20 Aqueous Oxidation-Reduction Reactions of Uranium, Neptunium, Plutonium, and Americium
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
T. W. NEWTON and F. B. BAKER University of California, Los Alamos Scientific Laboratory, Los Alamos, Ν. M.
The experimental observations on the actinide oxidation -reductionreactions are described, and the empirical results are tabulated. The rate laws have been interpreted in terms of net activation processes, and these have been tabulated togther with the associated activation parameters—ΔF*, ΔΗ*, and ΔS*. An electrical analog is described which has been useful in interpreting complicated rate laws. Empirical corrections have been found between the formal entropies of the activated complexes and their charges, and for sets of similar reactions, between the hydrogen ion dependence and ΔF°, between ΔF* and ΔF°, and between ΔΗ* and ΔΗ°. The kinetic and physical evidence for binuclear spe cies is discussed.
"ranium, n e p t u n i u m , p l u t o n i u m , a n d a m e r i c i u m are r e a s o n a b l y stable ^
i n aqueous solutions as ions w i t h o x i d a t i o n states r a n g i n g f r o m 3 +
to 6 + . I n a c i d solutions the 3 + a n d 4 + states exist as h y d r a t e d cations s u c h as U
3
+
and U
4 +
. Am
4 +
has n o t b e e n d e t e c t e d , p r e s u m a b l y because
i t is too u n s t a b l e w i t h respect to d i s p r o p o r t i o n a t i o n . T h e h i g h e r o x i d a t i o n states exist as o x y g e n a t e d " - y F ions s u c h as U 0
2
+
and U 0
2
2 +
.
This situa
t i o n leads to m a n y possible reactions a m o n g t h e a c t i n i d e ions a n d w i t h other o x i d i z i n g o r r e d u c i n g agents.
T h e s t u d y of t h e k i n e t i c s of these
reactions is i m p o r t a n t because i t aids i n u n d e r s t a n d i n g the m e c h a n i s m s of o x i d a t i o n - r e d u c t i o n reactions a n d t h e factors w h i c h d e t e r m i n e t h e i r rates. I n a d d i t i o n , i n f o r m a t i o n is p r o v i d e d w h i c h is u s e f u l i n t h e d e s i g n of s e p a r a t i o n processes a n d a n a l y t i c a l p r o c e d u r e s . 268
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
20.
N E W T O N
A N D
B A K E R
Oxidation-Reduction
269
Reactions
T h i s subject, or parts of i t , has b e e n r e v i e w e d p r e v i o u s l y b y a n d S e a b o r g ( 3 5 ) , H i n d m a n ( 2 6 ) , R a b i d e a u et al. (69), Rabideau (52).
Katz
and Newton and
T h e present r e v i e w is justified b y the l a r g e a m o u n t of
w o r k w h i c h has a p p e a r e d since 1959. T h e l i t e r a t u r e has b e e n s u r v e y e d to S e p t e m b e r
1966.
The
recent
w o r k ( s i n c e 1959) is discussed i n this section a n d o r g a n i z e d a c c o r d i n g to the elements i n v o l v e d . T h e q u a n t i t a t i v e observations are s u m m a r i z e d i n T a b l e I.
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
Reactions of Uranium Ions E x c h a n g e R e a c t i o n s . M a s t e r s a n d S c h w a r t z (43)
s t u d i e d the U ( I V ) -
U ( V I ) exchange i n a c i d p e r c h l o r a t e solutions. A t l o w U ( I V )
concentra-
tions i t w a s c o n c l u d e d t h a t the exchange i n v o l v e s the U ( I V ) - f =
2U(V)
e q u i l i b r i a , w h i l e at h i g h e r U ( I V )
U(VI)
concentrations, i n agree-
m e n t w i t h a n e a r l i e r suggestion b y R o n a ( 7 5 ) , a p a t h h i g h e r o r d e r i n U ( I V ) is i n v o l v e d .
A q u a n t u m y i e l d of about 0.01 was e s t i m a t e d for
the exchange i n d u c e d b y u l t r a v i o l e t l i g h t . T h i s exchange has also b e e n s t u d i e d i n aqueous H C l - e t h a n o l solutions (44) ( 2 ) . G o r d o n a n d T a u b e (17)
a n d i n sulfate solutions
h a v e s h o w n that the s l o w U 0
2
2 +
-solvent
o x y g e n exchange is c a t a l y z e d b y U ( V ) . O x i d a t i o n s of U ( I V ) . T h e reactions of P u ( I V ) (53)
a n d of C e ( I V )
( 3 ) w i t h U ( I V ) w e r e f o u n d to b e s i m i l a r i n that b o t h a p p e a r to i n v o l v e a n a c t i v a t e d c o m p l e x of the c o m p o s i t i o n
[U(OH) M]
or P u ) i n spite of the fact t h a t C e ( I V )
is p r e d o m i n a n t l y C e O H
P u ( I V ) is P u
4 +
in 1-2M H C 1 0
4
2
6 +
w h e r e M is C e 3 +
and
solutions.
T h e r e a c t i o n of T l ( I I I ) w i t h U ( I V ) has g i v e n anomalous results. It w a s first r e p o r t e d b y H a r k n e s s a n d H a l p e r n ( 2 5 ) to be first o r d e r i n b o t h U
4 +
and T l
3 +
a n d b e t w e e n inverse first a n d inverse second order i n H . +
I t was p r o p o s e d t h a t a 2-electron o x i d a t i o n p r o d u c e d U ( V I ) a n d T 1 ( I ) i n a single step. It w a s also n o t e d that the r e a c t i o n is m o d e r a t e l y i n h i b i t e d b y A g ( I ) , a n d that the u s u a l second-order plots d i d not pass t h r o u g h the o r i g i n . Jones a n d A m i s ( 3 3 ) , i n c o n n e c t i o n w i t h t h e i r s t u d y of the r e a c t i o n i n m e t h a n o l - w a t e r m i x t u r e s , r e p o r t that t h e i r d a t a i n w a t e r s o l u t i o n c h e c k a c c e p t a b l y those of H a r k n e s s a n d H a l p e r n . H o w e v e r , L o v e et al. (41),
i n connection
w i t h the effect of t a r t a r i c a c i d o n the r e a c t i o n ,
r e p o r t rate constants w h i c h are less t h a n h a l f those of H a r k n e s s a n d H a l p e r n under identical conditions.
T h e y h a v e also s h o w n catalysis b y
F e , b u t since the e a r l i e r results w e r e i n d e p e n d e n t of the i n i t i a l r e a c t a n t concentrations, i r o n c o n t a m i n a t i o n cannot a c c o u n t for the Wear
(96)
discrepancy.
has s t u d i e d the r e a c t i o n over e x t e n d e d ranges of
concentrations
reactant
b u t reports rate l a w s w h i c h are inconsistent w i t h his
observations.
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
270
LANTHANIDE/ACTINIDE CHEMISTRY
Shastri et al. (79)
r e p o r t that the o x i d a t i o n of U ( I V ) b y N p ( V ) is
complicated b y further reaction between U ( I V ) and N p ( I V ) .
Prelimi-
n a r y results u s i n g the analogous o x i d i z i n g agent, P u ( V ) , also
showed
c o m p l i c a t e d k i n e t i c s (62). S u l l i v a n et al. (87)
N p ( V I ) , o n the other h a n d , was s h o w n b y
to give w e l l - b e h a v e d k i n e t i c s ; the rate is first p o w e r
i n the reactant concentrations a n d inverse first p o w e r i n the h y d r o g e n ion concentration. T h e o x i d a t i o n of U ( I V ) b y H 0 2
2
( 4 ) , l i k e that b y 0
2
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
p r o b a b l y a c h a i n r e a c t i o n since i t is i n h i b i t e d b y C u ( I I )
( 24),
P l a u s i b l e c h a i n carriers are U ( V )
a n d O H . S o b k o w s k i (82)
significantly h i g h e r rate constants
b u t suggested
involved.
H i s mechanism
requires
that U ( V )
is most
and C o (II). reported
that a c h a i n is not disproportionation
be
faster t h a n its r e a c t i o n w i t h H 0 . 2
2
F e d e r o v a a n d K a n e v s k i i (15)
h a v e r e p o r t e d rates of o x i d a t i o n of
U ( I V ) b y S 0 " , C 1 0 " , a n d C K V , a n d the effects of F e ( I I ) a n d V ( V ) 2
8
2
2
o n the latter r e a c t i o n (14).
G o r d o n and F e l d m a n (19)
rate constants
for
U ( I V )-halogenate
Andrews
h a v e d e t e r m i n e d the rate l a w , b u t not the a c t i v a t i o n
(20)
various
h a v e also g i v e n
reactions.
