22 Antioxidant Properties of Ascorbic A c i d i n Foods WINIFRED M. CORT
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
Hoffmann-LaRoche, Inc., Kingsland Road, Nutley, NJ 07110
Ascorbic acid and its esters function as antioxidants with some substrates by protecting double bonds and scavenging oxygen. Activity of ascorbates has been shown on vegetable oils, animal fats, vitamin A, carotenoids, citrus oils, and in fat-containing foods such as fish, margarine, and milk. Ascorbates also scavenge oxygen out of aqueous solutions and out of certain oxygen-containing compounds. This oxygen scavenging ability has resulted in ascorbic acid addition to beer, wine, meat, and bread. Ascorbic acid also lowers the oxidation state of many metals and valence may thus affect oxidation catalysis. The efficiency of ascorbates as antioxidants is dependent upon the substrate and the compounds to be protected. Because the 2- and 3-positions of ascorbic acid must be unsubstituted, the two free radicals formed at these positions may be intermediates in scavenging oxygen and inhibiting radical formation at double bonds.
A
ntioxidants a r e l i s t e d i n the C o d e
of F e d e r a l R e g u l a t i o n s ( C F R )
• u n d e r f o o d a n d c h e m i c a l preservatives (1,2).
T h e listing includes
p h e n o l i c s s u c h as b u t y l a t e d h y d r o x y a n i s o l e ( B H A ) i n d e x e d i n C h e m i c a l Abstracts
as
[phenol,
(l,l-dimethylethyl)-4-methoxy-25013-16-5]
butylated hydroxytoluene ( B H T )
m e t h y l 128-37-0] as w e l l as t e t r a b u t y l a t e d h y d r o x y q u i n o n e [(1,4-benzenediol,
and
[phenol, 2 , 6 - b i s ( l , l - d i m e t h y l e t h y l ) - 4 -
2 - ( l , l - d i m e t h y l e t h y l 1948-33-0)],
(TBHQ)
the thiodipropio-
nates, tocopherols, bisulfites, a n d ascorbates. O n l y the l a t t e r t w o scavenge o x y g e n o u t of s o l u t i o n .
T h e rest of t h e a n t i o x i d a n t s h a v e b e e n
used
p r e d o m i n a n t l y i n fats a n d oils, a n d i n most cases, w i t h t h e e x c e p t i o n of tocopherols
a n d ascorbyl palmitate ( A P ) ( I )
[l-ascorbic
ester
6-hexa-
decanoate 137-66-6], a t t h e l e g a l l i m i t of 0 . 0 2 % of t h e f a t . P r o p y l gallate 0065-2393/82/0200-0533$06.00/0 © 1982 American Chemical Society
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
534
ASCORBIC
(PG)
[benzoic
a c i d , 3 , 4 , 5 - t r i h y d r o x y p r o p y l ester
121-79-9],
ACID
although
l i s t e d w i t h t h e other a n t i o x i d a n t s i n 1973, is n o w l i s t e d i n 184.1660 as a n a n t i o x i d a n t w i t h a m a x i m u m l e v e l of 0 . 0 1 5 % i n f o o d . E t h o x y q u i n ( E M Q ) [ q u i n o l i n e , 6 - e t h o x y - l , 2 - d i h y d r o - 2 , 2 , 4 - t r i m e t h y l 91-53-2] has b e e n
used
i n a n i m a l feeds a n d the c a r r y - o v e r i n a n i m a l s is l i m i t e d to 5 p p m . E M Q is a l l o w e d i n p a p r i k a a n d c h i l i p o w d e r at 100 p p m . N o r d i h y d r o g u a i a r e t i c a c i d ( N D G A ) , a l l o w e d p r i o r to 1968, is n o w i l l e g a l a n d foods c o n t a i n i n g it are d e e m e d a d u l t e r a t e d . T h e use of ascorbic a c i d ( I I ) , as w i t h other a n t i o x i d a n t s , i n v o l v e s
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
the
specific
substrate i n t o w h i c h t h e y
are i n c o r p o r a t e d .
I n certain
c i r c u m s t a n c e s , a d d i t i v e s that are present i n foods a n d beverages i n a c t i v a t e d a g i v e n a n t i o x i d a n t w h e n u s e d i n the same f o r m u l a t i o n . I n other cases, Certain a n t i o x i d a n t s r e a c t e d c h e m i c a l l y w i t h the m a t e r i a l s t h e y w e r e i n t e n d e d to s t a b i l i z e .
L-ascorbyl palmitate HO
L-ascorbic acid
OH
HO
OH
HO-CH CH OC(CH ), CH 2
2
4
3
II
A s c o r b i c a c i d w a s s t u d i e d i n fats m a n y years ago a n d r e v i e w e d b y Chipault (3)
w h o r e p o r t e d s o m e a c t i v i t y , alone a n d w i t h other a n t i
oxidants, i n l a r d , cottonseed o i l , meats, fish, m a y o n n a i s e , v e g e t a b l e fats, b a k e d a n d f r i e d foods, m i l k p o w d e r s ,
a n d i r r a d i a t e d foods.
In
these
systems h e reports that ascorbic a c i d d o u b l e s t h e s t a b i l i t y of l a r d i n t h e presence of either t o c o p h e r o l or N D G A . A s c o r b i c a c i d w a s u s e d to p r e v e n t the o x i d a t i o n of o l i v e o i l , m i l k , arachis n u t o i l , l a r d , e t h y l ester of l a r d , cottonseed o i l , p o r k , a n d b e e f fat ( 4 ) ;
d a t a s h o w i n g a c t i v i t y alone a n d as a synergist are r e v i e w e d .
A s c o r b y l l a u r a t e , m y r i s t a t e , p a l m i t a t e , a n d stearate w e r e s i m i l a r l y a c t i v e , a l t h o u g h o n l y A P is l i s t e d as a p r e s e r v a t i v e i n C F R .
Ascorbic
acid
s y n e r g y w i t h t o c o p h e r o l w a s also r e v i e w e d . T a p p e l ( 5 ) s h o w e d that ascorbic a c i d acts s y n e r g i s t i c a l l y w i t h f o o d a n t i o x i d a n t s a n d because of t h e great increase i n effectiveness r e s u l t i n g f r o m a s m a l l a m o u n t of ascorbic a c i d , he suggested m i x t u r e s w o u l d b e effective i n p r e v e n t i n g o x i d a t i v e r a n c i d i t y i n meats, p o u l t r y , a n d fish.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
22.
CORT
535
Antioxidant Properties of Ascorbic Acid
Ingold (6)
d i d not r e v i e w ascorbic a c i d p e r se, b u t d i d present a
c h a p t e r o n m e t a l catalysis i n c l u d i n g the m e t a l content o f v e g e t a b l e oils a n d t h e effect of v a l e n c e state of the metals o n o x i d a t i o n o f fats a n d oils. H e reports cobalt, manganese, c o p p e r , i r o n , a n d z i n c at the h i g h e r valences a c t e d c a t a l y t i c a l l y t o o x i d i z e m a n y substrates. T h e a u t h o r d i s c u s s e d t h e a n t i o x i d a n t a c t i v i t y of ascorbic a c i d i n r a d i a t i o n - i n d u c e d free r a d i c a l s , fats i n emulsions,
fluid
milk, and frozen
fish.
H e also discussed
the
q u a n d a r y of m e t a l reactions vs. v a l e n c e state. U r i ( 7 ) has p r e v i o u s l y n o t e d that F e
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
Fe
2 +
+ R O O H -> F e
3 +
2 +
reacts w i t h p e r o x i d e s :
+ OH"+ RO•
thus, the o r g a n i c peroxides s u c h as l i n o l e i c h y d r o p e r o x i d e s are
decom
p o s e d to c h a i n - i n i t i a t i n g a l k o x y r a d i c a l s . W h e n ferrous p h t h a l o c y a n i n e is a d d e d to a s a t u r a t e d s o l u t i o n of q u e r c e t i n i n e t h y l benzoate t r e a t e d w i t h m e t h y l l i n o l e a t e h y d r o p e r o x i d e , a d e e p r e d c o l o r forms t h a t is a t t r i b u t e d to the f o r m a t i o n of a n o - q u i n o n e at t h e 3' -f- 4 ' - p o s i t i o n of t h e flavone.
