21 Harvesting, Processing, and C o o k i n g
Influences
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
o n V i t a m i n C i n Foods JOHN W. ERDMAN, JR. Department of F o o d Science, University of Illinois, Urbana, IL 61801 BARBARA P. KLEIN Department of Foods and Nutrition, Bevier H a l l , University of Illinois, Urbana, IL 61801
Vitamin C is considered the most labile of the vitamins in our food supply. Reduced ascorbic acid (RAA), which is the predominant form found in foods of plant origin, can be reversibly oxidized to dehydroascorbic acid (DHA). Further irreversible oxidation of RAA or DHA to diketogulonic acid or other products results in loss of biological activity. Oxidation can occur in the presence of metal catalysts, or plant oxidase enzymes, particularly following cell damage, or as a result of heat during food processing. Vitamin C is easily leached from foods during processing and is discarded with washing, soaking, or cooking water. Ascorbic acid losses begin with harvesting and continue through handling, industrial or home preparation, cooking, and storage of plant foods.
V
i t a m i n C is w i d e l y d i s t r i b u t e d i n t h e p l a n t k i n g d o m , p a r t i c u l a r l y i n fruits s u c h as c i t r u s , g u a v a , tomatoes, s t r a w b e r r i e s , a n d b l a c k c u r r a n t s
a n d i n most vegetables, e s p e c i a l l y t h e green leafy vegetables. F o r a l i s t i n g of t h e v i t a m i n C contents of some selected f r e s h f r u i t s a n d vegetables, see T a b l e I . T h e v i t a m i n C a c t i v i t y of L - a s c o r b i c a c i d o r r e d u c e d ascorbic (RAA)
a n d its o x i d i z e d f o r m , d e h y d r o a s c o r b i c
acid
a c i d ( D H A ) is essen
t i a l l y t h e same, w h i l e D - a s c o r b i c a c i d ( i s o a s c o r b i c a c i d o r e r y t h r o a s c o r b i c acid)
h a s little of t h e v i t a m i n ' s b i o l o g i c a l p o t e n c y ( I ) . T h e readiness
w i t h w h i c h R A A is r e v e r s i b l y o x i d i z e d t o D H A is t h e basis p h y s i o l o g i c a l a c t i v i t y , a n d o f its u s e as a n a n t i o x i d a n t i n f o o d 0065-2393/82/0200-0499$09.50/0 © 1982 American Chemical Society
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
of its
systems.
500
ASCORBIC
T h e a e r o b i c o x i d a t i o n of R A A ( F i g u r e 1)
occurs r a p i d l y w h e n m e t a l
catalysts, p a r t i c u l a r l y c o p p e r o r i r o n , o r e n z y m e s s u c h as a s c o r b i c oxidase,
peroxidase,
ACID
a n d cytochrome
polyphenol
present.
T h e a n a e r o b i c d e s t r u c t i o n of a s c o r b i c a c i d m a y p r o c e e d b y a
v a r i e t y of m e c h a n i s m s t h a t h a v e b e e n p o s t u l a t e d ( 2 , 3 )
oxidase
acid
oxidase,
are
but not verified.
D H A c a n b e r e d u c e d t o R A A b y c h e m i c a l agents, s u c h as h y d r o g e n
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
sulfide o r e n z y m a t i c a l l y , b y d e h y d r o a s c o r b i c a c i d reductase.
T h e conver
s i o n of D H A to d i k e t o g u l o n i c a c i d ( D K G ) is i r r e v e r s i b l e a n d o c c u r s both
aerobically
and anaerobically, particularly d u r i n g heating.
This
r e a c t i o n results i n loss of b i o l o g i c a l a c t i v i t y . T h e t o t a l o x i d a t i o n of R A A m a y result i n t h e f o r m a t i o n of f u r f u r a l b y d e c a r b o x y l a t i o n a n d d e h y d r a tion.
With
subsequent
polymerization, the formation
of
dark-colored
p i g m e n t s results. T h e s e c o m p o u n d s affect t h e c o l o r a n d flavor of c e r t a i n foods, s u c h as c i t r u s juices, a n d decrease n u t r i t i v e v a l u e . B e c a u s e v i t a m i n C is the most l a b i l e v i t a m i n i n o u r f o o d s u p p l y , i t is i m p o r t a n t to define those c o n d i t i o n s t h a t are p a r t i c u l a r l y d e t r i m e n t a l to m a i n t a i n i n g o p t i m a l a s c o r b i c a c i d content i n foods. I n this c h a p t e r w e r e v i e w the effects of
genetic
v a r i a t i o n , e n v i r o n m e n t a l factors
during
g r o w t h , as w e l l as h a r v e s t i n g , p r e p a r a t i o n , c o o k i n g , a n d storage p r a c t i c e s u p o n t h e r e t e n t i o n of v i t a m i n C i n foods "as c o n s u m e d / '
Emphasis will
b e p l a c e d o n those p r a c t i c e s t h a t a d v e r s e l y affect a s c o r b i c a c i d r e t e n t i o n i n foods. N o effort w i l l be m a d e to c o m p l e t e l y r e v i e w t h e l i t e r a t u r e o n t h e subject.
H o w e v e r , r e v i e w articles w i l l b e c i t e d a l o n g w i t h
r e s e a r c h papers.
selected
Sections are also i n c l u d e d o n assay m e t h o d o l o g y
and
k i n e t i c s of d e s t r u c t i o n of the v i t a m i n .
Table I.
Concentration of Ascorbic A c i d in Selected Fresh Vegetables and Fruits
Fruit or Vegetable
Ascorbic Acid (mg/100 g)
Kale Collard T u r n i p green G r e e n pepper Broccoli Brussel sprout M u s t a r d green Watercress Cauliflower
186 152 139 128 113 109 97 79 78
Fruit or Vegetable Kohlrabi Strawberry Spinach Orange Cabbage Rutabaga A p r i c o t , peach, p l u m , grape, a p p l e , p e a r , banana, carrot, lettuce, celery
Ascorbic Acid (mg/100 g) 66 59 51 50 47 43 10 or less
S o u r c e : C o m p i l e d b y S a l u n k h e et a l . (97) f r o m various n u t r i t i o n handbooks.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
21.
501
Vitamin C in Foods
ERDMAN AND KLEIN
L-ASCORBIC ACID ANAEROBIC
AEROBIC T2H+
s
DELACTONIZATION
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
DEHYDROASCORBIC ACID H 0 2
-H 0 2
C0
2
XYLOSONE
DEOXYPENTOSONE
+ AMINO ACIDS
FURFURAL REDUCTONES
BROWN PIGMENTS
Figure 1.
Degradation of ascorbic acid.
Methodology for Determining Ascorbic Acid T h e d e t e r m i n a t i o n of ascorbic a c i d i n foods is b a s e d , i n p a r t , o n its a b i l i t y to b e o x i d i z e d or to act as a r e d u c i n g agent.
T h e most
common
m e t h o d f o r d e t e r m i n a t i o n of v i t a m i n C i n foods is t h e v i s u a l t i t r a t i o n o f the r e d u c e d f o r m w i t h 2 , 6 - d i c h l o r o i n d o p h e n o l ( D C I P ) ( 4 - 7 ) . V a r i a t i o n s i n this p r o c e d u r e i n c l u d e t h e use of a p o t e n t i o m e t r i c t i t r a t i o n ( 6 ) , o r a p h o t o m e t r i c a d a p t a t i o n ( 8 ) to r e d u c e t h e difficulty of v i s u a l l y d e t e r m i n ing
the endpoint i n a colored
extract.
T h e m a j o r c r i t i c i s m s of t h i s
t e c h n i q u e are t h a t o n l y t h e r e d u c e d v i t a m i n , a n d n o t t h e t o t a l v i t a m i n C content of t h e f o o d , is m e a s u r e d , a n d t h a t t h e r e c a n b e interference f r o m other r e d u c i n g agents, s u c h as s u l f h y d r y l c o m p o u n d s ,
reductones,
and
The D C I P
r e d u c e d metals ( F e , S n , C u ) , often present i n foods.
assay c a n b e m o d i f i e d to m i n i m i z e t h e effects of t h e i n t e r f e r i n g b a s i c substances, b u t the m e a s u r e m e n t is still o n l y of t h e r e d u c e d f o r m . E g b e r g et a l . ( 9 ) a d a p t e d t h e p h o t o m e t r i c D C I P assay to a n a u t o m a t e d p r o c e d u r e f o r c o n t i n u o u s analysis of v i t a m i n C i n f o o d extracts.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
502
ASCORBIC
ACID
I n most p l a n t foods, t h e p r e d o m i n a n t f o r m of a s c o r b i c a c i d present is t h e r e d u c e d c o m p o u n d . T h u s , t h e e r r o r i n t r o d u c e d b y t h e u s e of D C I P assay is c o n s i d e r e d n e g l i g i b l e b y some investigators
(10).
However,
others h a v e r e p o r t e d that d u r i n g heat p r o c e s s i n g o r storage, t h e a m o u n t of D H A increases s u b s t a n t i a l l y as p e r c e n t of t o t a l a s c o r b i c a c i d ( T A A ) , a n d these w o r k e r s suggest t h a t D H A s h o u l d n o t b e n e g l e c t e d
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
B r e c h t et a l . (13)
r e p o r t e d t h a t r i p e tomatoes c o n t a i n e d
(11,12). negligible
q u a n t i t i e s o f D H A , b u t g r e e n m a t u r e tomatoes h a d h i g h e r a m o u n t s . T h e s e factors s h o u l d b e c o n s i d e r e d i n selection of assay m e t h o d . D e t e r m i n a t i o n of T A A c a n b e p e r f o r m e d b y s e v e r a l m e t h o d s . T h e official A s s o c i a t i o n of O f f i c i a l A n a l y t i c a l C h e m i s t s ( A O A C ) m e t h o d is t h e m i c r o f l u o r o m e t r y assay d e v e l o p e d b y D e u t s c h a n d W e e k s
(7) (14).