Gordon
and
e n e r g y for the U ( I V ) - B r r e a c t i o n . T h i s r e a c t i o n is c a t a l y z e d b y F e ( I I I ) 2
a n d b y M n ( I I ) , b u t not affected b y P b ( I I ) , C u ( I I ) , N i ( I I ) , n o r C o ( I I ) . R y k o v a n d c o - w o r k e r s (77)
g i v e rate l a w s a n d a c t i v a t i o n parameters for
the U ( I V ) b r o m a t e r e a c t i o n i n p e r c h l o r a t e solutions. D i s p r o p o r t i o n a t i o n of U ( V ) . T h i s r e a c t i o n w a s r e i n v e s t i g a t e d
(59)
w h e n i t was o b s e r v e d that it is g r e a t l y i n h i b i t e d b y U ( V I ). A m o d e r a t e l y stable U ( V ) - U ( V I ) 7370A. (e —
complex
27M cm." ). _ 1
was f o u n d w i t h a n a b s o r p t i o n b a n d
at
R a t e d a t a w e r e e x t r a p o l a t e d to zero U ( V I )
1
concentrations, a n d a c t i v a t i o n parameters w e r e d e t e r m i n e d w h i c h are b e l i e v e d to b e m o r e r e l i a b l e t h a n the p o l a r o g r a p h i c a l l y p r e v i o u s l y d e t e r m i n e d ones (32).
A m o r e recent, c o n t r o l l e d p o t e n t i a l m e t h o d
gives results at 2 5 ° C . i n better agreement w i t h the
(63)
spectrophotometric
ones. Reductions
of
U(VI).
Cr(II)
w a s f o u n d to react r a p i d l y w i t h
U ( V I ) to g i v e a green b i n u c l e a r i n t e r m e d i a t e ( 5 5 )
w h i c h is p r o b a b l y
analogous to the substance w h i c h forms w h e n C r ( I I ) a n d N p ( V I ) C r ( I I I ) a n d N p ( V ) are m i x e d (89, 9 0 ) . to U ( V I ) , U ( I V ) , a n d C r ( I I I )
w i t h a n a p p a r e n t h a l f - t i m e at
r a n g i n g f r o m 4 to 8 m i n . G o r d o n (18) from U 0
2
2 +
to C r ( H 0 ) 2
6
3 +
or
T h e intermediate decomposes 0°C.
has s h o w n that transfer of o x y g e n
is efficient i n this r e a c t i o n .
U ( V I ) has b e e n f o u n d to c a t a l y z e the V ( I I ) - V ( I V ) a n d the V ( I I I ) F e ( I I I ) reactions (58, 60). T h e catalysis is c a u s e d b y the r e d u c t i o n of U ( V I ) b y V ( I I ) or b y V ( I I I ) , f o l l o w e d b y the r a p i d o x i d a t i o n of the U ( V ) p r o d u c e d b y V ( I V ) or b y F e ( I I I ) r e s p e c t i v e l y . T h e V ( I I ) - U ( V I ) r e a c t i o n shows s i m p l e s e c o n d - o r d e r k i n e t i c s essentially i n d e p e n d e n t of
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
20.
NEWTON
AND BAKER
Oxidation-Reduction
271
Reactions
the h y d r o g e n i o n c o n c e n t r a t i o n . T h e V ( I I I ) r e a c t i o n , d e p e n d s o n t h e h y d r o g e n i o n c o n c e n t r a t i o n a p p r o x i m a t e l y to the —1.8 p o w e r . D e t a i l e d analysis of this d e p e n d e n c e indicates consecutive rate d e t e r m i n i n g r e actions a n d a b i n u c l e a r i n t e r m e d i a t e .
Reactions of Neptunium Ions Reductions of N p ( V ) . S h a s t r i et al. (78) h a v e s t u d i e d t h e N p ( V ) - I ~ r e a c t i o n i n aqueous H C l solutions of ca. 3 M . T h e e m p i r i c a l rate l a w w a s r e p o r t e d to b e - d [ N p ( V ) ] / < f t = fc[Np( V ) ] - [ r ] [ H ] - . T h e u n e x p e c t e d N p ( V ) d e p e n d e n c e m i g h t b e caused i n p a r t b y the fact that t h e i o n i c strength a p p a r e n t l y w a s n o t constant.
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
0
8 6
1 5 5
+
2
6 1
A p p e l m a n a n d S u l l i v a n ( 1 ) f o u n d a t w o - t e r m rate l a w to b e neces sary to describe t h e r e d u c t i o n of N p ( V ) b y V ( I I I ). T h e p r o p o s e d m e c h a n i s m : V ( I I I ) + N p ( V ) ~> V ( I V ) + N p ( I V ) , V ( I I I ) + N p ( I V ) * ± V ( I V ) + N p ( I I I ) , a n d N p ( I I I ) + N p ( V ) -> 2 N p ( I V ) is n o t i n strict a c c o r d a n c e w i t h t h e data. A m i s p r i n t i n the authors' T a b l e I V has b e e n n o t e d : values for fc s h o u l d b e m u l t i p l i e d b y 100. N
T h e r e d u c t i o n of N p ( V ) b y C r ( I I ) has b e e n s t u d i e d recently b y T h o m p s o n a n d S u l l i v a n (94). T h e r e a c t i o n is c o m p l i c a t e d b y t h e c o n secutive-competitive reaction between C r ( I I ) a n d product N p ( I V ) . T h i s latter r e a c t i o n has b e e n s t u d i e d separately (93). Oxidations of N p ( V ) . D u k e s a n d S i d d a l l (12, 81) h a v e u s e d s o l vent extraction techniques to s t u d y the kinetics of the o x i d a t i o n of N p ( V ) b y H N 0 c a t a l y z e d b y H N 0 , a n d b y V ( V ) , i n H N 0 solutions. T h e f o r m e r r e a c t i o n is i n t e r e s t i n g i n that t h e rate is i n d e p e n d e n t of H N O o c o n c e n t r a t i o n a b o v e 5 Χ 1 0 " Μ a n d of N 0 ~ c o n c e n t r a t i o n a b o v e 2 . 4 M . A h i g h l y p r o t o n a t e d N p ( V ) is suggested as the active i n t e r m e d i a t e . T h e V ( V ) r e a c t i o n approaches e q u i l i b r i u m at rates first p o w e r i n N p ( V ) a n d V ( V ) a n d about s e c o n d p o w e r i n H N 0 . 3
2
3
δ
3
3
S u l l i v a n (91) f o u n d t h e rate l a w for t h e N p ( V ) - C r ( V I ) r e a c t i o n to s h o w i n h i b i t i o n b y N p ( V I ) a n d to r e q u i r e t w o consecutive r a t e d e t e r m i n i n g steps. I t appears that C r ( V ) , f o r m e d i n t h e first step, c a n react w i t h either N p ( V I ) to regenerate the reactants or w i t h N p ( V ) to give C r ( I V ) , w h i c h reacts r a p i d l y to g i v e final p r o d u c t s . T h e t e m p e r a ture d e p e n d e n c e of the rates w a s f o u n d not to agree w i t h the A r r h e n i u s equation. Reductions of N p ( V I ) . T h e rate l a w f o u n d b y Z i e l e n et al. (100) for the H 0 - N p ( V I ) r e a c t i o n is analogous to that m e n t i o n e d a b o v e f o r the N p ( V ) - C r ( V I ) r e a c t i o n . I n this case, t h e r a d i c a l H 0 p r o b a b l y forms i n t h e first step a n d reacts w i t h either N p ( V ) to regenerate t h e reactants or w i t h N p ( V I ) to g i v e p r o d u c t s . 2
2
2
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
272
LANTHANIDE/ACTINIDE
S h e p p a r d (80)
has s t u d i e d the r e d u c t i o n of N p ( V I ) b y V ( I I I )
f o u n d the k i n e t i c s to be c o m p l i c a t e d b y the subsequent reaction.
CHEMISTRY
T o minimize complications
f r o m this source, rate
w e r e e s t i m a t e d u s i n g d a t a f r o m the i n i t i a l 2 0 - 3 0 %
and
V(IV)-Np(VI) constants
of r e a c t i o n .
Our
c a l c u l a t i o n s s h o w that the error i n s u c h a n estimate c a n range f r o m
4%
for a n i n i t i a l V ( I I I ) / N p ( V I ) ratio of 2 a n d 2 0 % c o m p l e t i o n u p to 1 5 % for a n i n i t i a l r a t i o of 1 a n d 3 0 % c o m p l e t i o n .
T h e r e p o r t e d rate constants
are i n p o o r agreement w i t h the A r r h e n i u s e q u a t i o n . H i n d m a n et al. (28, 29, 30) the N p ( I V ) — N p ( V I )
h a v e i n v e s t i g a t e d the effect of D 0 2
on
r e a c t i o n a n d r e d e t e r m i n e d the a c i d d e p e n d e n c e .
T h e p r e v i o u s l y d e t e r m i n e d d e p e n d e n c e i n H 0 ( 30 ) c o u l d be i n t e r p r e t e d Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
2
i n terms of either consecutive or p a r a l l e l r a t e - d e t e r m i n i n g reactions
(51).
W e h a v e n o w u s e d the n e w e r d a t a a n d a least-squares p r o c e d u r e to c o m p a r e the t w o m e c h a n i s m s .