A l s o , b l e a c h i n g of
/^-carotene
i n e t h y l benzoate
by
methyl
l i n o l e a t e h y d r o p e r o x i d e does not take p l a c e u n t i l ferrous ions are a d d e d a n d t h e n this b l e a c h i n g is c o m p l e t e d w i t h i n 10 m i n . T h e f o r m a t i o n of the a l k o x y r a d i c a l i n this r e a c t i o n is the basis of the o x i d i z i n g p o w e r , w h i c h U r i refers to as " r e d u c t i v e a c t i v a t i o n . " I n his o u t l i n e of a c t i v i t y of different m e t a l catalysts he lists C o , M n , a n d C e 2 +
2 +
3 +
as most a c t i v e .
H o w e v e r , he shows r e a c t i o n of a l l the l o w e r o x i d a t i o n states of t h e metals w i t h p e r o x i d e . O n the other h a n d , a l l the metals i n the l o w e r o x i d a t i o n state, that is, C o , F e , V 2 +
2 +
2 +
, C r * C u , M n , r e a c t e d w i t h o x y g e n to f o r m 2
+
2 +
the h i g h e r v a l e n c e state. I n c e r t a i n systems a s c o r b i c a c i d w a s so effective i n l o w e r i n g t h e v a l e n c e state of metals that it w a s u s e d i n a n a l y t i c a l c h e m i s t r y Ascorbic acid was used w i t h gold, lead, bismuth, tellurium,
(8).
copper,
p h o s p h o r u s , u r a n i u m , halogens, m e r c u r y , a n d cobalt. I n a d d i t i o n to the reports o n the a s c o r b i c a c i d effect o n fats a n d metals, there are n u m e r o u s reports that i n c e r t a i n m e d i a ascorbic a c i d m a y r e m o v e o x y g e n f r o m s o l u t i o n ; p h e n o l i c a n t i o x i d a n t s are not effective i n scavenging.
Experimental Studies reported here use standard assay methods for antioxidants such as thin layer tests (Schaal oven) and the active oxygen method ( A O M ) (9) assayed by measuring peroxide formed, and an emulsion system using hemo globin peroxidation of safflower oil measuring removal of oxygen from solution ( 1 0 ) . Experiments on oxygen scavenging were performed i n all glass equip ment and in glass bottles with metal closures with a measured volume of headspace air. Experiments on additional substances, vitamin A , carotenoids, and citrus oil also were performed in thin layer tests measuring the loss of vitamin A
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
536
ASCORBIC ACID
at 325 n m and apocarotenal at 460 n m . Experiments w i t h water solutions and sodium nitrite were also included. Ascorbic acid derivatives including ascorbic acid 2-sulfate ( I I I ) , ascorbyl palmitate and laurate, sodium ascorbate, 2,3-di-Omethylascorbic acid ( I V ) , benzoylascorbic acid, isopropylideneascorbic acid ( V ) , and 3-0-[(dimorpholino)phosphinate]-5,6-0-isopropylidene L-ascorbate ( V I ) were also studied i n the test systems. A l l figures reported here were collected i n duplicate and were w i t h i n a 1 0 % variation.
L-ascorbic acid-2-sulfate (potassium salt)
2,3-di-O-methylascorbate
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
P 3 CH
H co
HQ OS0K
3
3
CHOH 2
IV
III
3 - 0 - [ (dimorpholino) phosphinate]-5,6-0isopropylidene-L-ascorbate 5,6-isopropylidene L-ascorbic acid n
0
C H 3
\ /0—CH
CH /%4V 3
r~\ / \ / 0 N /3 2\ \_/ U 0 3 \ /0 H,C 0—CH
H
C
C
VI
Results A
series of a n t i o x i d a n t e x p e r i m e n t s i l l u s t r a t i n g c o m p a r a t i v e
anti
o x i d a n t a c t i v i t y i n t h e specific systems tested is p r e s e n t e d i n T a b l e s I - I X . Because
m a n y of
t h e f o o d - g r a d e a n t i o x i d a n t s e x c e p t ascorbates
tocopherols are l i m i t e d i n t h e U n i t e d States to 0 . 0 2 %
and
o f t h e fat o r o i l ,
T a b l e I compares t h e a c t i v i t y i n s o y b e a n o i l at t h a t l e v e l .
Although
a s c o r b i c a c i d a n d A P are m o r e a c t i v e t h a n B H T a n d B H A , t h e y are n o t
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
22.
as a c t i v e as P G a n d T B H Q . ascorbates.
537
Antioxidant Properties of Ascorbic Acid
CORT
T a b l e I I compares t h e a c t i v i t y o f v a r i o u s
S u b s t i t u t i o n i n t h e 2- or 3-position o f a s c o r b i c a c i d m a k e s
i t n o l o n g e r a c t i v e as a n a n t i o x i d a n t , w h e r e a s c o m p o u n d s
substituted i n
the 6- o r 5,6-positions are a c t i v e a n t i o x i d a n t s . I n T a b l e I I I , a n t i o x i d a n t activities of a s c o r b i c a c i d a n d A P are greater t h a n B H T a n d B H A i n safflower, sunflower, p e a n u t , a n d c o r n o i l . O n p o r k a n d c h i c k e n f a t , w h i c h a r e l o w i n tocopherols, t h e ascorbates a r e less effective t h a n B H T a n d B H A ( T a b l e I V ) ; ascorbates are synergistic w i t h tocopherols ( I I ) . W h e a t g e r m o i l w a s s t u d i e d i n s i m i l a r experiments, a n d i t r a p i d l y
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
forms peroxides ( T a b l e V ) . A s c o r b i c a c i d a n d A P w e r e m o r e
efficient
a n t i o x i d a n t s here t h a n w a s B H T . T o investigate t h e effect o n w h e a t , w h o l e berries w e r e a d d e d to w a t e r a n d m i x e d w i t h 0.1 g of a n t i o x i d a n t s / 100 g o f berries a n d t h e n d r i e d at 6 0 ° C o v e r n i g h t . T h e d r i e d mass w a s p u l v e r i z e d i n a W a r i n g b l e n d e r a n d 10 g w a s a d d e d t o p e t r i dishes a n d t i t r a t e d d a i l y f o r p e r o x i d e after e x t r a c t i o n i n t o c h l o r o f o r m - a c e t i c
Table I.
acid.
Comparative Antioxidant A c t i v i t y in Soybean O i l
Antioxidant
(0.02%)
Days to Reach PV* 70
None BHT BHA PG TBHQ Ascorbic acid AP
5 8 7 15 25 10 14
Note: a-Tocopherol content 10 mg % , total tocopherols 95%, thin layers, 45°C. ° P V is peroxide value (milliequivalents per kilogram). Table II.
Comparative Antioxidant A c t i v i t y of Ascorbic A c i d Derivatives in Soybean O i l Antioxidant
(0.05%)
Days to Reach PV 70
None L-Ascorbic acid D-Isoascorbic a c i d ( e r y t h o r b i c ) L-Ascorbyl palmitate L-Ascorbyl laurate D-Isoascorbyl l a u r a t e L-Ascorbic acid 2-sulfate 2,3-Di-O-methyl-l-ascorbic acid 3-Benzoyl-L-ascorbic acid 5,6-Isopropylidene-L-ascorbic acid 2,3:4,6-Di-0-isopropylidene-2-keto-L-gulonate 3 - 0 - [ (Dimorpholino) phosphinate] - 5 , 6 - O - i s o p r o p y l i dene-L-ascorbate
5 17 17 21 21 21 5 5 5 23 5 5
Note: Thin layers, 45°C.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
538
ASCORBIC
Table III.