I n t h i s p r o c e d u r e , R A A is o x i d i z e d t o D H A u s i n g a c t i v a t e d c h a r c o a l ( N o r i t ) . T h e o x i d i z e d a s c o r b i c a c i d is r e a c t e d w i t h o - p h e n y l e n e d i a m i n e (OPDA)
f o r m i n g a c o n d e n s a t i o n p r o d u c t t h a t fluoresces
at 4 3 0 n m ,
f o l l o w i n g e x c i t a t i o n at 350 n m . O n e of t h e disadvantages of t h e O P D A m e t h o d is t h e d e v e l o p m e n t of p r e s e n c e of l i g h t .
fluorescing
compounds from O P D A i n the
Therefore, the procedure must be performed
under
reduced light conditions. Another complication m a y be the interference f r o m D K G f o r m e d i n t h e f o o d p r i o r to t h e assay as a result of p r o c e s s i n g a n d storage
(15).
S e v e r a l modifications of t h e O P D A p r o c e d u r e h a v e b e e n r e p o r t e d for a u t o m a t e d analysis. K i r k a n d T i n g (16) d e s c r i b e d a c o n t i n u o u s
flow
analysis i n w h i c h D C I P w a s s u b s t i t u t e d f o r N o r i t i n t h e o x i d a t i o n step. TAA
a n d D H A c a n b e d e t e r m i n e d d i r e c t l y ; R A A is c a l c u l a t e d as t h e
difference
between
T A A and D H A .
manual a n d automated procedures
Good
agreement
between the
was achieved, w i t h a considerable
decrease i n a n a l y t i c a l t i m e f o r t h e a u t o m a t e d assay. K i r k a n d c o w o r k e r s (17-19) h a v e u s e d t h e c o n t i n u o u s flow analysis f o r studies of t h e k i n e t i c s of ascorbic a c i d d e g r a d a t i o n i n m o d e l systems. R o y et a l . (20) d e v e l o p e d a n a u t o m a t e d p r o c e d u r e f o r
fluorometric
d e t e r m i n a t i o n of T A A , D H A , a n d R A A i n w h i c h N - b r o m o s u c c i n i m i d e w a s u s e d f o r t h e o x i d a t i o n step. oxidizes
R A A before
other
T h i s m i l d o x i d i z i n g agent s e l e c t i v e l y
interfering reducing
N - b r o m o s u c c i n i m i d e does n o t react w i t h reductones and
compounds.
Also,
present i n f r u i t s
vegetables. E g b e r g et a l . (21) u s e d N o r i t as t h e o x i d a n t i n a s e m i a u t o m a t e d
total
vitamin
C
e x t r a c t i o n step.
determination, u s i n g a simultaneous
oxidation a n d
D H A could be determined b y omitting Norit i n the
extraction. T h e p r o c e d u r e w a s successfully u s e d o n a v a r i e t y o f f o o d s ; c o r r e l a t i o n w i t h m a n u a l p r o c e d u r e s w a s excellent. T h e automated procedures, w h i c h enable the the operator to analyze m a n y samples a c c u r a t e l y , p r e c i s e l y , a n d r a p i d l y , are p a r t i c u l a r l y i m p o r t a n t
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
21.
503
Vitamin C in Foods
ERDMAN AND KLEIN
i n laboratories r e s p o n s i b l e for o b t a i n i n g d a t a for n u t r i t i o n a l l a b e l i n g . D u n m i r e et a l . ( 2 2 )
c o m p a r e d the m e t h o d s of E g b e r g et a l . ( 2 1 )
and
R o y et a l . ( 2 0 ) w i t h the m a n u a l A O A C v i s u a l t i t r a t i o n a n d m i c r o f l u o r o metric techniques.
F o r t y p r o d u c t s , i n c l u d i n g cereals, fruits, vegetables,
b a b y foods, juices, a n d p e t foods, w e r e i n c l u d e d i n the s t u d y . F o r those samples e x h i b i t i n g c o l o r i n t e r f e r e n c e , the t i t r a t i o n m e t h o d w a s n o t u s e d .
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
T h e results of this s t u d y i n d i c a t e d t h a t for laboratories d o i n g a u t o m a t e d analysis of a w i d e s p e c t r u m of p r o d u c t s , the p r o c e d u r e d e s c r i b e d
by
E g b e r g et a l . ( 2 1 ) is the most w i d e l y a p p l i c a b l e . I n the m e t h o d of R o e a n d K u e t h e r ( 2 3 ) suggested for t o t a l v i t a m i n C d e t e r m i n a t i o n ( 6 ) , ascorbic a c i d is o x i d i z e d a n d r e a c t e d w i t h 2 , 4 - d i nitrophenylhydrazine
(DNPH).
The
osazone f o r m e d
is e x t r a c t e d i n
s u l f u r i c a c i d y i e l d i n g a r e d s o l u t i o n w h o s e i n t e n s i t y is p r o p o r t i o n a l to the a s c o r b i c a c i d c o n c e n t r a t i o n .
R e d u c t o n e s a n d D K G m a y also f o r m
osazones, thus c a u s i n g s p u r i o u s l y h i g h v i t a m i n C values ( 2 4 , 2 5 ) .
The
presence of D K G is b e l i e v e d to interfere to some extent w i t h the O P D A m e t h o d as w e l l ( 2 5 ) , a l t h o u g h E g b e r g et a l . ( 2 1 ) In
addition Roe
(24)
noted
d i d n o t observe this.
t h a t h i g h concentrations
of
sugar
can
interfere w i t h this analysis, b u t the sugar osazones d e c o m p o s e i n t h e s u l f u r i c a c i d i f the p r e p a r a t i o n is a l l o w e d to s t a n d . T h e i n t e r f e r e n c e b y sugar c a n be c o m p e n s a t e d for b y the a d d i t i o n of constant a m o u n t s of fructose a n d glucose to the standards ( I I ) .
Pelletier and Brassard ( I I )
suggested the use of a m o d i f i e d m a n u a l or a u t o m a t e d D N P H b a s e d o n a m e t h o d d e s i g n e d for b i o l o g i c a l m a t e r i a l s ( 2 6 ) .
procedure,
A l t h o u g h the
p r o p o s e d a u t o m a t e d assay is less tedious t h a n Roe's m a n u a l assay a n d as accurate, t h e l o n g r e a c t i o n times n e e d e d s t i l l m a k e the
(24)
DNPH
p r o c e d u r e m o r e t i m e - c o n s u m i n g t h a n the t i t r a t i o n or f l u o r o m e t r i c analysis. A
different m e t h o d f o r d e t e r m i n a t i o n of R A A , D H A , a n d D K G ,
b a s e d o n the w o r k of R o e et a l . ( 2 7 ) , has b e e n u s e d b y s o m e investigators (12,13,28).
T o t a l A A is d e t e r m i n e d b y the D N P H m e t h o d p r e v i o u s l y
d e s c r i b e d , w h e r e the R A A is o x i d i z e d w i t h N o r i t or b r o m i n e to D H A . DHA
a n d D K G r e a c t w i t h the D N P H to f o r m t h e r e d osazones.
To
d e t e r m i n e D H A a n d D K G , the extract is n o t o x i d i z e d , b u t is r e a c t e d directly w i t h the D N P H .
T h e R A A is d e t e r m i n e d b y difference.
Total
D K G is m e a s u r e d b y r e d u c i n g t h e D H A i n t h e extract to R A A , p r i o r to osazone f o r m a t i o n .
I n cases w h e r e i t is suspected t h a t a r e l a t i v e l y
l a r g e p r o p o r t i o n of the R A A has b e e n o x i d i z e d , e i t h e r to D H A or D K G , as i n the case of f r o z e n fruits a n d vegetables assay m a y be of use. fluorometric
(12,29),
the differential
H o w e v e r , f o r r o u t i n e assays, t h e D C I P or m i c r o -
assays, o r a c o m b i n a t i o n of the t w o w i l l y i e l d a d e q u a t e
information. T h e use of h i g h p e r f o r m a n c e l i q u i d c h r o m a t o g r a p h y been proposed
(30-32)
b u t not w i d e l y a p p l i e d .
(HPLC)
T h e interference
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
has of
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
504
ASCORBIC
ACID
reductones, nonenzymatic browning compounds, and condensation prod ucts formed during processing and cooking of foods would be eliminated by an analytical technique, such as H P L C , specific for the various forms of ascorbic acid. A t this time, the selection of the method for determining ascorbic acid content requires some knowledge of the forms of vitamin C likely to be present in a given food product, the number of assays to be performed, and the spectrum of foods being assayed. In addition, the presence of interfering substances must be assessed. Genetic and Environmental Factors The ascorbic acid content of fruits and vegetables is markedly affected by variety, and to a lesser degree by maturity and climate. Increased exposure to sunlight and ripening on the plant generally en hances the vitamin C content of the edible portion. Ascorbic acid concentration within a fruit or vegetable often varies largely from part to part. The variability of the naturally occurring nutrients, such as ascorbic acid, in fruits and vegetables has been a genuine concern to fruit and vegetable processors who have elected to participate i n voluntary nutri tional labeling programs (33). The large variation of vitamin C content due to genetic and environmental factors makes it necessary to reduce label claims to avoid over labeling. Genetic Variation. The concentration of many individual nutrients in foods of plant origin is under genetic control. Baker (34) reviewed some examples of genetic manipulation that improved the quantity of /^-carotene i n tomatoes, methionine in beans, and lysine i n corn. Varia tions of ascorbic acid content of different varieties of raw vegetables and fruits is notoriously high (35). Twofold variation i n vitamin C concentra tion in different strains of a vegetable or a fruit is common and a fivefold variation can be found. Differences i n ascorbic acid contents (35- to 300-fold) of different strains of a fruit were reported prior to 1950 (36). These reports have not been substantiated. Stage of Maturity. In general, ascorbic acid concentration, but not necessarily total vitamin C content, decreases w i t h maturity. Imma ture cabbage (37), citrus fruit (38), tomatoes (39,40), and potatoes (41,42) were reported to contain higher concentrations (mg/100 g of tissue) of ascorbic acid than when mature. However, there may be some varietal variation. F o r example, the H-1783 variety of tomatoes had higher vitamin C content when fully ripe than when green (Table II) (43). Although concentration decreased during ripening, the total content of vitamin C per citrus fruit tended to increase because of
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
21.