I n H 0 , consecutive 2
reactions fit the d a t a
better t h a n p a r a l l e l reactions; the r o o t - m e a n - s q u a r e a n d 3 . 8 1 % respectively. and 4.18%.
deviations are 3.63
I n D 0 the c o r r e s p o n d i n g deviations are 7 . 7 9 % 2
It is c o n c l u d e d that, u n l i k e the analogous
U(IV)-Pu(VI)
r e a c t i o n ( 51 ), there is no strong e v i d e n c e for consecutive reactions a n d a b i n u c l e a r i n t e r m e d i a t e . T h i s r e a c t i o n has b e e n r e i n v e s t i g a t e d b y R y k o v a n d Y a k o v l e v (76),
w h o r e p o r t h i g h e r rate constants u n d e r
comparable
conditions.
Reactions of Plutonium Ions O x i d a t i o n s of P u ( I I I ) .
D u k e s (13)
reaction in H C l , H C 1 0 , and H N O 4
H
has s t u d i e d the P u ( I I I ) - H N 0
2
solutions. T h e rate laws i n the first
t w o acids w e r e essentially the same a n d w e r e e x p l a i n e d b y p o s t u l a t i n g NO
+
+
P u (III)
=
NO +
the presence of NOf it m a y be N 0 2
+
4
Pu (III) =
C l e v e l a n d (7) P u (III) by X e 0
3
P u ( I V ) to be the r a t e - d e t e r m i n i n g step.
In
a faster r a t e - d e t e r m i n i n g step is a p p a r e n t l y p o s s i b l e ; N0 " + 2
N0
2
+
Pu(IV).
has r e p o r t e d p r e l i m i n a r y results o n the o x i d a t i o n of at 30 ° C . i n p e r c h l o r a t e solutions of 2 M i o n i c strength.
S o m e sort of X e ( V ) is p r o d u c e d i n the r a t e - d e t e r m i n i n g step, w h i c h t h e n reacts r a p i d l y w i t h five a d d i t i o n a l P u ( I I I ) to give P u ( I V ) . f r o m the c o m p e t i t i v e o x i d a t i o n of P u ( I V )
Interference
was m i n i m i z e d b y w o r k i n g
at h i g h P u ( I I I ) / P u ( I V ) ratios. T h e slow oxidation by C l P i s h a r o d y (45,
46).
2
has b e e n d e s c r i b e d b y M a z u m d a r a n d
U n f o r t u n a t e l y , n e i t h e r the p r e s e n t a t i o n of the d a t a
n o r its i n t e r p r e t a t i o n is clear.
T h e rate l a w is i n c o r r e c t l y d e r i v e d f r o m
the p r o p o s e d m e c h a n i s m , w h i c h i n t u r n violates the p r i n c i p l e of m i c r o scopic reversibility. R e d u c t i o n s of P u ( I V ) .
R a b i d e a u a n d K l i n e h a v e s t u d i e d the r e d u c -
t i o n of P u ( I V ) b y the f o r m a l l y s i m i l a r r e d u c i n g agents V ( I I I )
(73)
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
and
20.
N E W T O N
Ti(III)
A N D
(71).
dependences.
Oxidation-Reduction
B A K E R
273
Reactions
T h e s e analogous reactions s h o w different h y d r o g e n The Ti(III)
r e a c t i o n is almost e x c l u s i v e l y inverse
p o w e r w h i l e for V ( I I I ) , terms inverse first p o w e r a n d inverse
ion first
second
p o w e r i n a c i d c o n c e n t r a t i o n are i m p o r t a n t i n the rate l a w . I n c h l o r i d e solutions S n ( I I ) s u r a b l e rates ( 7 2 ) .
reduces P u ( I V )
at c o n v e n i e n t l y m e a -
A f t e r a l l o w a n c e was m a d e for c h l o r i d e c o m p l e x i n g
of the reactants i t was c o n c l u d e d that a c t i v a t e d complexes c o m p o s e d of P u ( I V ) , S n ( I I ) , a n d f o u r a n d five c h l o r i d e ions are i n v o l v e d . F e ( I I ) reacts w i t h P u ( I V ) at rates w h i c h s h o w inverse first p o w e r
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
h y d r o g e n i o n d e p e n d e n c e (54).
I n c h l o r i d e solutions a t e r m first p o w e r
i n c h l o r i d e b u t zero p o w e r i n h y d r o g e n i o n becomes i m p o r t a n t .
Thus,
f o r this r e a c t i o n , C I c a n r e p l a c e O H i n the a c t i v a t e d c o m p l e x . R e d u c t i o n s of P u ( V I ) . R a b i d e a u a n d K l i n e (70)
s t u d i e d the r e d u c -
t i o n of P u ( V I ) b y T i ( I I I ) for c o m p a r i s o n w i t h the p r e v i o u s results for the analogous r e a c t i o n of V ( I I I )
T h e r a t e - d e t e r m i n i n g step p r o -
(67).
duces P u ( V ) , w h i c h is r a p i d l y r e d u c e d b y T i ( I I I ) to P u ( I V ) . T h i s is i n contrast to most other r e d u c i n g agents w h i c h react s l o w e r w i t h P u ( V ) than with P u ( V I ) .
Since the p r o d u c t ,
Pu(IV),
is also r e d u c e d
by
T i ( I I I ) , a c o m p e t i t i v e - c o n s e c u t i v e system results. A m e t h o d for t r e a t i n g the d a t a was d e v e l o p e d w h i c h u s e d a c o m p u t e r p r o g r a m m e d for n u m e r i c a l i n t e g r a t i o n . U n l i k e the analogous V ( I I I ) r e a c t i o n , the rate l a w w a s f o u n d to h a v e o n l y a single i m p o r t a n t t e r m , inverse i n h y d r o g e n
ion
concentration. R a b i d e a u a n d M a s t e r s (74)
f o u n d that the o x i d a t i o n of S n ( I I )
by
P u ( V I ) is v e r y s i m i l a r to w h a t t h e y o b s e r v e d for P u ( I V ) . A v e r y i m p o r tant feature is t h e i r e v i d e n c e
that a t w o - e l e c t r o n process is i n v o l v e d .
A l t h o u g h the r e d u c t i o n of P u ( V )
is s l o w e r t h a n that of P u ( V I ) , n o
P u ( V ) was formed. T h e net r e a c t i o n for the r e d u c t i o n of P u ( V I ) to P u ( V ) b y
Fe(II)
is q u i t e s i m p l e ; i n spite of this a c o m p l i c a t e d t h r e e - t e r m h y d r o g e n i o n d e p e n d e n c e was f o u n d ( 5 6 ) . sphere
A m e c h a n i s m w h i c h i n v o l v e s b o t h outer-
a n d i n n e r - s p h e r e a c t i v a t e d complexes
sphere complexes
are s u p p o r t e d b y e v i d e n c e
is f a v o r e d .
The
for consecutive
inner-
reactions
and a binuclear intermediate.
Reactions of Americium (V) T h e r e d u c t i o n of A m ( V ) b y H 0 2
b y Z a i t s e v et al. (99).
reactants, b u t i t is c o m p l i c a t e d H 0 . 2
2
2
has b e e n s t u d i e d i n 0 . 1 M H C 1 0
4
T h e rate is p r o b a b l y first o r d e r i n e a c h of the b y some r a d i o l y t i c d e c o m p o s i t i o n
of
T h e t e m p e r a t u r e d e p e n d e n c e was d e t e r m i n e d , b u t the a c i d d e -
p e n d e n c e w a s not.
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
274
LANTHANIDE /ACTINIDE CHEMISTRY
C o l e m a n (11) yr.) A m
2 4 3
has u s e d a s a m p l e of the r e l a t i v e l y l o n g - l i v e d
(7951
to s t u d y the d i s p r o p o r t i o n a t i o n of A m ( V ) w i t h o u t the exces
sive r a d i o l y s i s w h i c h m a d e e a r l i e r results difficult to i n t e r p r e t ( 9 8 ) .
In
2M
in
p e r c h l o r a t e solutions t h e rate w a s f o u n d to b e second
A m ( V ) a n d a p p r o x i m a t e l y 2.5 p o w e r i n a c i d c o n c e n t r a t i o n .
power
T h i s latter
d e p e n d e n c e differs f r o m those of the analogous reactions of U ( V ) and P u ( V )
(66)
concentration.
(59)
w h i c h are p r e d o m i n a n t l y first p o w e r i n h y d r o g e n i o n
T h e t e m p e r a t u r e d e p e n d e n c e was d e t e r m i n e d at a single
h y d r o g e n i o n c o n c e n t r a t i o n ; so a c t i v a t i o n parameters for the i n d i v i d u a l rate d e t e r m i n i n g reactions cannot b e e s t i m a t e d w i t h reasonable p r e c i s i o n Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
w i t h o u t m a k i n g f u r t h e r assumptions.
Interpreting the Kate Laws T h e rate constants a n d e m p i r i c a l rate l a w s s h o w n i n T a b l e I d e s c r i b e the e x p e r i m e n t a l observations, b u t t h e y n e e d further i n t e r p r e t a t i o n i n o r d e r to extract the m a x i m u m a m o u n t of i n f o r m a t i o n f r o m t h e m .
Adopt
i n g the l a n g u a g e of the absolute r e a c t i o n rate t h e o r y (16),
assume
that f o r e a c h r a t e - d e t e r m i n i n g step the reactant species
we
are i n q u a s i -
e q u i l i b r i u m w i t h the a c t i v a t e d c o m p l e x a n d that the rate of this step is p r o p o r t i o n a l to the c o n c e n t r a t i o n of the a c t i v a t e d c o m p l e x .