ACID
Comparative Antioxidant A c t i v i t y in Vegetable O i l Substrate Oil
Antioxidant
Safflower
Sunflower
Peanut
Corn
6 10 8 11 10
6 9 8 10 10
15 15 15 26 NR"
12 13 15 21 NR"
None B H T (0.02%) B H A (0.02%) A P (0.01%) Ascorbic acid (0.02%)
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
Note: Thin layers, 45°C. Data given as days to reach P V 70. ° N R = not run. Table IV.
Comparative Antioxidant A c t i v i t y in Animal Fats
Antioxidant
(0.02%)
Pork Lard
None BHT BHA Ascorbic acid AP a-Tocopherol a-Tocopherol and A P
Chicken
3 18 26 8 9 15 28
Fat
5 15 20 10 10 13 28
Note: Thin layers, 45°C. Data given as days to reach P V 20. Table V .
Comparative Antioxidant A c t i v i t y in Wheat G e r m O i l Day
Antioxidant None B H T (0.02%) A P (0.2%) A P (0.06%) A s c o r b i c a c i d (0.06%) B H T (0.06%)
1
2
3
4
11
10 8 0 0 0 0
35 29 18 0 0 0
86 76 50 NR' NR' NR"
102 110 98 0 0 70
NR* NR* NR" 70 12 NR"
Note: Thin layers, 45°C, data given as peroxide values. ° N R = not run. U n t r e a t e d controls r e a c h e d p e r o x i d e v a l u e ( P V ) 70 i n 11 d ; those w i t h B H T t r e a t m e n t l a s t e d 20 d , w i t h T B H Q 24 d , a n d w i t h A P 31 d . Results o n c o m p a r a t i v e a n t i o x i d a n t efficiency
on
crude p a l m o i l
( T a b l e V I ) a g a i n s h o w a s c o r b i c a c i d to be v e r y a c t i v e . Studies m a d e o n curiosity ( T a b l e V I I ) .
h u m a n fat were performed
s i m p l y because
of
O x i d a t i o n w a s not v e r y r a p i d , b u t t h e fat c o n
t a i n e d 14 m g % t o c o p h e r o l s (8.5 m g %
g a m m a a n d 5.5 m g %
alpha).
A P h a d a c t i v i t y o n this fat t h a t m a y or m a y not b e c a u s e d b y s y n e r g i s m
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
22.
539
Antioxidant Properties of Ascorbic Acid
CORT
Table V I .
Comparative Antioxidant A c t i v i t y in Crude Palm O i l Antioxidants
Days to Reach 70 PV 33 44 45 60 45 60 100
None B H T (0.02%) B H A (0.02%) P G (0.02%) T B H Q (0.02%) A s c o r b i c a c i d (0.02%) A s c o r b i c a c i d (0.1%)
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
Note: Thin layers, 45°C.
Table VII.
Compartive Antioxidant A c t i v i t y in H u m a n Fat PV on Days Shown
Antioxidant None B H T (0.02%) B H A (0.02%) P G (0.02%) T B H Q (0.02%) a-Tocopherol (0.02%) A P (0.02%) A P (0.1%) A P (1.0%)
^
7
16
21
89
64
5 0 2 0 0 3 0 0 0
19 0 18 0 0 19 0 0 0
24 0 23 0 0 26 13 0 0
52 12 55 4 0 60 43 0 0
425 42 270 18 0 426 317 63 0
,
Reach 20 21 45 21 78 ND* 21 28 64 ND"
Note: Thin layers, 45°C, human fat obtained from new cadaver rendered in auto clave. Fat filtered through cheesecloth and Whatman N o . 2 paper. ° N D = not detected in 64 d.
of the tocopherols, a p h e n o m e n o n
to b e discussed later.
The unusual
result is the d r a m a t i c effects of T B H Q . T h e A O M test, i n w h i c h a i r is b u b b l e d at a constant rate at 9 8 ° C , shows a s c o r b i c a c i d a n d A P to be a c t i v e ( T a b l e V I I I ) . T h e
unexpected
result here is t h e v e r y large a c t i v i t y of a s c o r b i c a c i d . H o w e v e r , B e r n e r et a l . (12)
r e p o r t e d a n A O M v a l u e of 8.3 for B H A , w h i c h o n the a d d i t i o n
of a s c o r b i c a c i d at 0 . 0 3 % b e c a m e 44.2; this v a l u e w a s t h e i r h i g h e s t A O M v a l u e . I n a recent r e v i e w , P o r t e r ( 1 3 ) n o t i c e d this a n o m a l y a n d i n c l u d e d i t i n his t h e o r y of l i p o p h i l i c , a m p h i p h i l i c classification of a n t i o x i d a n t s . T o d e t e r m i n e q u i c k l y i f a c o m p o u n d h a d a n y a c t i v i t y as a n a n t i o x i d a n t , a h e m o g l o b i n - c a t a l y z e d e m u l s i o n test (10)
was developed
at t h e same t i m e a s i m i l a r test w a s d e v e l o p e d b y B e r n e r et a l . ( 1 2 ) . t h e system (10)
and In
the a n t i o x i d a n t s w e r e a d d e d at 100 /xg a n d c o m p a r e d to
B H T at the same c o n c e n t r a t i o n . A s c o r b i c a c i d a n d A P are w e a k i n this s y s t e m b u t t h e y e x h i b i t some a c t i v i t y , w h e r e a s
ascorbates
substituted
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
540
ASCORBIC
Table VIII.
Comparative Antioxidant
Antioxidant
Activity
Soybean Oil
Crude Palm Oil
5 11 9 14 13 26 43 NR" 150
11 31 30 50 NR" 17 NR' 51 95
None B H T (0.02%) B H A (0.02%) P G (0.02%) A P (0.02%) T B H Q (0.02%) Ascorbic acid (0.02%) C i t r i c acid (0.1%) Ascorbic acid (0.1%)
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
ACID
Note: A O M , 98°C, data given as hours to reach P V 70. N R = not run. a
Table IX.
Antioxidant A c t i v i t y Activity (%BHT)°
Antioxidant" None BHT BHA PG TBHQ AP Ascorbic acid 2,3-Di-O-methylascorbic acid Ascorbic acid 2-sulfate
PV Formed in 10 min
0 100 200 108 100 64 5 0 0
30 28 10 22 25 14 14 30 30
Note: Emulsion test, hemoglobin peroxidation. 100 Atg added to 20 m L 10% stripped sarBower oil emulsion. a
i n the 2- a n d 3-positions h a v e n o a c t i v i t y . T h e d a t a p r e s e n t e d h e r e corroborate
Porter's
theory
because
the
oil-soluble
antioxidants
m o r e a c t i v e i n the e m u l s i o n system a n d the m o r e w a t e r - s o l u b l e
are com
p o u n d s , s u c h as a s c o r b i c a c i d a n d c i t r i c a c i d , are m o r e a c t i v e i n the a l l o i l systems. T o c o p h e r o l w a s effective a n d a s c o r b i c a c i d ineffective i n the p r o t e c t i o n of c i t r u s oils e v a l u a t e d b y a r o m a ( 1 3 ) .
I n a t y p i c a l s t u d y , 5 g of
orange o i l w a s o x i d i z e d i n 7 5 - m L o p e n b r o w n bottles at 45 ° C a n d w a s e v a l u a t e d b y a p a n e l after 6 d , at w h i c h t i m e i t w a s r a n k e d as off-odor, "terpeney."