ERDMAN AND KLEIN
505
Vitamin C in Foods
Table II. Environmental Factors Affecting the Vitamin C Content of the H-1783 Variety of Tomatoes
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
Environmental
Total Ascorbic Acid Concentration (mg/100 g)
Factor
F u l l y r i p e , l i g h t foliage N o t f u l l y ripe°, l i g h t foliage F u l l y r i p e , h e a v y foliage F u l l y r i p e , h e a v y foliage, h i g h n i t r o g e n f e r t i l i z a t i o n
23 17 18 10
6
Source: Reference 43. • One week prior to fully ripe. Twice the amount for other treatments: 100 lbs/acre. 6
i n c r e a s e d v o l u m e of juice a n d size of f r u i t ( 3 8 ) . H o w e v e r , t o t a l v i t a m i n C
content of R u s s e t B u r b a n k potatoes
harvest ( ~
110 d )
g r a d u a l l y d e c r e a s e d after e a r l y
(41,44).
B r e c h t et a l . ( 1 3 ) h a r v e s t e d e i g h t c u l t i v a r s of m a t u r e - g r e e n a n d table-ripe
tomatoes
o n t h e same
day a n d found
n o differences
in
T A A concentrations. H o w e v e r , table ripe fruits were considerably higher i n R A A t h a n t h e m a t u r e - g r e e n f r u i t s . N e g l i g i b l e q u a n t i t i e s of D H A w e r e f o u n d i n ripe fruits. W a t a d a et a l . ( 4 5 ) r e p o r t e d t h a t R A A content w a s n o t s i g n i f i c a n t l y different i n r i p e o r m a t u r e - g r e e n tomatoes.
E t h y l e n e - t r e a t e d tomatoes
were higher i n ascorbic acid than untreated fruit b u t the c o u l d n o t be d i r e c t l y a t t r i b u t e d to ethylene.
differences
T h e differences
between
c u l t i v a r s w e r e greater t h a n those b e t w e e n m a t u r i t y stages. B e t a n c o u r t et a l . (46) f o u n d t h a t i n t w o varieties of tomatoes, p l a n t r i p e n e d f r u i t a c c u m u l a t e d m o r e ( 2 2 % ) R A A t h a n d i d f r u i t r i p e n e d off the p l a n t .
U n f o r t u n a t e l y , these researchers d i d n o t m e a s u r e t h e t o t a l
a s c o r b i c a c i d c o n t e n t of tomatoes i n t h e i r s t u d y . P a n t o s a n d M a r k a k i s (47) f o u n d t h a t t w o c u l t i v a r s of tomatoes c o n t a i n e d 2 5 - 3 3 % m o r e t o t a l v i t a m i n C w h e n they were r i p e n e d o n the vine rather t h a n artificially. C o n v e r s e l y , M a t t h e w s et a l . (48) r e p o r t e d that R A A of W a l t e r tomatoes h a r v e s t e d at t h e g r e e n - m a t u r e
stage
a n d r i p e n e d off t h e p l a n t w a s
essentially t h e same as i n those r i p e n e d o n t h e p l a n t . T h u s , there m a y b e v a r i e t a l differences i n this r e g a r d . M o s t c o m m e r c i a l l y g r o w n f r e s h m a r k e t tomatoes are h a r v e s t e d a t the m a t u r e - g r e e n o r p a r t i a l l y r i p e ( " b r e a k e r " ) stages a n d are r i p e n e d off t h e p l a n t . F u r t h e r r e s e a r c h s h o u l d c l a r i f y t h e effect of stage of ripeness at p i c k i n g o n v i t a m i n C content. N e a r l y a l l c a n n e d t o m a t o p r o d u c t s are prepared from
field-ripened
tomatoes so v a r i e t a l v a r i a t i o n , b u t n o t stage
of ripeness, d e t e r m i n e s t h e v i t a m i n C i n p r o c e s s e d
products.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
ASCORBIC
506
Climate.
ACID
C l i m a t i c factors, p r i n c i p a l l y t e m p e r a t u r e a n d a m o u n t of
s u n l i g h t , h a v e a s t r o n g i n f l u e n c e o n t h e c o m p o s i t i o n of fruits a n d v e g e tables, e s p e c i a l l y a s c o r b i c a c i d .
T u r n i p greens, tomatoes
(Table I I ) ,
a n d strawberries (36) a l l h a d i n c r e a s e d v i t a m i n C c o n c e n t r a t i o n w h e n g r o w n w i t h greater l i g h t exposure.
Tests w i t h n i n e varieties of apples
s h o w e d that t h e side exposed to t h e s u n w a s h i g h e r i n a s c o r b i c a c i d t h a n
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
the m o r e
shaded
side
(49).
Sites a n d R e i t z
(50) removed
a l l the
oranges f r o m a s i n g l e V a l e n c i a tree a n d d i v i d e d a n d assayed p o r t i o n s of e a c h orange o n t h e basis of t h e i r r e l a t i o n t o t h e d i r e c t i o n of s u n l i g h t exposure a n d t h e a m o u n t of l i g h t or shade ( o u t s i d e , c a n o p y , i n s i d e ) t h a t was received.
T h e authors f o u n d t h a t ascorbic a c i d c o n c e n t r a t i o n w a s
d i r e c t l y r e l a t e d t o exposure of that p o r t i o n o f t h e f r u i t to s u n l i g h t . S u n l i g h t is n o t necessary f o r t h e synthesis o f a s c o r b i c a c i d i n p l a n t s b u t is n e e d e d to p r o d u c e o p t i m a l v i t a m i n C concentrations.
Photosyn
thesis p r o d u c e s t h e p r e c u r s o r hexoses n e e d e d f o r ascorbic a c i d synthesis (38,51). T h e t e m p e r a t u r e o p t i m u m f o r t h e most r a p i d rate o f g r o w t h o f a species of e d i b l e p l a n t is n o t u s u a l l y o p t i m a l f o r t h e synthesis a n d storage of n u t r i e n t s i n its tissue. I n fact, t h e o p t i m a l t e m p e r a t u r e necessary t o p r o d u c e a n d store o n e n u t r i e n t w i l l often b e different f o r greatest storage of a n o t h e r n u t r i e n t (36). A l t h o u g h m o r e r e s e a r c h needs to b e c o n d u c t e d , i t appears t h a t c i t r u s f r u i t g r o w n i n t r o p i c a l or desert c l i m a t e s a c c u m u l a t e d less ascorbic a c i d t h a n fruits g r o w n i n a m o r e m o d e r a t e c l i m a t e (38). A u g u s t i n et a l . (44) c o u l d find n o statistical effect of l o c a t i o n (i.e., C a l i f o r n i a v s . M a i n e ) , p e r se, u p o n ascorbic a c i d content of potatoes.
B u r g e et a l . (43)
reported
t h a t tomatoes of the same v a r i e t y , g r o w n i n different areas of t h e U n i t e d States, m a y h a v e v i t a m i n C concentrations t h a t d e v i a t e as m u c h as 1 7 % f r o m t h e average v a l u e f o r t h a t v a r i e t y . H o w e v e r , s o m e varieties h a d h i g h e r values g r o w n i n C a l i f o r n i a , w h i l e others w e r e h i g h e r i n other areas. Soil F e r t i l i t y .
I n g e n e r a l , t h e p r i n c i p a l effect of i m p r o v e m e n t of
soils is to increase t h e y i e l d r a t h e r t h a n to e n h a n c e t h e c o n c e n t r a t i o n of n u t r i e n t s i n p l a n t s g r o w n o n these soils (36,52).
Increased
nitrogen
f e r t i l i z a t i o n has b e e n r e p o r t e d to decrease v i t a m i n C c o n c e n t r a t i o n i n potatoes
(42),
grapefruit
( 5 3 ) , a n d several other citrus f r u i t s
(38).
H a r r i s (36) n o t e d that some e a r l y researchers r e p o r t e d t h a t i n c r e a s e d n i t r o g e n f e r t i l i z a t i o n r e s u l t e d i n i n c r e a s e d ascorbic c o l l a r d s , s p i n a c h , a n d Swiss c h a r d .
acid i n cabbage,
M o r e r e c e n t l y , B u r g e et a l . (43)
s h o w e d that a p p l i c a t i o n of 100 l b s of n i t r o g e n / a c r e p r o d u c e d
tomato
p l a n t s w i t h h e a v y f o l i a g e a n d tomatoes w i t h l o w v i t a m i n C ( T a b l e I I ) . Fertilization w i t h 50 l b s / a c r e increased v i t a m i n C i n tomato fruit b y 80%.
S h e k h a r et a l . (42) also f o u n d t h a t h i g h n i t r o g e n f e r t i l i z a t i o n
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
21.
507
Vitamin C in Foods
ERDMAN AND KLEIN
r e s u l t e d i n l o w e r e d ascorbic a c i d content i n potato tubers. T h e effects of p h o s p h o r u s a n d p o t a s s i u m f e r t i l i z a t i o n o n v i t a m i n C are i n c o n c l u s i v e . Once
m i n i m a l m i n e r a l content
of
soil for
o p t i m a l g r o w t h of
a
p a r t i c u l a r c r o p is a c h i e v e d , no i n c r e a s e d c o n c e n t r a t i o n of v i t a m i n C is f o u n d w i t h m o r e f e r t i l i z a t i o n . I n t h e case of n i t r o g e n , i n c r e a s e d f e r t i l i z a t i o n m a y decrease ascorbic a c i d c o n c e n t r a t i o n .