Often, rapid
e q u i l i b r i a p r e c e e d the a c t u a l r a t e - d e t e r m i n i n g step; these c a n b e
added
to the a c t u a l a c t i v a t i o n process to give a net a c t i v a t i o n process w r i t t e n i n terms of the p r i n c i p a l species i n the s o l u t i o n : m A + nB + p C + . . . =
[Act. Complex] * + q L + r M + . . .
a n d the rate w i l l be p r o p o r t i o n a l to [ΑΓ[Βπσρ... [L]*[Mr...
'
w h e r e A , B, C, are i n i t i a l reactants, a n d L , M , are p r o d u c t s of the p r e equilibria.
S i n c e the net a c t i v a t i o n process m u s t f o r m a l l y b a l a n c e , the
c o m p o s i t i o n of the a c t i v a t e d c o m p l e x c a n b e d e t e r m i n e d f r o m the rate law.
T h i s f o r m u l a t i o n has the a d v a n t a g e t h a t the a c t u a l reactant species
n e e d n o t b e k n o w n ; i n fact these species cannot b e d e t e r m i n e d f r o m the rate l a w alone. T h i s discussion shows
that the e m p i r i c a l rate l a w s m u s t b e
re-
expressed, w h e r e necessary, as a c o l l e c t i o n of terms w h i c h are a p p r o p r i a t e functions of the concentrations of species a c t u a l l y present i n the solutions. T h e o b s e r v e d n o n i n t e g r a l d e p e n d e n c e s s h o w n b y some of the s t o i c h i o m e t r i c concentrations
m a y be caused b y
(a)
equilibria i n w h i c h an
a p p r e c i a b l e f r a c t i o n of one of the reactants is present as m o r e t h a n one species; c o m p l e x f o r m a t i o n a n d h y d r o l y s i s are examples of s u c h e q u i libria, (b)
m o r e t h a n one k i n e t i c a l l y i m p o r t a n t a c t i v a t e d c o m p l e x ,
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
or
20. (c)
N E W T O N
A N D
B A K E R
Oxidation-Reduction
275
Reactions
changes i n the p e r t i n e n t a c t i v i t y coefficient ratios. T h i s last effect is
u s u a l l y c o n s i d e r e d to be s m a l l at constant i o n i c s t r e n g t h for a m o n g ions of the same s i g n (54).
reactions
F u r t h e r d a t a p e r t i n e n t to this p o i n t
are c l e a r l y n e e d e d . A l t h o u g h the rate l a w for a r e a c t i o n does n o t give its d e t a i l e d m e c h a n i s m , i t does give the c o m p o s i t i o n
of the a c t i v a t e d complexes
at the
h i g h e s t barriers as s h o w n a b o v e , a n d i n a d d i t i o n , the p a t t e r n of paths for the r e a c t i o n .
B y p a t t e r n of paths, as contrasted to m e c h a n i s m ,
we
m e a n the v a r i o u s w a y s i n w h i c h reactants get to p r o d u c t s w i t h o u t c o n s i d e r i n g i n t e r m e d i a t e s w h i c h are i n r a p i d e q u i l i b r i u m w i t h the reactants Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
or w h i c h react r a p i d l y to g i v e p r o d u c t s . If o n l y a single a c t i v a t e d c o m p l e x is k i n e t i c a l l y i m p o r t a n t , o n l y one p a t t e r n is p o s s i b l e : reactants ~* p r o d ucts. I f m o r e t h a n one a c t i v a t e d c o m p l e x is i n v o l v e d , the possible p a t terns of paths are analogous resistors c a n b e c o n n e c t e d .
to the possible w a y s i n w h i c h e l e c t r i c a l I n this a n a l o g the resistors c o r r e s p o n d
to
k i n e t i c b a r r i e r s ( a c t i v a t e d complexes ), the junctions c o r r e s p o n d to i n t e r m e d i a t e s , a n d the t e r m i n a l s c o r r e s p o n d to reactants or p r o d u c t s . F o r t w o a c t i v a t e d complexes there are t w o d i s t i n g u i s h a b l e p a t t e r n s ; for three a c t i v a t e d complexes f o u r patterns are g e n e r a l l y d i s t i n g u i s h a b l e ; for f o u r a c t i v a t e d complexes ten patterns, a n d so on. T h e first three of these sets of patterns are s h o w n i n F i g u r e 1.
T h e patterns h a v e
been
classified a c c o r d i n g to the n u m b e r of a c t i v a t e d complexes a n d the n u m b e r of i n t e r m e d i a t e s i n v o l v e d .
N o t e t h a t n o n e of these patterns
k i n e t i c a l l y d i s t i n g u i s h a b l e f r o m t h e i r m i r r o r images
are
(22).
A n i m p o r t a n t feature of these e l e c t r i c a l analogs is that w h e n
the
steady-state a p p r o x i m a t i o n is v a l i d the r e c i p r o c a l s of the i n d i c a t e d r e sistances are the analogs of
fc[A] [B] [C] ' m
n
1
. . . , where A , B, C , . . .
are the i n i t i a l reactants, a n d k is the effective rate constant for the f o r m a t i o n of the a c t i v a t e d c o m p l e x d i r e c t l y f r o m the i n i t i a l reactants, e v e n i f i n t e r m e d i a t e s are i n v o l v e d . T h i s means that the o v e r - a l l rate l a w is f o u n d b y c o m b i n i n g the i n d i v i d u a l rate terms a c c o r d i n g to the rules for
com-
b i n i n g the analogous r e c i p r o c a l resistances. T h e a c t i v a t i o n parameters, A F * , A f f * , a n d A S * for the v a r i o u s net a c t i v a t i o n processes are d e t e r m i n e d f r o m the values a n d
temperature
coefficients of the effective rate constants u s i n g the equations b y the absolute r e a c t i o n rate t h e o r y
provided
(16).
T a b l e I I lists the net a c t i v a t i o n processes, patterns of paths, a n d a c t i v a t i o n parameters d e r i v e d f r o m the d a t a i n T a b l e I.
Empirical Correlations Hydrogen Ion Dependences.
T h e hydrogen ion dependences given
i n T a b l e I a n d i n d i c a t e d b y the net a c t i v a t i o n processes i n T a b l e I I are
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
276
LANTHANIDE/ACTINIDE
Table I.
CHEMISTRY
Observed Rate Laws, Rate k,!MH , 25°C. (in M and sec.) + a
Reactant
Rate Law
Oxidations of U(IV), ~d[U(IV)]/ât = U (V I) k [ U ( I V ) ] ο·»» [ U ( V I ) ] 0.92 [ H ] -s.oa Np(IV) * [ U ( I V ) ] [ N p ( I V ) ] [H ]-2.s Np(V) ^[U(IV)][Np(V)][H ]-2 Fe(III) * [ U ( I V ) ] [Fe(III)] [ H ] - * Pu(VI) * [ U ( I V ) ] [ P u ( V I ) ] [Η*]" · Pu(IV) *[U(IV)] [Pu(IV)] [ H ] - ^ 3 V(V) ^[U(IV)][V(V)][H ] Np(VI) fc[U(IV)] [Np(VI)] [H ]-097 +
+
+
+
8 1
1
2
+
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
+
+
τη (in) Ce(IV) H 0 Br 0 C10 C10 " S 0 2" BrO 2
2
2
2
3
2
2
8
a
*[u(iv)]
[ T i ( i i i ) ] [η*]-*·»» * [ U ( I V ) ] [ C e ( I V ) ] [Η ]"ΐ· fc[U(IV)] [ H 0 ] [H ]-^i(approx.) * [ U ( I V ) ] [ B r ] [Br"]»[H ]-2 *[U(IV)][0 ][H ]-i ^[U(IV)][C10 -][H ] i * [ U ( I V ) ] [C10 -] [Η ]-ο· ft[U(IV)][S 0 *-][H ] * [ U ( I V ) ] [Br0 -] [Η ]°· or [ U ( I V ) ] [ B r O - ] ( k + k [ H ] 2 ) +
9
2
+
2
+
9
+
2
+
3
+
+
2
2
1 3
+
8
+
3
3
4 3
0
+
2
Oxidations of U(V), -d[U(V)]/dt = U(V) ^[U(V)]2[H ]o-82 Fe(III) *[U(V)][Fe(III)] V(IV) *[U(V)][V(IV)][H ]-
2
Np(V) Reductions of U(VI), ~d[U(VI)]/dt = V(II) * [ U ( V I ) ] [ V ( I I ) ] [Η ]°· V(III) * [ U ( V I ) ] [ V ( I I I ) ] [Η*]" · Sn ( II ) k [ U ( V I ) ] [Sn ( I I ) ] [ H C l ] Reductions of Np(V), -d[Np(V)]/dt = Cr(II) *[Np(V)][Cr(II)][H ]^ Np(III) * [ N p ( V ) ] [ N p ( I I I ) ] [Η+] · V(III) [Np(V)][V(III)][H ]o +
1
05
[H ]-i-V[V(IV)] ) +
k [ N p ( V ) ] .8β [ Γ ] 1-55 [ H ] - 6 ! +
2
Oxidations of Np(IV), -di[Np(IV)]/dt = Fe(III) *[Np(IV)] [Fe(III)] [ H ] " Np (V) k [ N p ( I V ) ] ι.δ [ N p ( V ) ] °·* [ H ] " + &'[Np(V)] [H ] Reduction of Np(IV), -d[Np(IV)]/dt = Cr(II) fc[Np(IV)] [Cr(II)] [ H ] " Oxidation of Np(III), -d[Np(III)]/dt = Fe(III) Jfc[Np(III)] [ F e ( I I I ) ] [ H ] " ^ Oxidations of Np(V), -d[Np(V)]/dt = +
X X Χ Χ Χ
10~ 10 2.3 ΙΟ" ΙΟ" ΙΟ"
Χ Χ Χ Χ
ΙΟ" 10" 1 0 " (k ) Ι Ο " (fc )
2
3
4
2
3
3
1
1
Q
2
2
2
4
4
1.1 4.3 3.0 6.0 1.6 1.7
Χ X Χ Χ Χ Χ
ΙΟ 10* 10" ΙΟ" 10" ΙΟ"
1
5
3
1
2
(*')
1 3
5.7 Χ Ι Ο " 6.45 Χ 1 0 " 2
3
+
2
4
1
+
I"
5
6
7.4 X 1 0 2.8 Χ 1 0 " 1.7 X 1 0 ~
8
+
fc'[Np(IV)]
X 10
7
( M e a s u r a b l e at 2 5 ° C .