T h e p e r o x i d e v a l u e of the i n i t i a l o i l w a s z e r o ; the o x i d i z e d
m a t e r i a l h a d a P V of 100. A s a result, days to r e a c h 100 P V w a s u s e d as an endpoint.
C o m p a r a t i v e a n t i o x i d a n t effects o n a n u m b e r
of
citrus
oils a n d o n D - l i m o n e n e [ c y c l o h e x e n e , l - m e t h y l - 4 - ( l - m e t h y l e t h e n y l ) - ( R ) 5989-27-5] are p r e s e n t e d i n T a b l e X . B H A is the m o s t a c t i v e w h i l e A P has n o a c t i v i t y alone b u t does s y n e r g i z e w i t h t o c o p h e r o l .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
22.
CORT
541
Antioxidant Properties of Ascorbic Acid
V i t a m i n A w i t h its five c o n j u g a t e d d o u b l e b o n d s o x i d i z e s to
5,8-
epoxides ( 1 5 ) w i t h s u b s e q u e n t loss of U V a b s o r p t i o n at 325 n m . T h u s , v i t a m i n A w a s s t u d i e d w i t h t h e a d d i t i o n of v a r i o u s a n t i o x i d a n t s ( T a b l e X I ) i n o p e n bottles i n t h i n layers. A l t h o u g h E M Q w a s t h e best, i t is l i m i t e d to use i n v i t a m i n A for a n i m a l feeds. A P a c t i v i t y w a s not great, b u t w h e n a d d e d to a m i x t u r e of t o c o p h e r o l , B H T , a n d d i e t h a n o l a m i d e , A P gave excellent p r o t e c t i o n . K l a u i (16)
has s h o w n s t a b i l i t y of v i t a m i n A
p a l m i t a t e w i t h t o c o p h e r o l , A P , a n d a n a m i n e e q u a l to 1300 h , c o m p a r e d to a c o n t r o l e q u a l to 100 h . H o w e v e r , the a n t i o x i d a n t s i n the d r y m a r k e t
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
f o r m ( b e a d l e t s ) p r o t e c t the v i t a m i n A i n the beadlets as w e l l as t h e e n d use of the p r o d u c t .
F o r example, spray-dried vitamin A can be
Table X . Antioxidants*
pro-
Citrus Oils Antioxidant A c t i v i t y Orange Orange (Fla.) (Calif.)
None BHT BHA PG eH-a-Tocopherol AP Tocopherol and A P
6 35 44 18 15 6 21
4 32 49 36 10 4 16
Lemon
Grapefruit
Lime
9 24 91 17 9 9 19
3 27 34 20 7 3 7
9 9 15 9 15 9 15
v-Limonene 5 > 56 > 56 > 56 15 5 30
Note: Data given as days to reach 100 P V , 45°C. Antioxidants at 0.02% ; sample size, 5 g in 75-mL open bottles. a
Table X I .
Comparative A c t i v i t y on Antioxidants on Crystalline Vitamin A Acetate Days 2
5
8
12
15
62 None BHT 89 BHA 57 57 PG TBHQ 88 di-a-Tocopherol 89 AP 70 EMQ 98 B H T (at 1.2 g) 87 B H T , Tocopherol, A P , diethanolamine 98 Tocol mix" 95 B H T a n d either e t h a n o l a m i n e d i e t h a n o l a m i n e T w e e n 60 or 80 100
27 79 30 28 82 70 40 91 81 93 89
15 73 19 15 80 57 23 89 74 88 81
10 59 12 10 71 42 18 84 59 85 81
52 9 7 70 33 10 75 56 75 79
89
85
67
60
Antioxidant'
7
Note: Sample size, 5 g in 100-mL open brown bottles, 45°C. Data given as percent retention. A t 100 mg/bottle unless noted. M i x = a-tocopherol 230, diethanolamine 460, Tween 80,1151 mg. a
6
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
542
ASCORBIC
ACID
d u c e d w i t h o n l y t o c o p h e r o l f o r p r o t e c t i o n , a n d t h e v i t a m i n is stable f o r s e v e r a l years.
However,
if the vitamin
is m i x e d i n flour w i t h t h e
moisture encountered at the mills ( 1 2 - 1 3 % ), i t must have B H T to sur vive (17). Carotenoids
s u c h as /?-apo-8'-carotenal
with
its n i n e
conjugated
d o u b l e b o n d s also f o r m epoxides a n d lose a l l t h e i r c o l o r o n o x i d a t i o n . T h u s , e x p e r i m e n t s u s i n g c o l o r loss at 460 n m w e r e p e r f o r m e d t o s t u d y a n t i o x i d a n t a c t i v i t y . T a b l e X I I shows
that y-tocopherol
followed by
B H A a n d a - t o c o p h e r o l a r e t h e best a n t i o x i d a n t s f o r a p o c a r o t e n a l , a n d i f
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
A P is a d d e d , b o t h t o c o p h e r o l s a r e t h e v e r y best.
Ascorbic acid a n d A P
b o t h h a v e some a n t i o x i d a n t a c t i v i t y f o r a p o c a r o t e n a l w i t h o u t t o c o p h e r o l . Oxygen
scavenging
experiments
were
performed
on
compounds
d i s s o l v e d i n o x y g e n a t e d d i s t i l l e d w a t e r i n b r o w n bottles w i t h 2 c m of 3
h e a d s p a c e , t e s t i n g a l l t h e c o m p o u n d s at 20 m g / b o t t l e .
T h e bottles w e r e
s h a k e n i n a r o t a r y shaker at 150 r p m f o r 19 h at r o o m t e m p e r a t u r e . I m m e d i a t e l y after o p e n i n g , o x y g e n i n s o l u t i o n w a s r e a d o n t h e O r i o n Electrode
(Orion
Research)
(Table
XIII).
A d d i t i o n a l experiments,
read w i t h i n 5 m i n , showed that the inorganics reacted immediately; h o w ever, after b u b b l i n g i n a i r f o r 5 m i n , o n l y t h e s o d i u m sulfite c o n t i n u e d to k e e p o x y g e n i n s o l u t i o n at zero.
Table X I I .
A s c o r b i c a c i d a n d cysteine
Comparative A c t i v i t y of Antioxidants on Apo-8'-carotenal Day (room temperature)
Day (Jt5°C) Antioxidant* None BHT BHA PG Ascorbic acid AP di-a-Tocopherol dZ-a-Tocopherol dZ-a-Tocopherol ascorbic a c i d dl-y-Tocopherol dJ-y-Tocopherol dJ-y-Tocopherol ascorbic a c i d
took
and A P and
and A P and
4
6
8
12
16
20
28
28
72 100 100 95 80 96 100 100
59 92 100 95 78 88 100 100
40 88 98 92 52 78 95 98
16 70 88 85 29 46 92 92
6 40 72 65 7 16 72 75
2 >1 7 25 59 40 52 36 1 3 1 5 48 28 65 42
80 91 95 93 87 91 95 100
100 100 100
100 100 100
100 100 100
95 100 92
78 82 78
62 72 72
43 48 56
96 96 96
100
100
100
92
75
70
55
96
Note: 200 jig/g in coconut oil. Data given as percent ret ention. 3.3 g Petri plate 150 X 15 mm. ° Antioxidants at 200 fig/g.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
22.