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
Variation Among Vegetable or Fruit Parts.
F r u i t juices are w i d e l y
r e c o g n i z e d for t h e i r h i g h concentrations of ascorbic a c i d . O t h e r p o r t i o n s of citrus fruits are often h i g h e r i n c o n c e n t r a t i o n of t h e v i t a m i n .
Nagy
( 3 8 ) , i n his r e v i e w of ascorbic a c i d i n c i t r u s p r o d u c t s , p o i n t e d out t h a t o n l y a b o u t 2 5 % of t h e v i t a m i n C content of citrus f r u i t is f o u n d i n t h e j u i c e ( T a b l e I I I ) . F o r f o u r varieties of orange, the p e e l c o n t a i n e d 5 2 % , w h i l e the p u l p a n d r a g c o n t a i n e d 2 1 % , of the t o t a l v i t a m i n C i n the oranges
(54).
Table III.
Vitamin C Contents of Component Parts of Citrus F r u i t Peel
Fruit
Flavedo
Albedo
Pulp
Rag
Juice
377 239 144
206 148 —
— — 49
68 47 —
68 36 34
Orange, pineapple Grapefruit Lemon
Source: Compiled by Nagy (38). Note: Data presented as milligrams of vitamin C per 1 0 0 g of fresh weight.
T h e a p i c a l p o r t i o n s of potato tubers are h i g h e r i n a s c o r b i c a c i d t h a n the basal portions (42).
T h e l o c u l a r (soft, g e l a t i n - l i k e a n d s e e d - c o n t a i n
i n g i n n e r m a t e r i a l ) tissues of f o u r varieties of tomatoes a v e r a g e d
about
2 5 % h i g h e r i n a s c o r b i c a c i d concentrations t h a n the p e r i c a r p ( o u t e r w a l l tissues) ( 1 3 ) a l t h o u g h w i t h greater a m o u n t s of s u n l i g h t , w a l l tissue m a y be
e q u a l or
ascorbic acid
greater
than placental
(inner
core)
tissue i n
reduced
(55).
A s c o r b i c a c i d c o n c e n t r a t i o n i n peaches a n d apples is h i g h e s t just u n d e r the s k i n
(36).
T h e outer g r e e n leaves of c a b b a g e , w h i c h are
g e n e r a l l y t r i m m e d off, a n d the i n n e r core are h i g h e r i n a s c o r b i c a c i d t h a n the e d i b l e p o r t i o n ( 3 7 ) .
T h i s is consistent w i t h the n o t i o n t h a t
w h e n t r i m m i n g foods of p l a n t o r i g i n , t h e n u t r i e n t losses g e n e r a l l y e x c e e d the w e i g h t losses, because n u t r i e n t c o n c e n t r a t i o n is u s u a l l y h i g h e r i n t h e outer layers of vegetables, seeds, tubers, a n d f r u i t s ( 5 6 , 5 7 ) . Effect of Season.
T h e observation that nutrient compositions
of
e d i b l e portions of p l a n t s p r o d u c e d f r o m t h e same v a r i e t y are different f r o m one season to another p r o b a b l y results f r o m differences i n t e m p e r a -
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
508
ASCORBIC
ACID
t u r e , l e n g t h of d a y , l i g h t i n t e n s i t y , a n d l i g h t s p e c t r u m , as w e l l as f r o m other m i n o r factors ( 3 6 ) . T h e l i t e r a t u r e shows inconsistent fluctuation i n a s c o r b i c a c i d content of vegetables
a n d fruits p r o d u c e d
over t h e f o u r
seasons.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
Effect of Harvesting and Storage of Fresh Fruits and Vegetables T h e procedures utilized d u r i n g harvesting a n d the ensuing h a n d l i n g and
storage
period
p r i o r to c o m m e r c i a l
o r at-home
processing c a n
d r a m a t i c a l l y affect b o t h n u t r i t i o n a l v a l u e a n d sensory q u a l i t y of f r u i t s a n d vegetables.
A s c o r b i c a c i d is p a r t i c u l a r l y sensitive t o b o t h e n z y m a t i c
a n d n o n e n z y m a t i c o x i d a t i o n d u r i n g this p e r i o d . M e c h a n i c a l h a r v e s t i n g of some v e g e t a b l e
Harvesting.
crops has i n c r e a s e d m a r k e d l y i n t h e last d e c a d e . C a l i f o r n i a tomato
c r o p is m a c h i n e h a r v e s t e d
a n d fruit
O v e r 9 5 % of the
(43).
T h e mechanical
shaker harvester u s e d f o r some tree f r u i t s c a n cause severe b r u i s i n g o f the f r u i t .
Injury c a n be reduced b y harvesting i n the cool hours of t h e
n i g h t , q u i c k a p p l i c a t i o n of p r e c o o l i n g , r a p i d a n d c a r e f u l t r a n s p o r t a t i o n , and immediate processing
( 5 8 ) . G e n e r a l l y , fruits a n d vegetables
will
r e a c h t h e f o o d processor w i t h i n hours b u t take m u c h l o n g e r to get f r o m the
field
to t h e r e t a i l f r e s h m a r k e t .
F o r this reason t h e m e c h a n i c a l
h a r v e s t i n g m e t h o d has n o t b e e n satisfactory f o r t h e f r e s h f r u i t m a r k e t for oranges, pears, p l u m s , apples, o r apricots ( 5 8 , 5 9 ) . N e w varieties are b e i n g d e v e l o p e d t o w i t h s t a n d better m e c h a n i c a l h a r v e s t i n g . B u r g e et a l . ( 4 3 ) r e p o r t e d that t h e a s c o r b i c a c i d c o n t e n t o f t o m a t o varieties d e v e l o p e d
f o r this p u r p o s e c o n t a i n as m u c h
ascorbic
a c i d as d o c o n v e n t i o n a l varieties. I n t a c t p l a n t tissue a s c o r b i c cellular compartmentation.
a c i d is p r o t e c t e d
from
oxidation b y
H o w e v e r , w h e n tissues a r e d i s r u p t e d after
b r u i s i n g , w i l t i n g , r o t t i n g , o r d u r i n g a d v a n c e d stages of senescence, o x i d a t i o n of t h e v i t a m i n c a n easily t a k e p l a c e . I n p l a n t s at least f o u r e n z y m e s — ascorbic
acid
oxidase,
polyphenol
oxidase,
cytochrome
oxidase, a n d
peroxidase—are thought to oxidize vitamin C i n damaged or overripe tissue (35,58,60).
I t has also b e e n suggested that p l a n t tissues c o n t a i n
r e d u c t a s e systems t h a t c a n regenerate a s c o r b i c a c i d w h e n i t is o x i d i z e d i n situ. these
W h e n t h e c e l l u l a r i n t e g r i t y is d a m a g e d
reductase
systems
(e.g., after b r u i s i n g ) ,
are inactivated a n d ascorbic
acid
oxidation
continues w i t h o u t c o n t r o l ( 3 5 ) . T h e m a x i m u m a c t i v i t y of a s c o r b i c a c i d oxidase is at 4 0 ° C , b u t i t is almost c o m p l e t e l y i n a c t i v a t e d at 6 5 ° C . T h e r e f o r e , b l a n c h i n g o f vegetables or f r u i t s p r i o r to f u r t h e r p r o c e s s i n g
(freezing or canning)
is i d e a l f o r
p r o t e c t i o n of v i t a m i n C f r o m e n z y m a t i c o x i d a t i o n , a l t h o u g h some r e g e n e r a t i o n of h e a t - i n a c t i v a t e d peroxidases m a y o c c u r after b l a n c h i n g ( 3 5 ) .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
21.
ERDMAN AND KLEIN
Storage
509
Vitamin C in Foods
of N e w l y Harvested Crops.
E n z y m a t i c d e s t r u c t i o n of
a s c o r b i c a c i d c a n b e g i n as soon as a c r o p is h a r v e s t e d .
K a l e c a n lose
1.5% o f its v i t a m i n C p e r h o u r a n d a b o u t o n e - t h i r d i n 24 h . Storage i n c o o l c o n d i t i o n s a n d i n c r e a s e d h u m i d i t y , factors t h a t r e d u c e w i l t i n g , r e d u c e losses of ascorbic a c i d d u r i n g storage.
W i l t i n g ( m o i s t u r e loss)
t i c u l a r l y p r e v a l e n t w i t h t h e fresh, green, l e a f y vegetables
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
surface
areas.
Ezell
and Wilcox
(61)
observed
is p a r
with
large
that ascorbic
acid
d e s t r u c t i o n i n k a l e w a s a c c e l e r a t e d b y r o o m t e m p e r a t u r e storage, p a r t i c u l a r l y i f t h e h u m i d i t y w a s l o w . F r e s h r a w s p i n a c h stored o v e r n i g h t at 4 ° C i n a w a l k - i n c o o l e r lost as m u c h as 4 0 % o f its i n i t i a l ascorbic a c i d . T h e degree o f loss d e p e n d e d o n t h e c o n d i t i o n of t h e leaves at t h e t i m e of storage
( 6 2 ) . C o n t r o l of t e m p e r a t u r e a n d h u m i d i t y is essential f o r
p r e s e r v a t i o n o f v i t a m i n C i n these p r o d u c t s . G r e e n beans, w h i c h h a v e less surface area t h a n t h e leafy vegetables, stored at 10 ° C f o r 24 h , lost o n l y 1 0 % of t h e i r a s c o r b i c a c i d c o n c e n t r a tions, b u t w h e n stored at r o o m t e m p e r a t u r e f o r t h e same t i m e , lost 2 4 % of
t h e i r ascorbic
acid concentration
(35,63).