0 1
1
X (k +
Χ ΙΟ" Χ ΙΟ" Χ 10"
2.4 X 1 0 5.0 X 1 0 2.5 X 1 0
+
+
2.1 5.0 8.0 12.8 3.1 31.5 2.0 22.0 3.9 8.7 0.8 5.3 2.4 2.9 19.0 7.2 2.6 2.1 5.3
2
8
+
+
1.1 X I O - (k>) 5
1 2 7
4.3
+
6.8 Χ 1 0
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
2
20.
N E W T O N
A N D
B A K E R
Oxidation-Reduction
Reactions
277
Constants, and Activation Energies E, kcal./mole
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
a
M
Réf.
11.0
2.00 1.00 1.00 1.02 2.00 2.00 1.00 2.00 2.90 2.00 2.00 2.00 0.50 0.50 1.00
27.2
2.00
43 79 79 5 51 53 62 87 25 3 4 20 24 15 19 34 76
9.0
2.00 2.00 2.00
59 60 60
38.0 16.0 33.0 23.6 19.1 24.8 13.0 18.8 22.5 15.4 16-19 22.4
Comment
Evidence for binuclear intermediate Preliminary result
In H S Q 2
4
92
Extrap. t o O M U ( V I ) Estimated from the effect of Fe(III) and V ( I V ) on V ( I I I ) - U ( V I ) reaction Preliminary result
2.00 2.00 7.00
58 60 48
Evidence for binuclear intermediate k value is for 1 M C I " and 7 M H
0.20 2.00 3.00 1.00 3.00 3.00
94 27 1
35.0 37.4 18.2
1.00 1.20
31 85
18.0
1.00
93
15.0
2.00
61
7.8 22.1 18.0
6.4 15.2
28.3
+
78 Corrected for back reaction Exchange
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
278
LANTHANIDE/ACTINIDE
CHEMISTRY
T a b l e I. k,lMH , 25° C. (in M and sec.) + a
Reactant
Rate Law 1 6
+
V(V) N0 --N0 Np(VI) 2
^[Np(V)][Cr(VI)][H ]1 + &'[Np(VI)][H ]-i-V[Np(V)] *[Np(V)][V(V)][H ] fc[Np(V)] [ H ] ^ * [ N p ( V ) ] [Np(VI)] [ H ] +
Cr(VI)
3
+
+
2 3
4
+
0 1 3
Reductions of Np(VI), -d[Np(VI)]/dt = V(III) * [ N p ( V I ) ] [V(III)] [ Η * ] " · Np(IV) Jfe[Np(VI)] [ N p ( I V ) ] [ H * ] " * fe[Np(VI)][H Q ] [H ]-i 1 + *'[Np(V)]/[Np(VI)]
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
1
H
O
2
Oxidations of Pu(III), -d[Pu(III)]/dt = Pu(VI) fc[Pu(III)] [Pu(VI)] [H ]° Pu(V) Jt[Pu(III)] [Pu(V)] [Η ]·
1.9
Pu ( IV) HN0 2
97
k [ P u ( III ) ] [Pu ( IV ) ] ^°· [ H ] k [ P u (III)] [ H N 0 ] [HCl] X(l + fc'[N0 ]) 8
+
0 8 3
2
1
(*')
2.7 4.5 Χ 10~
+
+
5
1
2
4
+
2
2.0 1.0 X 10" 9.0 Χ 1 0
2.45 Χ 1 0 4.9 X 10" 8.9
47
2
4.3
1 2 8
2
1.0 X 1 0 3.0 Χ 10" 3
1
3
Oxidations of Pu(III), -d[Pu(III)]/dt = Xe0 k [ P u ( III ) ] [ X e 0 ] [ H ] ° Cl fc[Pu(III)][Cl ]o[HCl]o(?) 0 [ P u ( III ) ] [ 0 ] ^ [ H ] X(/c[S0 "] + fc'[S0 \] )
1.6 7.0 6.0 1.9
X Χ Χ X
10~ 10" 10 10» (*')
Reductions of Pu(W), -d[Pu(IV)]/dt = Fe(II) fc[Pu(IV)] [Fe(II)] [Η ]~ · V(III) fc[Pu(IV)] [V(III)] [ H ] " Ti(III) fc[Pu(IV)] [Ti(III)] [ H ] Pu(IV) ^[Pu(IV)] [H ]~ Sn(II) Jfc[Pu(IV)] [Sn(II)] [ H ] o [ C l " ]
4.7 6.2 6.6 5.4 1.7
Χ Χ Χ X Χ
10 10 10
3
+
3
2
2
2
2
4
+
2
2
2
0 1
2
3
4
+
0
+
92
1 4 3
+
2
+
1 0 9
3 1 4
+
Reductions of Pu(V), -d[Pu(V)]/dt = Pu(V) fcfPuiV)] ^] Fe(II) fc[Pu(V)] [Fe(II)] [ H + ] 2
+
+
Reductions of Am(V), -d[Am(V)]/dt = Am(V) &[Am(V)] [H ] H 0 &[Am(V)][H 0 ][H ]? 2
2
+
2
2
5
2
+
1 3
1 1
ÎO"*
10
1
3
2.24 1.1 X 1 0 1.66 Χ 1 0 6.7 Χ 1 0 2
03
3β
1 4 6
3
1
5.7 Χ 10" 4.1 Χ 10"
F o r solutions w i t h μ < 1 M , this is the h y p o t h e t i c a l v a l u e for 1 M H w i t h the i o n i c strength listed. a
1
1
1
1
+
6
3
8.0 Χ 10" 3.0 Χ 1 0
11
Reductions of Pu(VI), -d[Pu(VI)]/dt = V(III) Jfc[Fu(VI)] [ V ( I I I ) ] [ H ] " Ti(III) fc[Pu(VI)] [ T i ( I I I ) ] [Η+]" · Fe(II) *[Pu(VI)] [Fe(II)] [Η ]-°· Sn(II) le [ P u ( V I ) ] [Sn(II)] [ H ] o [ C l ]
2
1 9
2
+
4 3
i n a solution
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
20.
NEWTON
AND
BAKER
Oxidation-Reduction
279
Reactions
Continued
M
Réf.
11.6
2.00
91
k ' = 7.6 Χ 10"
11.7
2.00
12
Values are for H N 0
12.0 10.6
2.90 3.00
81 9,10
Values are for 2 . 9 M H N O Values apply to 0°C. exchange
19.0 25.5
2.00 2.00
80 28, 29, 30
12.4
3.00
99
5.4 —
1.00 1.00
68 64, 65
5.0 -6.0
2.00 varied
37 13
2.00
7
1.00 2.00
45,46 49,50
Values for 1 M H C l [ 0 ] in M
2.00 2.00 1.02 1.00 2.00
54 73 71 64, 65 67
Values are for 1 M C I "
1.00 1.00
66 62
Preliminary result
16.1 10.9 7.5 10.6
2.00 2.00 2.00 2.00
67 70 56 74
Evidence for binuclear intermediate Evidence for a 2-electron process
14.0 13.0
2.00 0.10
11 99
Value extrapolated to 25°C. Values apply to 0 . 1 M H C l
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
kcal./mole
19.6 21.2 17.3
—
20.0
19.6
—
8,
Comment
1
3
solution s
F r o m reverse reaction and equilib rium quotient Exchange
Values for 30°C.