CORT
543
Antioxidant Properties of Ascorbic Acid
Table XIII. Oxygen Scavenging Experiment Effect of Compounds on Residual Oxygen in Solution Compounds Added" None Na S 0 Na S20 Na S0 L-Ascorbic acid Sodium-L-ascorbate 2,3-Di-O-methylascorbic acid 3 - B e n z o y l ascorbate 5,6-Isopropylidene-L-ascorbic acid 3-0-[ (Dimorpholino) phosphinate]-5,6-O-isopropylidene-L-ascorbate Potassium-L-ascorbate 2-sulfate Cysteine H C l C y s t e i n e free base D-Isoascorbic a c i d Dehydro-L-ascorbic acid 2
2
4
2
5
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
2
3
Oxygen (ppm)
Odor
8 0-1 0-1 0 0 0 8 8 0 8
OK S0 -like S0 -like OK OK OK OK OK OK OK
8 5 0 0 8
OK + odor - j - odor OK OK
2
2
Note: 50-mL brown bottles, closed metal lids, 2 cm of headspace air, shaken 150 rpm for 19 h, room temperature. 20 mg/bottle. 3
a
1 7 - 2 4 h of s h a k i n g i n c l o s e d bottles to c o m e t o c o m p l e t i o n .
As previ
o u s l y s h o w n , i n fat o x i d a t i o n t h e 2- a n d 3-positions of a s c o r b i c a c i d h a v e to b e u n s u b s t i t u t e d to a l l o w o x y g e n s c a v e n g i n g .
M e a s u r e m e n t of
UV
a b s o r p t i o n s h o w e d a n o p t i c a l d e n s i t y at 290 n m of 1.0 a n d at 260 n m of 1.4 f o r t h e s o d i u m ascorbate; these r e a d i n g s m i g h t i n d i c a t e f o r m a t i o n
of
t h e free r a d i c a l i n t h e 2 - p o s i t i o n , w h i c h r e p o r t e d l y absorbs at 290 n m (18). A s c o r b y l p a l m i t a t e , l a u r a t e , a n d stearate w e r e tested i n this sys t e m . H o w e v e r , t h e i r w a t e r s o l u b i l i t i e s w e r e so l o w t h a t t h e y d i d not f u n c t i o n as o x y g e n scavengers u n t i l the p H w a s a d j u s t e d t o 9 to s o l u b i l i z e a l l three esters. S u b s e q u e n t l y t h e y r e m o v e d a l l of the o x y g e n f r o m s o l u t i o n at 20 m g / b o t t l e w i t h 2 c m
3
of h e a d s p a c e a i r .
T h e o r e t i c a l l y 3.3 m g of a s c o r b i c a c i d w i l l c o n s u m e t h e o x y g e n i n 1 cm
3
of h e a d s p a c e
air (19).
A d d i t i o n a l experiments w e r e
performed
w i t h m e a s u r e d a m o u n t of h e a d s p a c e a i r a n d a s c o r b i c a c i d ( T a b l e X I V ) . T h e s e experiments w e r e p e r f o r m e d i n 3 7 - m L bottles w i t h m e t a l l i d s i n a shaker at 150 r p m for 19 h . Six m i l l i g r a m s of a s c o r b i c a c i d r e m o v e d o x y g e n i n the bottles w i t h 1 c m i n the bottles w i t h 2 c m
3
3
of h e a d s p a c e a n d r e d u c e d the o x y g e n
of h e a d s p a c e .
A s c o r b i c a c i d assays m e a s u r e d
b y a b s o r p t i o n at 260 n m i n d i c a t e a l a c k of m a t e r i a l b a l a n c e .
Therefore,
a d d i t i o n a l studies w e r e p e r f o r m e d i n a l l glass bottles ( T a b l e X V ) .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
In
544
ASCORBIC
ACID
this e x p e r i m e n t 3.4-3.6 m g of a s c o r b i c a c i d w a s r e q u i r e d for e a c h c u b i c c e n t i m e t e r of h e a d s p a c e , w h i c h is close to t h e t h e o r e t i c a l v a l u e . I n a d d i t i o n a l e x p e r i m e n t s not i n c l u d e d i n this t a b l e , m e t a l caps w e r e i n s e r t e d i n t o the a l l glass e q u i p m e n t ; less t i m e w a s r e q u i r e d to r e m o v e the o x y g e n f r o m t h e solutions a n d m o r e a s c o r b i c a c i d p e r c u b i c c e n t i m e t e r of h e a d space w a s r e q u i r e d . W a t e r solutions
of
ascorbic
acid measured
i n the
U V required
g a s s i n g w i t h n i t r o g e n to s l o w d o w n t h e d e s t r u c t i o n of a s c o r b i c
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
Nitrogen-gassed
ascorbic
a c i d solutions
spectrophotometrically
at 3 6 0 - 2 0 0
optical density (peak,
260 n m ) .
nm
10 ju,g/mL
were
24 h
no
at for
with
B y comparison,
acid.
scanned
change
10-jug/mL
in
solutions
of a s c o r b i c a c i d , c o n t a i n i n g 8 p p m o x y g e n i n a l l glass e q u i p m e n t w i t h 10 c m
3
of h e a d s p a c e a i r , w e r e s c a n n e d h o u r l y also. W i t h i n 6 h t h e U V
p e a k w a s r e d u c e d , n o n e w peaks w e r e f o r m e d , a n d m o r e t h a n 9 0 % of the a s c o r b i c a c i d w a s gone. A n a e r o b i c d e g r a d a t i o n of a s c o r b i c a c i d i n g r a p e f r u i t j u i c e is a z e r o o r d e r r e a c t i o n ( 2 0 ) , b u t d e g r a d a t i o n of fish is e i t h e r first or zero o r d e r d e p e n d i n g o n the t y p e of fish (21).
Table X I V .
A s c o r b i c a c i d d e g r a d a t i o n i n peas is
Residual Oxygen in Solution Ascorbic
Headspace
(cc)
0 1 2 3 5 7 10
Acid
Content
(mg)
3
6
9
0.0 1.2 2.2 3.6 4.7 7.0 8.0
0.0 0.0 0.2 2.8 5.1 6.0 7.0
0.0 0.0 0.0 0.3 1.4 5.0 6.0
Note: Closed bottles, metal lids, shaken 19 h at room temperature. Data given as parts per million. Table X V .
Oxygen Scavenging by Ascorbic A c i d with Reduced Metal Contamination Residue Ascorbic Acid
Ascorbic
Acid
none 3 mg 6mg 9 mg
Oxygen
8.0 0.4 0.0 0.0
(ppm)
(mg)
Ascorbic Acid Consumed (mg)
0.0 1.3 4.2 7.2
0.0 1.7 1.8 1.8
Note: 0.5 c m of headspace, glass flasks and stopper; shaken 24 h at room tem perature. 3
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
22. a
CORT first-order
545
Antioxidant Properties of Ascorbic Acid degradation
(22,23).
F i r s t - o r d e r d e g r a d a t i o n of
ascorbic
a c i d w a s s h o w n i n l i m i t e d o x y g e n , b u t o x y g e n h a d a p r o f o u n d effect o n t h e rate ( 2 4 ) ; these
findings
agree w i t h o u r d a t a . Studies o n
ascorbic
a c i d i n r e l a t i o n to w a t e r a c t i v i t y i n d i c a t e t h a t the l a c k of w a t e r i n the A O M p r o b a b l y prevents a s c o r b i c a c i d f r o m b r e a k i n g d o w n , a l l o w i n g i t to r e m a i n active. F u r t h e r studies o n the a b i l i t y of a s c o r b i c a c i d to scavenge o x y g e n b y r e a c t i n g w i t h n i t r o g e n h a v e b e e n of interest. A s c o r b i c a c i d a d d e d
to
s o d i u m n i t r i t e solutions i m m e d i a t e l y p r o d u c e s b u b b l e s , w i t h the release
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
of n i t r i c oxide.
Mergens
s t u d i e d the a d d i t i o n of a l l of t h e p r e
(26)
cursors of a s c o r b i c a c i d synthesis as w e l l as the 6- a n d 5,6-derivatives d i s cussed here. H i s system is s i m i l a r to t h a t r e p o r t e d p r e v i o u s l y (27).
