i c a t i o n .
T h e great
sensitivity ( a n d simplicity) of
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV OF ROCHESTER on January 19, 2018 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch014
304
APPLIED CHEMISTRY
Figure 7.
AT PROTEIN
IR spectrum of cell culture on 5-μ thick, microfabric substrate
INTERFACES
polypropylene-based,
m o n i t o r i n g c e l l adhesive events w i t h i n a m i c r o f a b r i c l a y e r b y i n t e r n a l reflection spectroscopic m e t h o d s (1,2,3)
is i l l u s t r a t e d b y F i g u r e s 7 a n d 8.
F i g u r e 7 is t h e I R s p e c t r u m after 2 hrs o f c e l l c u l t u r e w i t h i n a 5-μ t h i c k , p o l y p r o p y l e n e fiber, m i c r o f a b r i c substrate ( a p p l i e d to a g e r m a n i u m i n t e r n a l reflection p r i s m a t U n i o n C a r b i d e C o r p . t h r o u g h t h e courtesy of J o s e p h B y c k ) . L i g h t m i c r o s c o p y r e v e a l e d that t h e large p r o t e i n s p e c t r a l b a n d s r e s u l t e d f r o m extensive c e l l u l a r coverage;
thus, even d u r i n g this
t i m e , c e l l a t t a c h m e n t a n d g r o w t h ( a s i n d i c a t e d b y t h e a b u n d a n c e of c e l l u l a r m a t e r i a l ) w e r e excellent. I 4000
3600
100
1
i
1600
1200
1400
! J !; .
! i ιi < !
! •
;
' ' I • ' ' i '" i ' '
1
1
Γ
!
-70
-f
ΰ60
T
i
1 1;
1000 • • : ! ;
;
^ 40
•k
20|
Ifl t
10
_;.
\
T
jL j
-••
-
-
y,
y
?
i:
hi ;..
Ρ r
1
I
1
J
*\
jh
•· ··
-+
*i»r
-!- "!•
j. é
'..ML
iyy" Τ Γ
!
-• f ] —.... -i-
;
"i"
0
FREQUENCY (CM ) 1800 2000
! :
80
*30
' 2400
2800
1 1
90
ho
3200
T h e cells w e r e e x t r e m e l y resistant to
•r : •τ-
r -
. . .!.„
T y ill. ' ! : ;
•;-4;
•Ij-j-
• ; 1 •
Hy
:
t
--H-
Figure 6. IR spectrum of film spontaneously adsorbed during 10-min immersion in used culture medium (RPMI 1630) in which cell growth had occurred after removal of cells by centrifugation
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14.
B A I E R A N D WEISS
Adsorbed
305
Proteins
d e t a c h m e n t e v e n b y l e n g t h y a n d v i g o r o u s r i n s i n g i n saline m e d i a a n d w a t e r . B y contrast, i n experiments to c u l t u r e t h e same c e l l l i n e o n b a r e g e r m a n i u m p r i s m s , there w a s l i t t l e p e r m a n e n t c e l l a t t a c h m e n t i n t w o hours. D e s p i t e a p p a r e n t success i n u s i n g m a n y m i c r o f a b r i c s to p r o m o t e c e l l a t t a c h m e n t a n d c e l l g r o w t h , o u r experiments also d e m o n s t r a t e d some w o r r i s o m e features of this m a t e r i a l . F o r e x a m p l e , s i m p l e s o a k i n g i n d i s t i l l e d w a t e r seriously l e a c h e d r e s i d u a l m i c r o f a b r i c c o n t a m i n a n t s f r o m t h e polypropylene mesh ( F i g u r e 8 ) ; depending o n their composition, such c o m p o n e n t s l e a c h e d i n t o a d e l i c a t e c e l l c u l t u r e m e d i u m m i g h t seriously
Downloaded by UNIV OF ROCHESTER on January 19, 2018 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch014
i n t e r f e r e w i t h a t t a c h m e n t o r p r o p a g a t i o n o f less v i a b l e c e l l lines.
Figure
8.
IR spectra illustrating severe leaching taminants
of microfabric
con
L o w e r trace, 5-μ thick polypropylene-based microfabric as prepared; and u p p e r trace, same fabric after soaking in distilled water
Discussion O n l y t h e m e t h o d s u s e d i n this s t u d y ( J , 2, 3) c a n detect a n d f o l l o w the i n i t i a l events at t h e b o u n d a r y b e t w e e n biological milieu.
a s o l i d substrate a n d t h e
T h i s e x t r a o r d i n a r y s e n s i t i v i t y derives f r o m t h e a b i l i t y
to m o n i t o r events f r o m w i t h i n t h e substrate itself b y m a k i n g t h e substrate c a p a b l e o f s u p p o r t i n g m u l t i p l e a t t e n u a t e d i n t e r n a l reflection ( M A I R ) at a v a r i e t y of u s e f u l s p e c t r o s c o p i c w a v e l e n g t h s .