2
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
280
LANTHANIDE/ACTINIDE CHEMISTRY
Pattern
No. of Kinetically Distinguishable N o . of Activated Complexes Intermediates
1- 0
1
2- 0
2
2-1
2
Electrical Analog
ρΛΑΛΛΛΛΛι oA k> w w w
3
3-1-a
3
A
R2
± + 1 Ri R2
- W W W - < >
R i "4" Ro 4" Ro
ι
ρΛΛΑΛΛι
Ο-λΛΛΛΛ»
1
—O
3
ΚΛΛΛΛΛ
1
3
-=r-
111
+
R
2
+ Ro
RI + · 2
3
ΚΛΛΛΛΛΛ^λΛΛΛΛΛτ
3-2
R1 +
2
3-0
3-1-b
Ri
0-VVWV\AA-0
0 - A W V
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
Rate L a w
3
ι
Figure
1.
Various
All Ri are of the form k i [ A ] < [ B ] * [ C ] ' m
n
l
f
patterns
of
3
1
R2
R3
1 , 1 , 1
paths
. . . , where A , B , C , etc. are initial
reactants.
n e a r l y a l l consistent w i t h the p r o p o s i t i o n that the g a i n or release of h y d r o g e n ions i n a n a c t i v a t i o n process w i l l l i e b e t w e e n zero a n d the t o t a l n u m b e r g a i n e d or released i n the c o r r e s p o n d i n g o v e r - a l l process.
For
e x a m p l e , R e a c t i o n s 7-12 a n d 14-19, i n T a b l e I I , a l l i n v o l v e the o v e r a l l release of f o u r h y d r o g e n ions, w h i l e the a c t i v a t e d complexes
are a l l
f o r m e d w i t h the p r i o r release of f r o m one to three h y d r o g e n ions.
Con
s p i c u o u s exceptions to this g e n e r a l i z a t i o n are s h o w n b y the o x i d a t i o n of U(IV)
by V 0
2
+
and by C 1 0
3
a n d b y R e a c t i o n s 2, 3, 5, 27, 28, a n d 29.
T h e s e latter exceptions illustrate the t e n d e n c y of a c t i v a t e d complexes to h y d r o l y z e a n d to r e d u c e a n o t h e r w i s e h i g h charge.
I n this c o n n e c t i o n
no r e l i a b l e e v i d e n c e has b e e n f o u n d for a n a c t i v a t e d c o m p l e x w i t h a net c h a r g e greater t h a n 6 + . It is reasonable to suppose t h a t the s m a l l e r the d r i v i n g force for a r e a c t i o n the m o r e the a c t i v a t e d c o m p l e x w i l l r e s e m b l e the p r o d u c t s . T h i s
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
20.
N E W T O N
A N D
Oxidation-Reduction
B A K E R
Reactions
281
s u p p o s i t i o n is b o r n e out f a i r l y w e l l b y the class of reactions i n w h i c h a n a c t i n i d e ( I V ) i o n is o x i d i z e d to the ( V ) s t a t e — R e a c t i o n s 7-18 i n T a b l e I I . F o r the five reactions for w h i c h AF°
is greater t h a n —1 k c a l . / m o l e , three
out of a total of f o u r h y d r o g e n ions are released i n the net a c t i v a t i o n process.
F o r AF°
less t h a n —2 k c a l . / m o l e , the c o r r e l a t i o n is m a r r e d o n l y
b y the three reactions for w h i c h b o t h one a n d t w o h y d r o g e n ions are r e l e a s e d i n simultaneous a c t i v a t i o n processes.
This supposition ratio
nalizes the fact that the d i s p r o p o r t i o n a t i o n reactions of U ( V ) a n d P u ( V ) are p r e d o m i n a n t l y first p o w e r i n the h y d r o g e n i o n c o n c e n t r a t i o n , w h i l e the analogous
d i s p r o p o r t i o n a t i o n of A m ( V )
is b o t h s e c o n d
and third
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
power. T h e E n t r o p i e s of the A c t i v a t e d C o m p l e x e s . lation h a d been noted previously (52) a c t i v a t e d complexes
A n approximate corre
b e t w e e n the f o r m a l entropies of
a n d t h e i r charges.
D a t a o b t a i n e d since that t i m e
e n a b l e this c o r r e l a t i o n to b e e x a m i n e d for a c t i v a t e d complexes c a r r y i n g charges
f r o m 0 to 6 + .
V a l u e s c a l c u l a t e d f o r S * o m i e x are g i v e n i n C
P
T a b l e I I a n d p l o t t e d i n F i g u r e 2. T h e d i s c o r d a n t p o i n t 21
corresponds
to the m i n o r p a t h for the V ( I I I ) - N p ( V I ) r e a c t i o n a n d has a n u n c e r t a i n t y of at least 16 e.u.
T h e u n c e r t a i n t i e s for points 8 are a b o u t 13 e.u. a n d are
c o r r e l a t e d s u c h that i f the true v a l u e of one is l a r g e r t h a n i n d i c a t e d , t h a t for the other is s m a l l e r . It is a p p a r e n t that a l t h o u g h charge is a n i m p o r tant factor i n d e t e r m i n i n g the e n t r o p y of a n a c t i v a t e d c o m p l e x ,
other
less o b v i o u s ones are i m p o r t a n t also. F r e e E n e r g i e s of A c t i v a t i o n . It is of interest to c o n s i d e r a set of s i m i l a r reactions a n d d e t e r m i n e the effect of the free energy changes o n t h e i r rates. R e a c t i o n s 7 - 1 8 are the largest s u c h set of a c t i n i d e i o n r e a c tions for w h i c h q u a n t i t a t i v e d a t a are a v a i l a b l e . I n this set a n a c t i n i d e ( I V ) ion, M
4 +
, is o x i d i z e d to the c o r r e s p o n d i n g MO > i o n b y a reactant w h i c h L
+
does n o t u n d e r g o a d r a s t i c change i n structure. A p l o t of A F * VS. AF° for these reactions is g i v e n i n F i g u r e 3.
T h e n u m b e r of h y d r o g e n
ions
released i n the v a r i o u s net a c t i v a t i o n processes range f r o m one to three a n d are i n d i c a t e d b y the n u m b e r s i n parentheses. A l l 15 points f a l l w i t h i n 3.5 k c a l . / m o l e of a s t r a i g h t l i n e w i t h a slope of 1/2, i r r e s p e c t i v e of the n u m b e r of h y d r o g e n ions released. A slope of 1 / 2 is r e q u i r e d i f the v a l u e for a r e a c t i o n a n d its reverse are to f a l l o n the same straight l i n e . T h e r e l a t i o n s h o w n here suggests that a measure of the i n t r i n s i c rate of a r e a c t i o n , c o r r e c t e d for its d r i v i n g force, is g i v e n b y A F * = AF°.
A F * — 0.5
T h i s amounts to t a k i n g the average A F * for the r e a c t i o n i n the
f o r w a r d a n d reverse d i r e c t i o n s . tion: k
12
=
— RT l n / ) .
(fc fci K /) n
2
1 2
1 / 2
(42)
V a l u e s for these
U n d e r conditions where M a r c u s ' rela is a p p l i c a b l e , Δ Ρ * — i ( A F * u +
AF*
" i n t r i n s i c " a c t i v a t i o n free energies
2 2
are
g i v e n i n T a b l e I I I . T h i s t a b l e shows some patterns of r e l a t i v e r e a c t i v i t y as w e l l as some a p p a r e n t anomalies.
F o r e x a m p l e , the r e l a t i v e i n t r i n s i c
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
282
LANTHANIDE/ACTINIDE
Table II.
T h e r m o d y n a m i c Q u a n t i t i e s of
Process no Μ—Ο 1.
bonds formed or
U0 U0 Pu Pu Np Np Np Np Np Pu0 Pu0 Pu0 Pu0 Pu Pu Pu Pu Np0 Np0 2
4 +
4 +
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
3 +
4.
2
2
2
4 +
+
2
7.
9.
10.
U U Am Am Am Np Np Np Np U U U 4
+
4
Pu Pu U U U U U U U U U U Np 4
4
4
2 +
4- 2 H 0 = U 0 4- N p 0 4- 4 H 4- H 0 = [ * ] 4- H 4- 2 H 0 = 2 A m 0 + 4H + H 0 = [*]"> 4-H + H 0 = [*] + 2H 4- 2 H 0 = 2 N p 0 4- 4 H + H 0 = [*] 4- 2 H 4- H 0 = [ * ] 4- 2 H 4- H 0 = [ * ] + 3H + 2HoO = U 0 4- P u 0 4- 4 H 4- H 6 = [*] 4- H 4- H 0 = [ * ] 4- 2 H
2
2 +
2 +
2+
2
2
+
2 +
2
2.00
2-1
2.00
1-0
1.00
1-0 2-l(?)