The
loss of n i t r i t e w a s m e a s u r e d w i t h i n 1 m i n f r o m a 7 m M s o l u t i o n of so d i u m n i t r i t e . A s c o r b i c d e r i v a t i v e s i n the 6- a n d 5,6-positions w e r e a c t i v e , a n d a l l precursors
were inactive, i n nitrite decomposition.
More
re
c e n t l y M e r g e n s f o u n d t h a t III a n d V I are i n a c t i v e . T h u s , r e a c t i o n w i t h n i t r i t e p a r a l l e l s the r e q u i r e m e n t for o x y g e n s c a v e n g i n g a n d a n t i o x i d a n t i n fats, n a m e l y t h a t the 2- a n d 3-positions
of a s c o r b i c
acid must
be
u n s u b s t i t u t e d a n d r e m a i n as the e n e d i o l or e n e d i o l a n i o n to b e a c t i v e .
Table X V I
om Nitrogen Dioxide by Ascorbates
Oxygen Scavenging Active
Inactive
A s c o r b i c a c i d precursors glucose, sorbose, 2 - k e t o g u l o n i c , etc.
L-Ascorbic acid
AP 5,6-Isopropylidene-L-ascorbic acid
L - A s c o r b i c a c i d 2-sulfate
d-Isoascorbic a c i d
3-0-[ (Dimorpholino) phosphinate]5,6-O-isopropylideneascorbic acid
(erythorbic)
Discussion Metal Effects and Prooxidant Action. i n s o m e situations. K a n n e r et a l . (28)
A s c o r b i c a c i d is p r o o x i d a n t
s h o w e d that C u
2 +
i n c r e a s e d the
o x i d a t i o n of l i n o l e a t e u s i n g loss of ^-carotene as a n i n d i c a t o r .
However,
w h e n sufficient a s c o r b i c a c i d w a s a d d e d to his system, c o p p e r catalysis w a s reversed. F u r t h e r m o r e , w h e n F e
3 +
w a s a d d e d , the a d d i t i o n of ascor
b i c a c i d i n c r e a s e d the p r o o x i d a n t effect.
Previous publications
(29)
h a v e d i s c u s s e d t h e d e a c t i v a t i o n of c o p p e r catalysis b y a s c o r b i c a c i d , b u t i n iron-catalyzed oxidation, F e formed from F e
3 +
2 +
initiates o x i d a t i o n of l i p i d ( 2 ) .
Fe
2 +
is
b y a s c o r b i c a c i d . M a n y foods c o n t a i n metals, a n d t h e
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
546
ASCORBIC
a d d i t i o n of a s c o r b i c a c i d w i l l l o w e r t h e i r v a l e n c e .
ACID
These lower valence
metals m a y cause p r o b l e m s . T h e r o l e of a s c o r b i c a c i d i n e n z y m e systems has b e e n k n o w n f o r a long time.
T h e ascorbic
a c i d requirement was
a-ketoglutaric a c i d , oxygen, a n d F e
reviewed along
with
i n p r o p y l a n d lysyl hydroxylases
2 +
a n d the p o s s i b i l i t y t h a t a s c o r b i c acid's f u n c t i o n is to k e e p to i r o n as F e (30).
2 +
M o r e r e c e n t l y researchers c l a i m t h a t a s c o r b i c a c i d does n o t p a r
t i c i p a t e i n the h y d r o x y l a t i o n r e a c t i o n b u t is s p e c i f i c a l l y r e q u i r e d to k e e p the enzyme F e
2 +
i n the r e d u c e d f o r m (31).
The peptide-bound proline
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
is t r a n s f o r m e d to h y d r o x y p r o l i n e a n d a - k e t o g l u t a r a t e to s u c c i n a t e a n d c a r b o n d i o x i d e . A s c o r b i c a c i d as a cofactor f u n c t i o n s to k e e p i r o n as F e i n n o t o n l y p r o p y l h y d r o x y l a s e b u t also l y s y l h y d r o x y l a s e , p h e n y l pyruvate hydroxylase, indoleamine-2,3-dioxygenase,
2 +
p-hydroxyand a-keto-
g l u t a r a t e a n d 5 - h y d r o x y m e t h y l u r a c i l dioxygenases. O n e of the most i n t e r e s t i n g papers o n a s c o r b i c a c i d - C u showed that ascorbic a c i d - C u
2 +
reactions
2 +
catalyzes the f o r m a t i o n of e t h y l e n e f r o m
s e v e r a l precursors. T h e interest i n e t h y l e n e was as a n a b s c i s s i o n agent i n plants.
A l l alcohols,
aldehydes,
ethylene w h e n m i x e d w i t h C u
2 +
acids,
ethers,
and
epoxides
formed
a n d a s c o r b i c a c i d i n 5 - m L c l o s e d bottles
at 30 ° C for 1 h . M e t h i o n a l w a s the most a c t i v e , f o l l o w e d b y p r o p a n a l , p r o p a n o l , p r o p y l ether, e t h y l ether, a n d e t h a n o l . T h i s r e a c t i o n m a y p a r t of the o x y g e n s c a v e n g i n g system b e c a u s e C u acid's
ability
to
scavenge
oxygen.
The
authors
be
increases
ascorbic
c l a i m this
reaction
2 +
c a n n o t b e a t t r i b u t e d to c o p p e r i n its l o w e r v a l e n c e state. E i t h e r F e n t o n reagent or a m i x t u r e of a s c o r b i c a c i d , F e , a n d e t h y l 3 +
enediaminetetraacetic
a c i d c a t a l y z e d t h e p r o d u c t i o n of
acetyldehyde
from ethanol, ethylene from methional derivative, a n d methane d i m e t h y l sulfoxide (34).
from
T h e authors c l a i m e d t h a t b o t h h y d r o x y r a d i c a l s
a n d singlet o x y g e n w e r e f o u n d as i n t e r m e d i a t e s , a n d , i n d e e d ,
ascorbic
a c i d s c a v e n g e d b o t h h y d r o x y l r a d i c a l a n d singlet o x y g e n . I n c e r t a i n foods a n d
Ascorbic A c i d and Tocopherol. ascorbic
a c i d a n d A P s y n e r g i z e d other a n t i o x i d a n t s a n d
beverages tocopherols,
a n d s o m e of this d a t a w a s r e v i e w e d ( 5 , 3 5 ) .
B o t h a- and y-tocopherol,
s i m i l a r to a s c o r b i c a c i d , react w i t h C u
3 +
2 +
a n d F e , a n d as a r e s u l t a s c o r b i c
a c i d m a y sacrificially stabilize tocopherols
(36).
H o w e v e r , ascorbic a c i d
t r a n s f o r m s « - t o c o p h e r o x i d e to a - t o c o p h e r o l a n d t h e d i m e r i c k e t o ether to " b i - a - t o c o p h e r y l , " thus r e g e n e r a t i n g t h e t w o a n t i o x i d a n t species oxidized tocopherols
(37).
P a c k e r et a l . (38)
o x y r a d i c a l w i t h ^ - t o c o p h e r o l u n d e r p u l s e r a d i o l y s i s to f o r m r a d i c a l ( a b s o r b s at 425 n m ) .
from
mixed trichloromethylpertocopherol
W h e n ascorbic a c i d was added,
ascorbic
r a d i c a l f o r m e d , a b s o r b i n g at 360 n m ; t h e 4 2 5 - n m a b s o r p t i o n w a s lost. T h e r a p i d i n t e r a c t i o n m a y r e c y c l e t o c o p h e r o l at t h e expense of a s c o r b i c acid.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
22.