O n l y m i n o r losses
of
a s c o r b i c a c i d are f o u n d after 1 o r 2 m o n t h s storage o f fresh c i t r u s f r u i t , w h i c h h a v e v e r y l o w surface areas a n d a p r o t e c t i v e p e e l , i f t h e y a r e stored i n c o o l temperatures ( 3 . 3 - 5 . 6 ° C )
(38).
E h e a r t ( 6 4 ) f o u n d that t h e ascorbic a c i d c o n t e n t o f b r o c c o l i h e l d at 3 ° C i n c r e a s e d d u r i n g storage.
I n a follow-up
study, E h e a r t a n d
O d l a n d ( 6 5 ) f o u n d n o significant losses of ascorbic a c i d d u r i n g a 1-week storage p e r i o d , a n d i n fact, a 3 6 % increase w a s n o t e d f o r o n e v a r i e t y . T h i s w a s a t t r i b u t e d to a s c o r b i c a c i d synthesis f r o m
monosaccharides
d u r i n g t h e storage p e r i o d . G r e e n beans, o n t h e other h a n d , lost signifi cant a m o u n t s of ascorbic a c i d ( u p to 8 8 % ) after 1 w e e k at t h e same t e m p e r a t u r e , a l t h o u g h decreases w e r e s m a l l i n t h e first 48 h . R e f r i g e r a t i o n ( 0 - 1 0 ° C ) of f r e s h fruits a n d vegetables is c o m m o n l y u s e d to r e t a r d d e t e r i o r a t i o n i n e a t i n g q u a l i t i e s (flavor, texture, a p p e a r ance, a n d c o l o r ) a n d n u t r i t i v e v a l u e .
R e d u c t i o n of t e m p e r a t u r e slows
r e s p i r a t o r y a c t i v i t y i n p l a n t p r o d u c t s , reduces m o i s t u r e loss, a n d decreases the rate of d e c a y d u e to m i c r o o r g a n i s m s . I n t h e h o m e , fresh p r o d u c e is g e n e r a l l y stored r e f r i g e r a t e d f o r a r e l a t i v e l y short p e r i o d of t i m e .
Once
f r u i t is r i p e n e d , i t s h o u l d b e r e f r i g e r a t e d p r o m p t l y to p r e v e n t u n d e s i r a b l e s o f t e n i n g a n d subsequent
b r u i s i n g , w h i c h increases losses of a s c o r b i c
a c i d d u e to e n z y m a t i c a c t i o n a n d o x i d a t i o n .
Vegetables, particularly
l e a f y ones, s h o u l d b e stored i n p l a s t i c bags o r i n a v e g e t a b l e c r i s p e r , to m i n i m i z e m o i s t u r e loss that accelerates a s c o r b i c a c i d d e g r a d a t i o n (61,66). S o m e vegetables a r e subject to c h i l l i n g i n j u r y at r e f r i g e r a t i o n t e m peratures.
T h i s i n c l u d e s f a i l u r e to r i p e n n o r m a l l y ( m a t u r e - g r e e n t o m a
toes, i m m a t u r e bananas, a n d e g g p l a n t s ) , s u s c e p t i b i l i t y to d e c a y potatoes),
u n d e s i r a b l e increases i n sugars
(sweet
( p o t a t o e s ) , as w e l l as a n
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
510
ASCORBIC
increase i n lesions ( p i t t i n g , i n t e r n a l a n d external d i s c o l o r a t i o n ) .
ACID
Mem
b r a n e d a m a g e d u r i n g c h i l l i n g increases the p o s s i b i l i t y of e n z y m e release i n the p l a n t tissue, r e s u l t i n g i n f u r t h e r softening a n d o x i d a t i v e reactions. T h e s e effects decrease the e a t i n g q u a l i t y a n d a c c e p t a b i l i t y of the p r o d u c e , r e d u c i n g its c o n s u m p t i o n . not r e c e i v e d
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
important economically. ascorbic
T h e n u t r i t i v e v a l u e of c h i l l - i n j u r e d foods has
m u c h a t t e n t i o n , b e c a u s e the v i s i b l e d e t e r i o r a t i o n is m o r e I n g e n e r a l , c h i l l i n g has
l i t t l e effect o n
a c i d content of fresh fruits a n d vegetables u n d e r
conditions
of d i s t r i b u t i o n , storage, a n d m a r k e t i n g ( 5 8 ) .
controlled
atmosphere
storage o n ascorbic
the
reasonable
T h e effect of
a c i d content of fruits
and
vegetables stored u n d e r those c o n d i t i o n s has not b e e n w e l l i n v e s t i g a t e d . T e m p e r a t u r e of storage is i m p o r t a n t i n m a i n t a i n i n g the ascorbic a c i d c o n t e n t of potatoes. temperatures
I n g e n e r a l , potatoes are stored at r e l a t i v e l y h i g h
( 4 0 - 5 0 ° F ) , w h i c h results i n better ascorbic a c i d r e t e n t i o n
as w e l l as better q u a l i t y
(67).
A major factor c o n t r i b u t i n g to the v a r i a b i l i t y i n v i t a m i n C c o n t e n t of potatoes is the storage t i m e .
A u g u s t i n et a l . ( 4 4 )
reported a sharp
decrease i n the v i t a m i n d u r i n g the first 4 m o n t h s of storage of potatoes at a b o u t 7 ° C a n d 9 5 % r e l a t i v e h u m i d i t y . O v e r the next 4 months there w a s either a c o m p l e t e l e v e l i n g out or a less p r o n o u n c e d
decrease.
After
8-months storage a l l varieties a p p e a r e d to c o n t a i n a b o u t the same c o n c e n t r a t i o n of v i t a m i n C ( 4 0 - 5 0 m g / 1 0 0 g D W B ) .
Kinetics of Ascorbic Acid Destruction During Processing and Storage A n interest i n q u a n t i t a t i v e a p p r o a c h e s to changes i n f o o d q u a l i t y has b e e n s t i m u l a t e d i n p a r t b y l a b e l i n g (68).
government
r e g u l a t i o n of n u t r i t i o n a l
T h e r e l a t i v e i n s t a b i l i t y of a s c o r b i c a c i d u n d e r u s u a l c o n d i
tions of f o o d storage a n d p r o c e s s i n g is w e l l d o c u m e n t e d (69, 7 0 ) .
How
ever, the p r e d i c t i o n of v i t a m i n C losses is c o m p l i c a t e d b y l a c k of i n f o r m a t i o n a b o u t t h e m e c h a n i s m s of d e g r a d a t i o n a n d the factors t h a t i n f l u ence t h e m .
T h e loss of ascorbic
a c i d is d e p e n d e n t o n t h e p r e s e n c e o r
absence of o x y g e n , t h e rate of o x y g e n transfer, p H , a n d w a t e r c o n t e n t a n d a c t i v i t y of the f o o d (17, 71-74). T o p r e d i c t n u t r i e n t d e t e r i o r a t i o n , k n o w l e d g e of t h e r e a c t i o n r a t e as a f u n c t i o n of t e m p e r a t u r e of storage or p r o c e s s i n g is n e e d e d . T h e k i n e t i c s of ascorbic model
acid destruction have been examined
systems, w i t h p a r t i c u l a r a t t e n t i o n b e i n g
m o s t extensively
g i v e n to
in
intermediate
m o i s t u r e foods (17, 7 1 , 7 8 , 7 9 ) .
M o s t o f t h e d a t a a v a i l a b l e for v i t a m i n C
losses i n a c t u a l f o o d systems
are insufficient to
parameters
calculate the
n e e d e d to p r e d i c t losses d u r i n g heat t r e a t m e n t or
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
kinetic storage.
21.
ERDMAN AND KLEIN
511
Vitamin C in Foods
L u n d (80) a n d L a b u z a (71,76) h a v e r e e x a m i n e d t h e d a t a i n t h e l i t e r a t u r e to d e r i v e some of t h e values. H o w e v e r , i n m a n y cases, t h e i n f o r m a t i o n p r e s e n t e d i n the r e v i e w e d studies is i n a d e q u a t e to establish t h e c o n d i t i o n s t h a t w e r e u s e d f o r processing o r storage.
T h e interpretation
of d a t a w a s sometimes b a s e d o n erroneous a s s u m p t i o n of r e a c t i o n orders, l e a d i n g to i n a c c u r a t e p r e d i c t i o n s of n u t r i e n t losses
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
A c c o r d i n g to L e n z a n d L u n d of
food components
are n e e d e d
(76).
( 7 2 ) , kinetic models for destruction to improve
products
by minimizing
q u a l i t y changes f o r n e w p r o d u c t d e v e l o p m e n t a n d t o p r e d i c t shelf l i f e d u r i n g storage. N u m e r o u s reports a n d r e v i e w s of t h e k i n e t i c s of a s c o r b i c a c i d d e s t r u c t i o n c a n b e f o u n d i n t h e l i t e r a t u r e (68-88).
A brief overview
is p r e s e n t e d here to i n d i c a t e t h e n e e d f o r f u r t h e r r e s e a r c h i n this area. N u t r i e n t d e s t r u c t i o n is u s u a l l y d e s c r i b e d
i n terms of t i m e a n d
t e m p e r a t u r e effects u s i n g t h e r e a c t i o n r a t e a n d t h e d e p e n d e n c e o f t h e r e a c t i o n rate o n t e m p e r a t u r e .