2.00 2.00
+
2
3 +
3 +
6+
1-0
2.00
1-0
2.00
2-0
1.02
2 +
6+
4H
+
4H
+
+
5+
1-0
1.00
+
2
4- 2 H 0 == [ * ] 2
+
+
+
2
4- 3 H
+
+
2
+
+
6+
2
2
3 +
2-0
+
+
+
3+
2
2
H
+
+
3
+
2
3 +
4- F e
2.00
+
2
3 +
4 +
4 +
2-0
+
+
2
+
+
2
4+
2
2
3 +
2.00
+
+
5+
2
4 +
3 +
1-0
+
+
3+
2
3 +
4 +
+
3.00
+
4+
2
3 +
+
+
4+
2
2 +
+
+
2
2
2
1-0
+
4- P u 0 4- 2 H 0 = 2 P u O o 4- 4 + PuOo 2 + 4- 2 H 0 = [ * ] 3 4- 3 H 4- U 0 4- 2 H 0 = 2 U ( V 4- 4 H + UO> + 2 H o O = [*] * 4- 3 H 4- U 0 4- 2 H 0 = [ * ] 4- 3 H 4- C e O H 4- H 0 = U 0 4- C e 4- C e O H 4- H 0 = [ * ] 4- H + Pu 4- 2 H 0 = U 0 4- P u 44- P u + H 0 = [*] + 2H + Fe 4- 2 H 0 = U O , 4- F e 44- F e + H 0 = [*] 4- H 4- F e + H 0 = [*] 4- 2 H 4- F e + 2H 0 = Np0 4- F e 2
2.00
+
+
2
+
+
4+
2
2 +
2 +
2
2
2 +
2 +
2
2
+
2
2 +
9
+
2
5+
2
2
2
2
1-0 +
2
3+
2
2
2
4 +
4 +
Np
2 +
2 +
2 +
4 +
16.
+ Np0 4- N p 0 4- A m 0 4- A m 0 + Am0 4- N p 0 4- N p 0 4- N p 0 4- NpOo 4- P u O , + PuO., 4- P u O >
2 +
+
+
2 +
i+
4 +
4
1.00
M
4 +
4 +
+
2
4 +
4 +
1-0
3 +
2 +
2
2
2.00
+
5+
+
3-2
2 +
2
4 +
4 +
4 +
15.
+
4 +
+
3+
3 +
4 +
4 +
14.
2
3 +
2
+
1.00
4+
4 +
2
2-0
1-0
+
+
4+
+
+
2
2.00
+
+
2 +
2
4 +
13.
2
4 +
4 +
12.
2 +
2 +
2
4 +
11.
2 +
2-0
2 +
2
formed from 4 +
8.
2 +
4 +
3 +
M0
4 +
2
3 +
6.
+
4+
2
2 +
2
+
2
2 +
2.00
3 +
2
3 +
4 +
5.
5+
3 +
3 +
1-0
3 +
2
2 +
3 +
3.
3 +
2 +
μ, M
3 +
4+
2 +
4 +
2c.
2 +
2 +
4 +
+
2
2 +
4 +
2b.
2 +
Pattern"
broken
+ V = U0 4- V 4- V == [ * ] + Fe = Pu + Fe + Fe + H 0 = [*] + H + Cr = Np + Cr + Cr + H 0 = + H + Cr + H 0 = [*] 4- 2 H + Fe = Np + Fe + Fe + H 0 = [*p 4-H + Fe = Pu0 + Fe + F e = [*] + Fe = [*] + Fe 4- H 0 = [ * ] + H + Pu0 = Pu 4- P u 0 + Pu0 = [*] + Pu = Pu + Pu + Pu 4- H 0 = [ * ] « 4 - H + Np0 = NpOo + Np0 + Np0 = [*] +
2 +
2
2.
2
CHEMISTRY
2
4+
+
2 +
+ 3H
+
4- 4 H
+
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
20.
N E W T O N
A N D B A K E R
Oxidation-Reduction
283
Reactions
O v e r - a l l Processes and N e t Activation Processes AF,
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
tcal./mole
AH,
AS,
kcal./mole
e.u.
-7.3 14.9 -4.9 15.1 -13.0 16.7 17.7 -14.2 13.7 -3.3 13.3 12.4 13.4 -1.6 15.3 0.0 13.4 0.0 14.0
-14.0 7.1 -4.0 19.1 -11.9 16.2 20.6 -15.3 14.6 -13.3 4.4 8.6 9.4 8.7 13.6 0.0 7.4 0.0 10.6
-24.0 -26.1 3.0 13.0 4.0 -1.6 9.8 -4.0 3.0 -34.0 -30.0 -12.6 -13.4 +34.0 -6.0 0.0 -20.4 0.0 -12.0
-12.9 16.0 -12.9 11.6 11.4 -9.2 19.2 18.5 19.2 -7.8 16.6 16.0 5.8 26.6 11.9 26.8 26.2 -24.0 12.2 -9.2 15.4 -4.4 17.0 16.0 -0.7 19.1
1.7 18.2 8.2 20.0 20.0 7.5 24.7 24.3 30.9 6.9 17.6 21.3 19.0 37.8 26.7 37.5 37.7 -6.0 14.0 16.2 24.3 20.2 18.0 24.1 26.0 34.6
49.0 74.0 68.0 28.0 30.0 56.0 18.4 19.0 39.0 49.0 3.4 17.6 44.0 38.0 49.6 36.0 38.6 62.0 6.0 85.0 30.0 83.0 3.0 27.0 90.0 52.0
S* comp. e.u.
b
AF*;
kcal./mole
Réf.
d
-70
18.6
58
± 1
-82
17.6
54
± 1.4 ± 3.3
-93 -82
23.2 24.2
93(f)
± 0.3
-87
20.8
61
± 1.6 ± 2 ± 2
-84 -67 -50
15.0 14.0 15.0
56
± 1
-106
16.1
68
± 4
-127
13.4
37(f)'
± 3
-29
14.0
8, 9,10,
± 1
-69
22.4
87
± 13 ± 13
-42 -40
18.0 17.8
ll(r)
± 1 ± 5 ± 5
-62 -61 -25
23.8 23.1 23.8
28, 29, ί 76
± 0.4 ± 1.2
-87 -72
20.5 19.9
61
± 9
-40
23.7
66
± 1.7 ± 1.5
-28 -25
20.8 20.2
43 59
± 2
-116
24.2
3
± 2
-118
20.0
12
± 9 ± 2
-130 -106
19.2 18.2
5(r)
-69
19.4
31
± 0.4
±
e
1
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
284
LANTHANIDE/ACTINIDE
CHEMISTRY
Table I I .
Process 17.
0
Np + Np + 2H 0 = Np0 + Np + 4H N p + N p + 2 H 0 = [*] 5 + 3 H 1-0 18. Pu + Pu + 2H 0 = Pu0 + Pu + 4H Pu + Pu + 2H 0 = + 3H 1-0 19. U + Tl + 2H 0 = U 0 + TP + 4H U + T l + H 0 = [*] 6 + H 2-0 U + Tl + H 0 = + 2H M0 formed from M 20. Pu0 + Ti + H 0 = Pu0 + Ti0 + 2H Pu0 + T i + H 0 = [*] + H 1-0 21. Np0 + V + H 0 = Np0 + V0 + 2H Np0 + V = Np0 + V + H 0 = [*] + H 2-0 22. Pu0 + V + H 0 = Pu0 + V0 + 2H Pu0 + V + H 0 = [*] + H 2-0 Pu0 + V + H 0 = [*]« + 2 H 23. U0 + V + H 0 = U0 + V0 + 2H U0 + V + H 0 = [*] 4- H 2-1 U0 4- V 4- H 0 = [*] + 2H 24. P u + T i 4- H 0 = P u + T i 0 + 2 H P u + T i + H 0 = [*] + H 1-0 25. Pu + V + H 0 = Pu + V 0 + 2H P u + V 4- H 0 = [*] + H 2-0 P u + V 4- H 0 = [*] + 2H Other Reactions 26. Np0 4- V 4- 2 H = N p + V 0 + HUO Np0 + V = [*] 1-0 27. Np0 4- U = N p + U 0 N p + U + 2 H 0 = N p 4- U 0 + 4H Np0 + U + H 0 = [*] + 2H (note °) N p + U 4- H . , 0 = [*] + 2H 28. Np + Np0 = Np0 + Np Np + Np0 + H 0 = [*] + 2H (note ') 2 N p 0 4- H = [*] 29. U 4- U 0 = U0 + U 2U + U 0 + 2 H 0 = [*] + 4H 1-0 30. Np0 + H 0 = N p 0 4- H 0 4- H Np0 4 - H Q = [*] + H 2Np0 + H 0 = [*] 4- N p 0 + H 2-1 31. Np0 + HCr0 "= Np0 + Cr( V) Np0 + H C r 0 " 4- 2 H = [*] 4- H 0 2-1 2 N p 0 + H C r C V 4- 4 H = [*] + Np0 + 2H 0 Reactions involving Cl~, net rate determining reactions not known 32. P u 4- F e 4- C I " = [*] 33. U0 4- V + CI" = [*] 34. N p Q 4- N p Q 4- C P = [*] 4 +
4 +
4 +
4 +
4 +
2
4 +
2
4 +
+
2
+
2
2 +
2
3 +
+
2
2.90
+
2
2+
1.00
+
+
3 +
4 +
2.00
+
+
2
M
+
3 +
2
3 +
4 +
3 +
+
+
2
4 +
4 +
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
Pattern
3+
2 +
3 +
2 +
3 +
2
2
2 +
2
2
2
2 +
3 +
3 +
2 +
3 +
2 +
3 +
2 +
3 +
2
2 +
3 +
2 +
3 +
2 +
3 +
2
2
3 +
2
4 +
3 +
4 +
3 +
4 +
3 +
4 +
3 +
4 +
3 +
2
2
2
2
2
2
2
+
+
4 +
4 +
2
2
+
2
2
2 +
6+
4
2
2
+
+
+
2+
2
3+
2
2 +
2.00
2
3+
2 +
3.00
2 +
5+
2
0.14
+
+
2 +
+
1.20
+
2
2+
+
2 +
+
+
+
2
+
2 +
+
4 +
4
4 +
2
2 +
2
2
2
+
2
1.00
4 +
4+
2
2
2 +
+
2
2
2 +
+
+
3+
2 +
2 +
2
2
+
+
2
+
2
2
2
3+
2 +
3.00
+
3 +
2
+
2
2
2 +
6+
4 +
2.00
+
4 +
4 +
1.02
+
+
2
4 +
2.00
+
2 +
4 +
4 +
2
2 +
+
5+
2
+
+
6+
2
2
2 +
+
3 +
4+
4 +
+
6+
2
2.00
+
3 +
2
2.00
+
+
3+
3 +
4 +
2 +
4+
2
1.00
+
+
+
+
2
+
2 +
4+
2
3 +
2
+
4+
2
2
+
4 +
2 +
+
2
2
+
2
2
2
+
4 +
+
2
4+
2
2 +
2
2
2
2+
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
2.00 2.00 3.00
20.