CORT
547
Antioxidant Properties of Ascorbic Acid
I n b i o l o g i c a l systems, o x i d a t i o n m a y p r o c e e d
Biological Systems.
t h r o u g h s u p e r o x i d e r a d i c a l 0 ~ , w h i c h forms f r o m m o l e c u l a r o x y g e n b y 2
a d d i t i o n of a single e l e c t r o n ( 3 9 ) . S u p e r o x i d e d i s m u t a s e ( S O D ) acts o n 0 ~ t o y i e l d h y d r o g e n p e r o x i d e a n d o x y g e n , w h i c h reacts w i t h a n o t h e r 2
0 " to p r o d u c e h y d r o x y r a d i c a l . T h i s l a t t e r r e a c t i o n is c a t a l y z e d b y F e ; 3 +
2
t h e h y d r o x y r a d i c a l s are c o n s i d e r e d most toxic.
S u p e r o x i d e r a d i c a l is
p r o d u c e d b y r e s p i r a t i o n a n d a n u m b e r of e n z y m e s , i n c l u d i n g x a n t h i n e oxidase, a l d e h y d e oxidase, d i h y d r o - o r o t i c a c i d d e h y d r o g e n a s e ,
galactose
oxidase, i n d o l e a m i n e a n d 2 - n i t r o p r o p a n e dioxygenases, d i a m i n e oxidase,
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
and
ribulose-l,5-diphosphate
carboxylase.
O x i d a t i o n of
many
com
p o u n d s , i n c l u d i n g h y d r o q u i n o n e , flavins, t h i o l s , c a t e c h o l a m i n e s , d i a l u r i c acid, herbicides, paraquat, a n d carbon tetrachloride, produce 0 " . 2
Pol
l u t e d a i r f r o m b u r n i n g gasoline, p a p e r , a n d t o b a c c o a n d o z o n e - c o n t a m i n a t e d a i r contains 0 ~ . 2
A s c o r b i c a c i d reacts w i t h 0 " g e n e r a t e d f r o m t h e x a n t h i n e oxidase 2
system a n d m a y p l a y a role against 0 " m e d i a t e d t o x i c i t y . A s c o r b i c a c i d 2
quenches the h y d r o x y l radical ( 4 0 ) . A s c o r b i c a c i d m a y protect against free r a d i c a l s i n t h e l u n g b e c a u s e a s c o r b i c a c i d is f o u n d i n t h e fluid ( 3 9 ) . T h e t o x i c i t y of o z o n e a n d o x y g e n m a y also b e r e d u c e d b y a s c o r b i c a c i d (39).
C a r b o n t e t r a c h l o r i d e m o r t a l i t y i n rats is l o w e r e d b y a s c o r b i c a c i d .
A u t o x i d a t i o n of a s c o r b i c
a c i d d i d n o t generate
0 ". 2
Reduced gluta
t h i o n e reacts w i t h d e h y d r o a s c o r b i c a c i d ( V I I ) a n d recycles a s c o r b i c a c i d .
dehydroascorbic acid
HO-CH
I
C H OH 6 * 0
VII Review of Ascorbic A c i d Mechanisms of Action.
Ascorbic acid a n d
A P h a v e a n t i o x i d a n t a c t i v i t y i n fats, oils, v i t a m i n A , a n d carotenoids. I n these systems A P is a better a n t i o x i d a n t t h a n a r e t h e p h e n o l i c a n t i o x i dants B H T a n d B H A , b o t h f r o m these d a t a a n d others ( 2 9 , 3 5 ) .
Ascorbic
a c i d protects against o x i d a t i o n of flavor c o m p o u n d s i n w i n e , beer, f r u i t s , artichokes, a n d cauliflower (29) presumably b y oxygen scavenging. T h e w e l l - k n o w n f o r m a t i o n of n i t r i c o x i d e f r o m nitrites b y a s c o r b i c a c i d is u s e d n o t o n l y f o r i n h i b i t i o n of n i t r o s a m i n e f o r m a t i o n , b u t also t o p r o m o t e
American CnemicaT Society Library 1155Metabolism, 16th St. and N.Uses; W. Seib, P., et al.; In Ascorbic Acid: Chemistry, Advances in Chemistry; American Chemical Washington, DC, 1982. Washington, D.Society: C. 20036
548
ASCORBIC
the f o r m a t i o n
of
nitrosometmyoglobin
and nitrosomyoglobin
ACID
to
keep
meat red. A s c o r b i c a c i d , a c t i n g as a n a n t i o x i d a n t i n c e r t a i n systems, scavenges o x y g e n out of s o l u t i o n at a r a t i o of 3.4r-3.6 m g / c m
3
of h e a d s p a c e a i r ,
w h i c h is close to the t h e o r e t i c a l v a l u e . I n a l l of the a s c o r b i c a c i d reactions s u b s t i t u t i o n i n the 5- a n d
5,6-
positions does not interfere w i t h its a c t i v i t y . S u b s t i t u t i o n i n e i t h e r t h e 2or 3-position or b o t h makes a s c o r b i c a c i d n o l o n g e r a c t i v e as a n o x y g e n scavenger or as a n a n t i o x i d a n t . O l c o t t a n d L i n (41) Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
certain antioxidants b y
a t t e m p t e d to l e a r n the m e c h a n i s m of a c t i o n of s t u d y i n g stable free r a d i c a l n i t r o x i d e s .
They
m e a s u r e d the e l e c t r o n p a r a m a g n e t i c resonance ( E P R ) s i g n a l a n d as l o n g as the n i t r o x i d e s i g n a l w a s o b t a i n e d , o x i d a t i o n w a s i n h i b i t e d . W h e n t h a t s i g n a l was n o l o n g e r d e t e c t e d , o x i d a t i o n p r o c e e d e d .
L a t e r (42)
EMQ
n i t r o x i d e p r e v e n t e d the o x i d a t i o n of squalene a n d w h e n t h e E P R n i t r o x i d e s i g n a l was no l o n g e r d e t e c t e d , o x i d a t i o n p r o c e e d e d . T h e y c o n t e n d e d t h a t the free r a d i c a l of the a n t i o x i d a n t keeps the the a l k y l free r a d i c a l i n the l i p i d f r o m f o r m i n g ; therefore, peroxides c a n n o t f o r m .
This explana
t i o n is not u n i v e r s a l l y a c c e p t a b l e , a l t h o u g h the f o r m a t i o n of a r a d i c a l p r i o r to p e r o x i d e f o r m a t i o n of fats a n d oils has b e e n a c c e p t e d f o r m a n y years. O r r (43) effect of C u
2 +
u s e d d i m e t h y l sulfoxide as a free r a d i c a l sink to i n h i b i t the a n d a s c o r b i c a c i d o n catalase a n d ^ - g l u c u r o n i d a s e as w e l l
as the d e g r a d a t i o n of h y a l u r o n i c a c i d . T h e f o r m a t i o n of a r a d i c a l f r o m ascorbic a c i d a n d C u
2 +
i n w a t e r was d e t e c t e d b y E P R (44).
Based on
a n E P R s p e c t r o s c o p i c s t u d y of a s c o r b i c a c i d d u r i n g o x i d a t i o n of m e t h y l arachidonate-enriched
liposomes,
ascorbic
acid may
be
important
p r e v e n t i n g free r a d i c a l d a m a g e i n the c e n t r a l nervous system
F o r m a t i o n of the free r a d i c a l of a s c o r b i c a c i d ( m e a s u r e d at 360 accompanied (18,46)
r e d u c t i o n of t o c o p h e r o l
s h o w e d that the a s c o r b i c
free r a d i c a l s (38).
in
(45). nm)
B i e l s k i et a l .
a c i d free r a d i c a l i n t h e 3-position
absorbs at 360 n m a n d t h a t i n the 2-position absorbs at 290 n m ; also, a s c o r b i c a c i d reacts w i t h superoxide. I n c e r t a i n systems a s c o r b i c a c i d free r a d i c a l o n the 2- a n d 3-positions m a y b e a n i n t e r m e d i a t e i n the a n t i o x i d a n t f u n c t i o n , b u t i t is a s h o r t - l i v e d i n t e r m e d i a t e (18).