T h e parameters most f r e q u e n t l y u s e d b y
p h y s i c a l chemists a n d i n e n g i n e e r i n g a p p l i c a t i o n s are t h e r e a c t i o n r a t e constant (k), at a g i v e n t e m p e r a t u r e ( T ) , a n d t h e A r r h e n i u s a c t i v a t i o n e n e r g y (E ). a
I n the food industry, the time to reduce the concentration
of a c o m p o n e n t to 1 0 % of t h e i n i t i a l v a l u e ( D ) , at a g i v e n t e m p e r a t u r e ( u s u a l l y 1 2 1 ° C ) , a n d t h e c h a n g e i n degrees F a h r e n h e i t r e q u i r e d f o r a t e n - f o l d c h a n g e i n D (z), are u s e d to d e s c r i b e t h e r e a c t i o n rates. T h e Q
10
v a l u e , w h i c h is t h e ratio of t h e r e a c t i o n rate (k) at T ( ° C ) +
10, t o
t h e r e a c t i o n rate at T , is often u s e d i n b i o l o g i c a l d e s c r i p t i o n s of k i n e t i c s . F o r ascorbic a c i d , losses are g e n e r a l l y c o n s i d e r e d to f o l l o w
first-order
k i n e t i c s as d e s c r i b e d b y : -dC dt
= fcC
(1)
w h e r e C = t h e c o n c e n t r a t i o n of t h e n u t r i e n t , t = t i m e , a n d k = t h e r a t e constant ( t i m e ' ) . I f C = C at t i m e zero, i n t e g r a t i o n of E q u a t i o n 1 yields: 1
0
C = C exp 0
(-kt)
(2)
F o r t h e first-order r e a c t i o n , a p l o t of l o g C vs. t w i l l y i e l d a straight l i n e , a n d t h e rate constant (k), c a n b e d e r i v e d f r o m t h e slope.
I t is p o s s i b l e
t o p l o t t h e l o g of t h e ratios of concentrations a t t w o t i m e s , o r t h e l o g o f t h e p e r c e n t n u t r i e n t r e m a i n i n g , vs. t i m e t o o b t a i n t h e rate constant a t a
particular temperature
(71,77).
T h e half-life (time
required for
d e s t r u c t i o n of 5 0 % o f t h e i n i t i a l v i t a m i n p r e s e n t ) at a g i v e n t e m p e r a t u r e c a n also b e u s e d to c a l c u l a t e k since t h e h a l f - l i f e is i n d e p e n d e n t o f t h e initial concentration.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
512
ASCORBIC
ACID
I f the d e s t r u c t i o n of a c o m p o n e n t is p r e s u m e d to be z e r o - o r d e r , a p l o t of C vs. t s h o u l d g i v e a straight l i n e .
C e r t a i n losses of v i t a m i n C ,
p a r t i c u l a r l y i n f r o z e n foods, are p r e s u m e d to f o l l o w first-order k i n e t i c s (89).
L a b u z a (76)
o b s e r v e d t h a t z e r o - o r d e r r e a c t i o n rates f o r q u a l i t y
losses m a y be a s s u m e d i n some
fluctuating
t e m p e r a t u r e studies, b u t t h i s
m a y l e a d to a m i s c a l c u l a t i o n of p r e d i c t e d changes.
Therefore, from a
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
t h e o r e t i c a l s t a n d p o i n t , i t is i m p o r t a n t that the p r o p e r o r d e r b e u s e d f o r p r e d i c t i o n s . I n g e n e r a l , a s c o r b i c a c i d d e s t r u c t i o n is a s s u m e d to b e order, o r p s e u d o
first-order
first-
(17,27) except u n d e r specific c o n d i t i o n s o f
heat a n d m o i s t u r e ( 7 9 ) . T h e t e m p e r a t u r e d e p e n d e n c e of the r e a c t i o n is u s u a l l y d e s c r i b e d b y the A r r h e n i u s e q u a t i o n : k = where k =
fc exp 0
(3)
(-E /RT) a
the first-order rate constant, k =
p r e - e x p o n e n t i a l constant o r
0
f r e q u e n c y factor or A r r h e n i u s constant ( t i m e ) , R — gas constant (1.987 - 1
c a l / K - m o l ) , and T =
absolute t e m p e r a t u r e ( K ) .
T h e activation energy
is e q u i v a l e n t to —2.303R times the slope of a p l o t of l o g k vs. 1 / T .
(E ) a
T h e energy of a c t i v a t i o n for most v i t a m i n s is c o n s i d e r e d to be 2 0 - 3 0 k c a l / m o l ( 6 9 ) , b u t the v a l u e c a n be affected b y a n u m b e r of factors. T h e E s for d e s t r u c t i o n of enzymes or m i c r o o r g a n i s m s u s e d as i n d i c a t o r s a
of a d e q u a c y of t h e r m a l p r o c e s s i n g are g e n e r a l l y m u c h h i g h e r .
Because
a n increase i n t e m p e r a t u r e has a greater effect o n the r e a c t i o n rate w h e n the E
a
is h i g h e r , i f k s are c o m p a r a b l e , m o r e r a p i d d e s t r u c t i o n of e n z y m e s 0
a n d m i c r o o r g a n i s m s t h a n v i t a m i n s m a y result at the e l e v a t e d t e m p e r a t u r e s u s e d for t h e r m a l p r o c e s s i n g . T h e r e f o r e , i t has b e e n a s s u m e d t h a t v i t a m i n s are m o r e stable t h a n other f o o d c o m p o n e n t s .
However, relatively little
d a t a are a v a i l a b l e to s u p p o r t this. S o m e i n f o r m a t i o n r e g a r d i n g the E
f o r a s c o r b i c a c i d i n f o o d systems
a
c a n be f o u n d i n t h e l i t e r a t u r e . K i r k et a l . (17) vitamin C destruction i n a model d e s c r i b e d b y the
first-order
determined that the
d e h y d r a t e d f o o d system c o u l d
function.
Rates of d e s t r u c t i o n w e r e
e n c e d b y a , m o i s t u r e , a n d t e m p e r a t u r e of storage. w
be
influ
A c t i v a t i o n energies
for T A A d e s t r u c t i o n at a s a b o v e 0.24 w e r e a p p r o x i m a t e l y 18 k c a l / m o l , w
s i m i l a r to those r e p o r t e d for R A A b y L e e a n d L a b u z a ( 7 8 ) . w e r e r e p o r t e d at a s w
Lower
Es a
less t h a n 0.24, s u g g e s t i n g a different m e c h a n i s m
for a s c o r b i c a c i d d e s t r u c t i o n , p e r h a p s b y a n a n a e r o b i c p a t h w a y .
Rate
constants w e r e also i n f l u e n c e d b y t h e p a c k a g i n g u s e d for the m o d e l f o o d system, w h i c h m a y be a t t r i b u t e d to t h e a m o u n t of d i s s o l v e d
oxygen
present. L e e et a l . (81)
reported that the E
a
for the a n a e r o b i c d e s t r u c t i o n of
a d d e d a s c o r b i c a c i d i n t o m a t o j u i c e at p H 4.0 d u r i n g storage w a s
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
3.3
21.
513
Vitamin C in Foods
ERDMAN AND KLEIN
k c a l / m o l , w h i c h is l o w e r t h a n t h e values f o r ascorbic a c i d d e s t r u c t i o n i n b u f f e r e d solutions r e p o r t e d b y B l a u g a n d H a j r a t w a l a ( 8 2 ) . T h e a n a e r o b i c d e s t r u c t i o n of ascorbic a c i d is g e n e r a l l y b e l i e v e d to p r o c e e d at a s l o w e r r a t e t h a n aerobic d e g r a d a t i o n .
I n c a n n e d foods, t h e absence o f o x y g e n
alters the m e c h a n i s m of d e s t r u c t i o n , a n d thus t h e r e a c t i o n rate ( 7 2 , 7 5 ) . L a t h r o p a n d L e u n g (75) reported that the E
a
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
degradation i n canned kcal/mol.
peas d u r i n g p r o c e s s i n g
for ascorbic
acid
at 1 1 0 - 1 3 2 ° C w a s 4 1
T h i s w a s h i g h e r t h a n t h e E s r e p o r t e d f o r other n u t r i e n t s , a
a l t h o u g h i n a s i m i l a r r a n g e (83,84).
C o n t r a r y to other studies, these
investigators suggested t h a t a s c o r b i c a c i d d e s t r u c t i o n i n c a n n e d peas w a s m u c h m o r e heat sensitive t h a n t h a t i n m o d e l systems.
R a o et a l . (90),
i n a s i m i l a r i n v e s t i g a t i o n w i t h c a n n e d peas, r e p o r t e d
an E
a
of 13.1
k c a l / m o l , significantly lower than that f o u n d b y L a t h r o p a n d L e u n g (75).
Differences i n t h e d e s t r u c t i o n m e c h a n i s m ( a e r o b i c vs. a n a e r o b i c ) ,
o x y g e n c o n c e n t r a t i o n , a n d a c t u a l t e m p e r a t u r e i n t h e center of t h e f o o d m i g h t account f o r some of t h e v a r i a t i o n . N a g y ( 3 8 ) r e p o r t e d t h a t f o r stored c i t r u s juices, t h e loss of v i t a m i n C w a s n o t necessarily a first-order r e a c t i o n . F o r g r a p e f r u i t juice, t h e E
a
w a s 18.2 k c a l / m o l , a n d t h e r e a c t i o n w a s
first-order.
F o r orange
juice,
t w o E s w e r e d e t e r m i n e d : 12.8 k c a l / m o l i n the t e m p e r a t u r e r a n g e 4 - 2 8 ° C , a
a n d 24.5 k c a l / m o l i n t h e r a n g e 2 8 - 5 0 ° C . T h e c h a n g e i n r e a c t i o n k i n e t i c s w a s a t t r i b u t e d to different d e s t r u c t i o n m e c h a n i s m s , a l t h o u g h n o e x p l a n a t i o n w a s offered. T h e l a c k o f d a t a f o r a c t u a l f o o d systems, a n d t h e d i s c r e p a n c i e s c i t e d a b o v e , i n d i c a t e t h e difficulty i n p r e d i c t i n g a s c o r b i c a c i d losses t h a t m i g h t o c c u r d u r i n g p r o c e s s i n g a n d storage of foods. W i t h t h e a d v e n t o f n u t r i t i o n a l l a b e l i n g , t h e processor m u s t b e a b l e to p r o v i d e foods c o n t a i n i n g at least t h e a m o u n t of a n u t r i e n t l i s t e d at t h e t i m e o f p u r c h a s e .