NEWTON AND BAKER
Oxidation-Reduction
285
Reactions
Continued AF, kcal./mole
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
13.5 28.7 4.5 24.0 -43.0 19.7 19.7 -18.7 14.7 -17.9 16.5 15.7 -12.7 17.1 18.3 6.9 16.6 18.3 -20.3 15.0 -14.3 15.7 15.3
AH, kcal./mole 41.0 46.9 28.3
—
-12.5 24.7 20.5
(-9.4) 10.3 -9.0 32.0 13.0 -2.6 15.6
— 16.0
AS, e.u.
S* comp. e.u.
94.0 63.0 ± 2 80.0
-72
22.0
27
—
21.8
64,65
—
102.0 17.0 ± 4 3.0 ± 4 (31) -14.7 31.0 52.0 -9.0 32.0 -5.0
— 32.0
b
AF*; kcal./mole
-88 -102
Ref.
25(f)
± 1.3
-88
24.0
70
± 16 ± 6
-26 -59
25.4 24.6
80(f)
± 4
-81
23.4 24.6
67(r)
± .9 ± .5
-62 -52
13.1 14.8
60
± 2
-125
25.2
71
± 3 ± 2
-128 -112
22.8 22.4
73(f)
-81
22.6
I
-41 -174
26.3 18.4
79
-67 -30
16.0 24.2
85
-118
25.1
75 100
17.7 22.1 (-0.3) 16.7 6.0 17.2 21.6
3.8 12.9 (67) 6.0 68.0 5.0 21.0
-8.8 18.2 -3.8 9.7 24.4 23.2 0.0 16.0 24.2 0.0 25.1 8.4 16.6 17.0
15.3 14.6 -5.8 36.0 32.2 15.2 0.0 19.9 17.6 0.0 32.8
-24.0 -12.3 -7.0 87.0 26.2 -27.0 0.0 31.1 -22.2 0.0 26.0
11.8 13.3
-16.1 ± -12.2
+35 -2
12.4 —
16.8 17.0
13.4 11.4
-11.7 -18.7 ± 3
-16 -31
— —
91
14.2 14.3 13.6
14.4 10.6 9.0
0.6 ± 5 -12.4 ± 1 - 1 4 . 0 ± 10
-98 -39 -18
— — —
54 58 8,9,10
—
—
± 2.6
± 1.7 ± .07 ± 2
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
286
L A N T H A N I D E / A C T I N I D E
C H E M I S T R Y
Table II.
Process 35.
Pattern
μ, M
2-0
2.00
2-0
2.00
2-0
4.00
0
PuQ + S n + 4C1- = [*]* Pu0 + S n + 3 C 1 " = [*] P u + S n + 5C1- = [*] P u + S n + 4C1" = [*] U + Br0 " = [*] U + Br0 - + 2H = + H 0 2
2
36. 37.
2 +
2 +
2 +
2 +
4 +
2 +
4 +
2 +
4 +
+
+
2+
3+
3
4 +
+
3
2
See Figure 1. Formal entropy of the activated complex, S* comp. = AS* + Σ S° reactants — Jj S° other products in net activation process. "Average value for forward and reverse reactions, A F * = A F * — 0.5 AF°. A F ° , Aif°, and AS° were calculated from data in (31) for actinide ions and from data in Ref. 36 for other ions. Where necessary values were estimated using correla tions given in Ref. 36.
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
a
6
d
rates of r e d u c t i o n of P u 0 U
> Pu
4 +
4 +
> V
3 +
>
2
Ti . 3 +
2 +
b y v a r i o u s r e d u c i n g agents is F e T h e sequence for P u
i n v e r s i o n of the first t w o m e m b e r s . and V
3 +
Np0
, and U 0
2
+
with U
-V0 4 +
2 +
4 +
2
2 +
3 +
> Pu
W h e n the t w o couples,
, i t is seen t h a t N p 0
2
>
3 +
is the same e x c e p t for
, are c o m p a r e d i n t h e i r reactions w i t h P u 0
, and V
2 +
2
2 +
U
4 +
-U0
, Pu , N p 0 4 +
2
2
2 +
+
,
reacts s l o w e r t h a n e x p e c t e d
+
reacts faster t h a n e x p e c t e d w i t h U 0
2
2 +
.
It is clear t h a t
f u r t h e r d a t a are n e e d e d . T h e d i m e n s i o n s of the rate constants f r o m w h i c h the A F * values w e r e c a l c u l a t e d are sec." , M sec." , or M 1
1
2
sec." , d e p e n d i n g o n w h e t h e r the 1
h y d r o g e n i o n d e p e n d e n c e is - 1 , - 2 , or - 3 , r e s p e c t i v e l y . T h i s means that the use of different c o n c e n t r a t i o n units w o u l d not c h a n g e the A F * values for the processes i n w h i c h one h y d r o g e n i o n is released b u t w o u l d c h a n g e those f o r three t w i c e as m u c h as those for t w o h y d r o g e n ions released. T h e o b s e r v a t i o n is that the A F * values, b a s e d o n m o l e / l i t e r , a l l f a l l n e a r the same straight l i n e i n spite of the different h y d r o g e n i o n d e p e n d e n c e s . T h i s suggests
either a c a n c e l l a t i o n of
effects,
or that the c h o i c e
of
m o l e / l i t e r f o r t u i t o u s l y makes the c o r r e c t i o n to a c o n c e n t r a t i o n i n d e p e n d e n t basis s m a l l .
T h e c o r r e c t i o n necessary to p u t a l l the a c t i v a t i o n
free energies o n the same basis is difficult to estimate since it i n v o l v e s the t r a n s l a t i o n a l c o n t r i b u t i o n to the entropies of the v a r i o u s solutes. R e a c t i o n s 2 0 - 2 5 i n v o l v e the o x i d a t i o n of V or T i to V 0 or Ti0 ( ? ) b y a c t i n i d e ( V I ) or ( I V ) ions, M 0 or M . E x a m i n a t i o n of A F * VS. A F ° shows t h a t the V - U 0 R e a c t i o n , 23, is a n o m a l o u s l y fast, b u t t h a t the other A F * values are c o r r e l a t e d w i t h A F ° as before, i r r e s p e c t i v e of the n u m b e r of h y d r o g e n ions released i n the net a c t i v a t i o n processes. 3 +
2 +
2
3 +
2
2 +
3 +
4 +
2 +
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
2 +
20.
Oxidation-Reduction
NEWTON AND BAKER
287
Reactions
Continued AF, kcal./mole 12.2 12.7 13.1 13.6 18.0 18.7
AH, kcal./mole
S* comp. e.u.
AS, e.u.
14.6 14.0 24.1 26.9 27.6 22.8
b
8.0 5.5 4.4 7 37.0 44.7 32.1 ± 0.3 13.9 ± 0.3
AF*, kcal./mole C
Ref. 74(f)
+28 +11 12.0 6.6 -10.0 -45.0
72 76
Estimates of the uncertainties are given for the entropy values o n l y ; those for ΔΗ"* m a y be estimated b y m u l t i p l y i n g b y T ; those for A F * are generally very m u c h smaller. ( r ) indicates recalculated from the o r i g i n a l data. See o r i g i n a l reference.
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
e
1
s
40
35
Ο
30
Ο
20 360Q35
0 -20 ω -40
34
Ο
36
Ο
30
- θ -
31
Cl
d 33
^ 3 1
O23 23
*co°-60
28
3£»
-80
?
V
16
19
6
32
-!00
9
14
-120 15^
-140
^5
Figure 2. Formai entropies vs. charge for the activated complexes described in Table II. S* complex = AS* + Σ S reactants — Σ S products other than activated complex 0
The numbers refer to the
0
Table
Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
288
LANTHANIDE /ACTINIDE
I
30 Il (3) 18 (3)
Φ
'7(3)_
12 (3)
Y)
9 (2)
I
&
20[ 7 (Ik
σ ο * «
Downloaded by MONASH UNIV on January 9, 2017 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch020
CHEMISTRY
Ό
, (2Î
13 (lî
0