A n e l e c t r o n s p i n resonance flow system w a s u s e d to
s t u d y s c a v e n g i n g of a n i t r o s a t i n g agent b y a s c o r b i c a c i d , a n d a t o t a l s p i n free r a d i c a l , w h i c h is the same as t h a t p r o d u c e d b y r a d i o l y t i c o x i d a t i o n (48),
was d e t e r m i n e d
(47).
T h e e v i d e n c e i n this c h a p t e r is that the 2- a n d 3-positions of a s c o r b i c a c i d m u s t be u n s u b s t i t u t e d a n d a v a i l a b l e for a s c o r b i c a c i d to act as a n o x y g e n scavenger or a n a n t i o x i d a n t .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
22.
CORT
Antioxidant Properties of Ascorbic Acid
549
Acknowledgments T h a n k s are g i v e n t o J a n e J e r n o w a n d E . O l i v e t o f o r p r o v i d i n g t h e ascorbic acid derivatives a n d to M . Mergens for experimental data.
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
Literature Cited 1. Code of Federal Regulations Title 21 121.101, 1973. 2. Code of Federal Regulations Title 21 172.110-172.190, 182.3013-182.3890, 1980. 3. Chipault, J. R. In "Autoxidation and Antioxidants"; Lundberg, W. O., Ed.; John Wiley & Sons: New York, 1962; Vol. 2, pp. 506-509, 523-526. 4. Emanuel, N. M.; Lyaskovskaya, Y. N. In "The Inhibition of Fat Oxidation Processes"; Pergamon Press: New York, 1967; pp. 307-315. 5. Tappel, A. L. In "Autoxidation and Antioxidants"; Lundberg, W. O., Ed.; John Wiley & Sons: New York, 1961; Vol. 1, p. 325. 6. Ingold, K. V. In "Symposium on Foods: Lipids and Their Oxidation"; Schultz, H. W.; Day, E. A.; Sinnhuber, R. O., Eds.; Avi: Westport, CN, 1962; p. 93. 7. Uri, N. In "Autoxidation and Antioxidants"; Lundberg, W. O., Ed.; John Wiley & Sons: New York, 1961; Vol. 1, pp. 55-106, 133. 8. Hay, G. W.; Lewis, B. A.; Smith, F. In "The Vitamins"; Sebrell, W. H.; Harris, R. S., Eds.; Academic: New York, 1967; Vol. 1, p. 319. 9. AOCS "Official and Tentative Methods of the Amer. Oil Chem. Soc."; AOCS: Champaign, IL, 1964; Vol. 1. 10. Cort, W. M. Food Technol. 1974, 26, 60. 11. Cort, W. M. J. Am. Oil Chem. Soc. 1974, 51, 321. 12. Berner, D. L.; Conte, J. A.; Jacobson, G. A. J. Am. Oil Chem. Soc. 1974, 51, 292. 13. Porter, W. L. In "Autoxidation in Food and Biological Systems"; Simic, M. G.; Karel, M., Eds.; Plenum: New York, London, 1980; p. 295. 14. Kesterson, J. W.; McDuff, O. R. Am. Perfum. Essent. Oil Rev. 1949, 54, 285. 15. Schweiter, U.; Isler, O. In "The Vitamins"; Sebrell, W. H.; Harris, R. S., Eds.; Academic: New York, 1967; Vol. 1. 16. Klaui, H. Proc. Univ. Nottingham Resid. Semin. Vitam. 1971, 110. 17. Borenstein, B.; Cort, W. M., French Patent 2 011 564, 1970. 18. Bielski, B. H. J.; Comstock, D. A.; Bowen, R. A. J. Am. Chem. Soc. 1971, 93, 5624. 19. "The Use of Ascorbic Acid in Carbonated and Non-Carbonated Beverages," Roche Technical Service, Fine Chemical Division, 1960. 20. Smoot, J. M.; Nagy, S. J. Agric. Food Chem. 1980, 28, 417. 21. Ding, J. C.; Watson, M.; Bates, R. P.; Schroeder, E. J. Food Sci. 1978, 43, 457. 22. Lathrop, P. J.; Leung, H. K. J. Food Sci. 1980, 45, 152. 23. Blaug, S. D.; Hajratwala, B. J. Pharm. Sci. 1972, 61, 556. 24. Dennison, D. B.; Kirk, J. R. J. Food Sci. 1978, 43, 609. 25. Labuza, T. P. Food Technol. 1980, 34, 67. 26. Mergens, W.; Hoffmann-LaRoche, personal communication. 27. Raineri, R.; Weisburger, J. H. Ann. N.Y. Acad. Sci. 1975, 258, 181-189. 28. Kanner, J.; Mendel, H.; Budowski, P. J. Food Sci. 1977, 42, 60. 29. FAO-WHO "Review of the Technological Efficacy of Some Antioxidants and Synergists," W.H.O. Tech. Rep. Ser. 1971, 488. 30. Barnes, M. J. Ann. N.Y. Acad. Sci. 1971, 258, 264.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV ILLINOIS URBANA on May 16, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch022
550
ASCORBIC ACID
31. "The Role of Ascorbic Acid in the Hydroxylation of Peptide-Bound Pro line," Nutr. Rev. 1979, 37, 26. 32. Hayaishi, O.; Nozaki, N.; Abbott, H. T. In "The Enzymes"; Boyer, P. D., Ed.; Academic: New York, 1974; Vol. 12, p. 119. 33. Lieberman, M.; Kunishi, A. T. Science 1967, 158, 938. 34. Cohen, G.; Cederbaum, A. I. Arch. Biochem. Biophys. 1980, 199, 438. 35. Klaui, H. In "Vitamin C: Recent Aspects of Its Physiological and Techno logical Importance"; Birch, C.; Parker, K. J., Eds.; John Wiley & Sons: New York, 1974; pp. 16-39. 36. Cort, W. M.; Mergens, W.; Green, A. J. Food Sci. 1978, 43, 797. 37. Schuldel, P.; Mayer, H.; Isler, O. In "The Vitamins"; Sebrell, W. H.; Har ris, R. S., Eds.; Academic: New York, 1972; pp. 168-225. 38. Packer, J. E.; Slater, T. F.; Willson, R. L. Nature 1979, 278, 737. 39. Leibovitz, B. E.; Siegel, B. V. J. Gerontol. 1980, 35, 45. 40. Fessenden, R. W.; Verma, N. C. Biophys. J. 1978, 24, 93. 41. Olcott, H. S.; Lin, J. S. "Free Radical Intermediates of Antioxidants," 66th Meet. AOCS, Dallas, TX, 1975. 42. Lin, J. S.; Olcott, H. S. J. Agric. Food Chem. 1975, 23, 798. 43. Orr, C. W. M. Biochemistry 1967, 6, 2995. 44. Moravskii, I. Proc. Acad. Sci. USSR Chem. Sect. 1977, 1, 61; Chem. Abstr. 1977, 86, 111618C. 45. Demopoulu, S. H.; Flamm, E.; Seligman, M.; Power, R.; Pietronigro, D.; Ranschoff, J. Oxygen Physiol. Fund., Proc. Am. Physiol. Soc. Colloq. 1977, 491-502; Chem. Abstr. 1979, 90, 927105. 46. Bielski, B. H. J.; Richter, H. W. J. Am. Chem. Soc. 1977, 99, 3019. 47. Kalus, W. H. Filby, W. G. Experientia 1980, 36, 143. 48. Laroff, G. P.; Fessenden, R. W.; Schuler, R. H. J. Am. Chem. Soc. 1972, 94, 9026. 49. Jernow, J.; Blount, J.; Oliveto, E.; Perrota, A.; Rosen, P.; Toome, V. Tetrahedron 1979, 35, 1483. RECEIVED for review January 22, 1981. ACCEPTED June 22, 1981. ;
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.