There
fore, t h e d e t e r m i n a t i o n of losses as o u t l i n e d b y L a b u z a et a l . ( 8 5 ) o r L e n z a n d L u n d (72) s h o u l d b e p a r t o f t h e q u a l i t y c o n t r o l p r o g r a m i n a food company.
T h e development
of c o m p u t e r s i m u l a t i o n m o d e l s f o r
p r e d i c t i o n of q u a l i t y losses, i n c l u d i n g n u t r i e n t s , w i l l b e c o m e i n c r e a s i n g l y important
(85-88).
Ascorbic Acid Losses During Industrial Processing B e c a u s e o f v i t a m i n C s l a b i l i t y t o h e a t - i n d u c e d o x i d a t i o n a n d its h i g h s o l u b i l i t y i n w a t e r , m a j o r losses o f t h e v i t a m i n c a n o c c u r d u r i n g food processing
techniques
t h a t u t i l i z e l o n g heat treatments o r t h a t
i n v o l v e large q u a n t i t i e s of s o a k i n g , r i n s i n g , o r c o o k i n g w a t e r
(35,91,92).
T h i s section r e v i e w s t h e effects of different f o o d p r e s e r v a t i o n processes o n the retention of v i t a m i n C i n commercial food products.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
514
ASCORBIC
Blanching.
ACID
H o t w a t e r , m i c r o w a v e , or s t e a m b l a n c h i n g is u s e d p r i o r
t o f r e e z i n g , c a n n i n g , or d r y i n g operations p r i m a r i l y to i n a c t i v a t e e n z y m e s t h a t cause d e t e r i o r a t i o n d u r i n g storage of f r o z e n foods.
B l a n c h i n g is
also u s e d to c l e a n a n d r e d u c e t h e m i c r o b i a l p o p u l a t i o n o n the v e g e t a b l e or f r u i t , to soften b u l k y vegetables a n d r e d u c e v o l u m e p r i o r to p a c k a g i n g , to e x p e l gasses t h a t c a n create excessive
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
m a i n t a i n o r " f i x " color Hot
water
pressure i n the c a n , a n d to
(35).
blanch
and
subsequent
water-cooling
is
undesirable
because of l e a c h i n g of v a r i o u s w a t e r - s o l u b l e n u t r i e n t s , e s p e c i a l l y ascorbic a c i d . Losses of ascorbic a c i d are e s p e c i a l l y h i g h w h e n t h e surface area p e r mass of the f o o d is large ( s m a l l p i e c e s ) , w h e n there is a l a r g e w a t e r to f o o d r a t i o , w h e n t h e contact t i m e is l o n g , a n d w h e n the p r o d u c t is extensively s t i r r e d i n w a t e r . W h e n b l a n c h c o n d i t i o n s are f a v o r a b l e , loss of ascorbic a c i d c a n b e less t h a n 1 0 % , b u t the loss c a n b e 5 0 % o r m o r e u n d e r severe c o n d i t i o n s .
T h e w i d e r a n g e of a s c o r b i c a c i d r e t e n t i o n i n
c a n n e d fruits a n d vegetables m a y reflect the v a r y i n g c o n d i t i o n s of b l a n c h ing,
a l t h o u g h i n some cases h i g h losses r e s u l t f r o m the use of
copper
salts as color stabilizers ( 9 3 ) . L a t h r o p and L e u n g (94)
c o l l e c t e d p e a samples at v a r i o u s p o i n t s
a l o n g a c o m m e r c i a l c a n n i n g l i n e i n W a s h i n g t o n State ( T a b l e I V ) . found a total 8 %
loss of a s c o r b i c
c l e a n i n g , a n d s i z i n g operations d u e to l e a c h i n g ( n o h e a t a p p l i e d ) . w a t e r b l a n c h i n g ( 3 m i n at 8 2 - 8 8 ° C ) c a u s e d a f u r t h e r 1 9 %
Table IV.
They
acid concentration d u r i n g soaking, Hot
reduction
Vitamin C Losses Due to Specific Operations in Commercial Thermal Pea Processing Vitamin C
Content (mg/100 g of Peas) 0
Process Receiving Soaking Washing and sizing Blanching Hot filling still continuous T h e r m a l processing still continuous
Loss After Each Operation (%)
Cumulative
± ± ± ±
0.9 1.5 2.9 1.1
0 2.4 5.8 19.2
0 2.4 8.0 25.7
10.4 ± 10.3 ±
0.1 1.4
43.8 44.3
58.2 58.6
8.2 ± 8.0 ±
1.1 0.9
21.2 22.3
67.1 67.9
24.9 24.3 22.9 18.5
Source: Lathrop and Leung (94). ° Mean ± sd for five or more samples.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
21.
ERDMAN AND KLEIN
515
Vitamin C in Foods
i n v i t a m i n C . T h e same authors f u r t h e r s t u d i e d t h e effect of b l a n c h t i m e o n t h e ascorbic a c i d content of 2 0 - 4 0 - g q u a n t i t i e s of peas b l a n c h e d i n a p i l o t - s c a l e steam b l a n c h e r at 1 0 0 ° C o r i n d i s t i l l e d w a t e r ( 4 : 1 , w a t e r : p e a s ) at 8 5 ° C . and
A f t e r 3 m i n t h e r e t e n t i o n w a s 7 8 . 5 % after s t e a m
7 1 . 9 % after w a t e r b l a n c h i n g . A b o u t o n e - t h i r d o r one-half of t h e
v i t a m i n C lost f r o m h o t - w a t e r - b l a n c h e d peas w a s l e a c h e d i n t o t h e b l a n c h
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
water. S e l m a n , i n h i s r e v i e w of v i t a m i n C losses d u r i n g p r o c e s s i n g of peas ( 9 5 ) , o b s e r v e d that there w a s a l a r g e v a r i a t i o n a m o n g varieties f o r b o t h the v i t a m i n C content a n d r e t e n t i o n d u r i n g p r o c e s s i n g steps s u c h as b l a n c h i n g . T h e losses w e r e n o t r e l a t e d to t h e i n i t i a l ascorbic a c i d content of t h e v a r i e t y . T h e w o r k of M o r r i s o n (96) shows a t h r e e f o l d v a r i a t i o n of v i t a m i n C loss f r o m six c u l t i v a r s of peas b l a n c h e d i n w a t e r f o r 1 m i n at 9 7 ° C . I n g e n e r a l , steam b l a n c h i n g appears to result i n l o w e r loss of a s c o r b i c a c i d a l t h o u g h some studies h a v e s h o w n n o difference
between
steam
a n d h o t w a t e r . L e a c h i n g loss is less w i t h steam b u t i n c r e a s e d o x i d a t i o n m a y o c c u r because of l o n g e r b l a n c h times ( 3 5 ) . M i c r o w a v e b l a n c h i n g has b e e n s h o w n i n some cases to b e s u p e r i o r to steam b l a n c h i n g f o r v i t a m i n C r e t e n t i o n (80,97) p r o b a b l y because of less l e a c h i n g loss. T h e hot gas a n d s u p e r h e a t e d steam b l a n c h i n g p r o c e d u r e s
h a v e y e t to b e
a d e q u a t e l y tested f o r t h e i r effects o n ascorbic a c i d r e t e n t i o n i n a v a r i e t y of p r o d u c t s . Pasteurization
and Commercial
Sterilization
(Canning).
Along
w i t h b l a n c h i n g , p a s t e u r i z a t i o n a n d s t e r i l i z a t i o n are t h e c o m m o n t h e r m a l p r e s e r v a t i o n p r o c e d u r e s i n i n d u s t r i a l processing. t e u r i z a t i o n is to i n a c t i v a t e vegetative organisms.
T h e objective of p a s
cells of p a t h o g e n i c
or spoilage
O t h e r t h a n m i l k , most p a s t e u r i z e d p r o d u c t s h a v e a l o w p H
to r e d u c e t h e rate of m i c r o b i a l g r o w t h .
M a n y orange a n d other f r u i t
juices a n d d r i n k s a r e p a s t e u r i z e d . P a s t e u r i z a t i o n is u s u a l l y f o l l o w e d b y other s p e c i a l treatments s u c h as r e f r i g e r a t i o n o r f e r m e n t a t i o n . T h e c o m m e r c i a l s t e r i l i z a t i o n p r o c e d u r e uses sufficient heat to i n a c t i v a t e spores of p a t h o g e n i c or spoilage organisms. S t e r i l i z a t i o n u s u a l l y is u s e d i n c o n j u n c t i o n w i t h a n a e r o b i c storage c o n d i t i o n s
(68,80).
P a s t e u r i z a t i o n r e q u i r e s c o n s i d e r a b l y less t h e r m a l i n p u t t h a n does s t e r i l i z a t i o n . T h e r e f o r e , t h e t h e r m a l losses d u r i n g p a s t e u r i z a t i o n process i n g are q u i t e l o w . H o w e v e r , o x i d a t i v e losses c a n b e h i g h i f care is n o t t a k e n to deaerate a n d i f h i g h - t e m p e r a t u r e - s h o r t - t i m e ( H T S T ) c o n d i t i o n s are n o t u s e d ( 8 0 ) . Thompson
(98) i n v e s t i g a t e d t h e loss of n u t r i e n t s f r o m m i l k after
pasteurization a n d sterilization.
A p o r t i o n of h i s results a r e f o u n d i n
T a b l e V . H T S T ( 7 2 ° C f o r 15 s) p a s t e u r i z a t i o n of t h e fluid m i l k p r i o r
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
516
ASCORBIC
Table V .