I n other studies, i t w a s
c o n c l u d e d that a d s o r b e d p r o t e i n o n s o l i d substrates is of essentially n a t i v e (i.e.
s o l u t i o n or v o l u m e p h a s e ) c o n f i g u r a t i o n a n d present i n significant
thickness (6).
T h o s e studies u s e d a different v e r s i o n o f t h e i n t e r n a l
reflection s p e c t r o s c o p i c m e t h o d w h e r e i n a p r i s m element w a s f o r c e f u l l y
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
306
APPLIED CHEMISTRY
AT PROTEIN
INTERFACES
p r e s s e d against a p l a s t i c or f o i l surface w h i c h h a d a c c u m u l a t e d , after v e r y l o n g i m m e r s i o n p e r i o d s , e q u i l i b r i u m amounts of a d s o r b e d p r o t e i n . ther, those
studies w e r e
generally conducted
i n the
Fur-
absence of
the
n o r m a l l y a t t a c h i n g cells w h i c h w o u l d h a v e m o d i f i e d the process of
film
b u i l d u p b e f o r e i t r e a c h e d e q u i l i b r i u m . S u c h studies d e t e c t e d o n l y the n a t u r e of the p r o t e i n a d s o r b e d onto other layers of p r o t e i n a l r e a d y at the s o l i d - s o l u t i o n interface.
T h e p r i m a r y , i n t e r f a c i a l l y l o c a l i z e d layers c a n -
not b e d e t e c t e d b y m e t h o d s other t h a n those u s e d here. relevance
to s p e c u l a t i o n a b o u t
the effect of
these
T h e r e is l i t t l e
secondary
protein
layers w h i c h are p r o b a b l y not e v e n present w h e n cells first a r r i v e a n d Downloaded by UNIV OF ROCHESTER on January 19, 2018 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch014
a t t a c h to s o l i d surfaces.
Figure 9.
Phase contrast micrographs
Culture medium, RPMI 1640;
of live cells adherent to glass
left, with no added protein; and right, with 20% calf serum supplement
fetal
W o r k is just n o w b e g i n n i n g o n the effect of substrate c h e m i s t r y o n p r o t e i n a d s o r p t i o n f r o m s u p p l e m e n t e d c u l t u r e m e d i a a n d o n the seco n d a r y effect of these layers o n c e l l a d h e s i o n processes (7).
In preliminary
w o r k , w e d e t e r m i n e d that a m a r k e d d i f f e r e n t i a t i o n i n c e l l
morphology
reflects the presence of a d s o r b e d proteinaceous c o m p o n e n t s at a s u b s t r a t e s o l u t i o n interface.
F o r e x a m p l e , w h e n l i v i n g cells settle to c l e a n glass
surfaces i n the absence of s u p p l e m e n t a l p r o t e i n , the cells r e m a i n r o u n d e d a n d p o o r l y a d h e s i v e , a n d t h e y are u n a b l e to d e v e l o p g o o d c e l l m o n o l a y e r c o v e r a g e of the surface (see
Figure 9).
O n the other h a n d , the presence
of s u p p l e m e n t a l p r o t e i n i n the m e d i u m i n d u c e s greater c e l l a d h e s i o n ; i n c r e a s e d a d h e s i o n is a p p a r e n t l y m e d i a t e d b y extensive
morphological
changes i n the c e l l ( m a n y e l o n g a t e d f o r m s ) , a n d e v e n t u a l l y t h e cells c o m p l e t e l y cover the s o l i d surface.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14.
B A I E R A N D WEISS
Adsorbed
Proteins
307
Downloaded by UNIV OF ROCHESTER on January 19, 2018 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch014
Literature Cited 1. Baier, R. E., Loeb, G. I., "Multiple Parameters Characterizing Interfacial Films of a Protein Analogue," in "Polymer Characterization: Interdisci plinary Approaches," C. D. Craver, Ed., pp. 79-96, Plenum, New York, 1971. 2. Baier, R. E., Dutton, R. C., "Initial Events in Interactions of Blood with a Foreign Surface," J. Biomed. Mater. Res. (1969) 3, 191-206. 3. Baier, R. E., "Applied Chemistry at Protein Interfaces," ADVAN. CHEM. SER. (1975) 145, 1. 4. Moore, G. E., Sandburg, Α. Α., Ulrich, Κ., "Suspension Cell Culture and In Vivo and In Vitro Chromosome Constitution of Mouse Leukemia L-1210,"J. Nat. Cancer Inst. (1966) 36, 405-413. 5. Mayhew, E., "Electrophoretic Mobility of Ehrlich Ascites Carcinoma Cells Grown In Vitro and In Vivo," Cancer Res. (1968) 28, 1590-1595. 6. Lyman, D. J., Brash, J. L., Chaikin, S. W., Klein, K. G., Carini, M., "Protein and Platelet Interaction with Polymer Surfaces," Trans. Amer. Soc. Artif. Intern. Organs (1968) 14, 250-255. 7. Wilkins, J., "Adhesion of Ehrlich Ascites Tumor Cells to Surface-Modified Glass," Ph.D. Dissertation, State University of New York at Buffalo, 1974. RECEIVED
June 7, 1974.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.