Loss of Nutrients in M i l k D u r i n g Processing Pasteurized
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
Nutrient Thiamine Vitamin C Folic acid Vitamin B
ACID
1 2
Sterilized
HTST
Holder
UHT
In Bottle
(%)
(%)
(%)
(%)
10 10 0 0
10 20 0 10
10 10 10 20
35 50 50 30
Source: Thompson (98) as noted by Lund (80).
to b o t t l i n g is s u p e r i o r to p a s t e u r i z a t i o n of t h e p r e v i o u s l y b o t t l e d m i l k . U l t r a h i g h temperature
( 1 4 4 ° C for a f e w
s e c o n d s ) is f a r s u p e r i o r
to
s t e r i l i z i n g i n the bottle for r e t e n t i o n of f o u r m e a s u r e d v i t a m i n s . C o m m e r c i a l s t e r i l i z a t i o n of
peas i n a retort r e s u l t e d i n a
r e t e n t i o n of the i n i t i a l a s c o r b i c a c i d i n one s t u d y ( T a b l e V ) 38-60%
r e t e n t i o n i n another
study
(99).
33%
(94)
T h e latter s t u d y
and
reported
c o n s i d e r a b l y l o w e r v i t a m i n C loss d u r i n g the b l a n c h i n g o p e r a t i o n a n d thus h i g h e r t o t a l r e t e n t i o n . F i n a l r e t e n t i o n of v i t a m i n C i n other v e g e tables after c a n n i n g w a s 4 0 %
for c o r n a n d 2 3 % f o r beets ( 9 9 ) .
The
l o w t o t a l r e t e n t i o n of v i t a m i n C for beets w a s l a r g e l y because of b l a n c h i n g a n d p e e l i n g operations.
L a r g e b l a n c h i n g losses for w a x beans a n d g r e e n
beans w e r e also r e p o r t e d
(99). A s c o r b i c a c i d is the most difficult of
Moisture Removal ( D r y i n g ) .
the v i t a m i n s to preserve d u r i n g the d e h y d r a t i o n of foods. Losses of 2 0 % have been reported i n spray-dried m i l k a n d 3 0 % (93).
Those d r y i n g procedures
i n roller-dried milk
t h a t r e q u i r e shorter d r y i n g times
improve vitamin C retention (35).
will
R e t e n t i o n c a n also b e i m p r o v e d b y
a p p l i c a t i o n of v a c u u m or b y use of n i t r o g e n atmosphere d u r i n g d r y i n g ( 9 7 ) , or b y t h e a d d i t i o n of s u l f u r d i o x i d e to fruits a n d vegetables p r i o r to d r y i n g ( 9 3 ) .
S u l f u r d i o x i d e m u s t be u s e d w i t h c a u t i o n , h o w e v e r , as
i t destroys t h i a m i n e . T h e rate of a s c o r b i c a c i d d e s t r u c t i o n a n d the a c t i v a t i o n e n e r g y are v e r y sensitive to w a t e r a c t i v i t y . T h e r e a c t i o n rate constant varies o v e r three orders of m a g n i t u d e for the entire w a t e r a c t i v i t y range (100).
At
h i g h w a t e r a c t i v i t i e s , ascorbic a c i d is r a p i d l y d e s t r o y e d , b u t i t is q u i t e stable at l o w w a t e r a c t i v i t y . T h e s e n s i t i v i t y of a s c o r b i c a c i d to t e m p e r a ture at h i g h w a t e r a c t i v i t y suggests t h a t v i t a m i n C r e t e n t i o n is d e p e n d e n t o n t h e w e t b u l b t e m p e r a t u r e at the b e g i n n i n g of d r y i n g a n d o n t e m p e r a t u r e of e v a p o r a t i o n .
C o n t r o l of d r y i n g rate a n d c o n d i t i o n s
the is
essential for r e t e n t i o n of v i t a m i n C , a n d is p a r t i c u l a r l y i m p o r t a n t f o r d r y i n g of f r u i t slices or halves.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
21.
517
Vitamin C in Foods
ERDMAN AND KLEIN
C o n c e n t r a t i o n of f r u i t juices s h o u l d n o t result i n m a r k e d loss of ascorbic a c i d i f t h e pressed j u i c e is d e a e r a t e d a n d a n d e v a p o r a t e d at l o w temperatures (100). A s c o r b i c a c i d retentions i n excess of 9 0 % h a v e b e e n r e p o r t e d f o r c o n c e n t r a t i o n a n d f r e e z i n g processes (38,101)
and can be
expected for freeze c o n c e n t r a t i o n processes (100). G e e (102) d r i e d slices of carrots a n d tomatoes
a n d whole spinach
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
leaves at 47 ° C f o r 1 6 - 2 4 h i n a f o r c e d - d r a f t o v e n to a w a t e r a c t i v i t y o f 0.33.
N o p r e - b l a n c h c h e m i c a l t r e a t m e n t w a s used.
D u r i n g dehydration
no loss i n t o t a l ascorbic a c i d w a s d e t e c t e d f o r carrots a n d less t h a n 2 0 % loss w a s n o t e d f o r tomatoes.
A s c o r b i c a c i d loss f o r s p i n a c h w a s 6 2 % .
A s c o r b i c a c i d content r e m a i n e d r a t h e r stable i n carrots a n d tomatoes for a b o u t 1 m o n t h stored i n a i r , b u t losses a c c e l e r a t e d r a p i d l y thereafter. N o benefit of n i t r o g e n or v a c u u m p a c k a g i n g o n v i t a m i n C r e t e n t i o n during
storage
was noted.
These
a r e s u r p r i s i n g results.
The high
r e t e n t i o n of v i t a m i n C u n d e r d r y i n g c o n d i t i o n s s h o u l d b e v e r i f i e d . Dehydration
of potatoes c a n result i n h i g h l y v a r i a b l e
acid retention depending
u p o n t h e process t e c h n i q u e s
ascorbic
used.
Jadhav
et a l . (103) f o u n d a m a x i m u m loss of 7 8 % of R A A i n a n a d d b a c k , a i r - d r y i n g process a n d a m a x i m u m loss of o n l y 3 0 % i n a f r e e z e - t h a w process f o r p r o d u c i n g
d e h y d r a t e d m a s h e d potatoes.
M a g a a n d Sizer
(104) s t u d i e d v i t a m i n C a n d t h i a m i n r e t e n t i o n i n e x t r u s i o n
processed
potato s n a c k - l i k e flakes. A t h i g h extrusion temperatures, t h e best a s c o r b i c a c i d r e t e n t i o n o c c u r r e d i n t h e l o w m o i s t u r e potato m e a l ( 2 5 % w a t e r ) . H o w e v e r , t h i a m i n e r e t e n t i o n at h i g h e x t r u s i o n t e m p e r a t u r e s w a s g e n e r a l l y best f r o m h i g h - m o i s t u r e m e a l ( 5 9 % w a t e r ) a n d p o o r f r o m l o w - m o i s t u r e meal. Low Temperature Treatment. ucts a r e h i g h i n ascorbic a c i d .
M a n y commercial frozen food p r o d
R e f r i g e r a t i o n is u s e d f o r v a r i o u s f r e s h
f r u i t juices a n d f o r h o l d i n g m a n y fruits a n d vegetables
p r i o r to r e t a i l
sale or f u r t h e r processing. Freezing, i f properly conducted, food
preservation
technique
n u t r i e n t r e t e n t i o n (35,57,105,106). ascorbic
is c o n s i d e r e d
for both
t h e best l o n g - t e r m
o p t i m a l sensory
quality a n d
T h e average r e t e n t i o n of r e d u c e d
a c i d i n different vegetables
that were
blanched, frozen, or
stored f o r 6 - 1 2 m o n t h s at - 1 8 ° C a n d t h a w e d w a s a b o u t 5 0 % (106). Losses d u r i n g t h e entire process are l a r g e l y a t t r i b u t e d to b l a n c h i n g a n d to t h e p r o l o n g e d f r o z e n storage.
Losses differ m a r k e d l y a m o n g p r o d u c t s
a n d w i t h i n varieties of a c u l t i v a r . U n d e r p r o p e r p r o c e s s i n g c o n d i t i o n s , fruits lose less t h a n 3 0 % of t h e i r o r i g i n a l v i t a m i n C content t h r o u g h t h e entire f r e e z i n g a n d f r o z e n storage p e r i o d (106). 90%
of t h e i r a s c o r b i c
F r o z e n c o n c e n t r a t e d f r u i t juices c a n r e t a i n over a c i d (38,106).
P a c k i n g i n s y r u p is g e n e r a l l y
p r o t e c t i v e of ascorbic a c i d .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
518
ASCORBIC
ACID
T h e t e m p e r a t u r e of f r o z e n storage is c r i t i c a l f o r o p t i m a l n u t r i e n t r e t e n t i o n . T h e I n t e r n a t i o n a l I n s t i t u t e of R e f r i g e r a t i o n (107)
recommends
that for g o o d r e t e n t i o n of n u t r i e n t s a n d q u a l i t y of foods the m a x i m u m f r e e z i n g storage t e m p e r a t u r e s h o u l d be — 1 8 ° C ( 0 ° F ) .
A t this t e m p e r a
t u r e t h e r e is a s l o w b u t a c c e p t a b l e d e t e r i o r a t i o n of f o o d q u a l i t y ( 3 5 ) . A s c o r b i c a c i d loss i n f r o z e n foods is h i g h l y t e m p e r a t u r e d e p e n d e n t .
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
F o r e x a m p l e , w h e n peaches, boysenberries, or strawberries are stored at — 7 ° C i n s t e a d of — 1 8 ° C , the rate of a s c o r b i c a c i d d e g r a d a t i o n increases b y a factor of 3 0 - 7 0
(105,106).
K r a m e r et a l . (108) ( ± 1 ° C ) and
fluctuating
m e a s u r e d a s c o r b i c a c i d r e t e n t i o n at constant ( d b 5 ° C e a c h 20 m i n ) t e m p e r a t u r e s i n Salisbury
steaks stored for 3 or 6 m o n t h s ( T a b l e V I ) . T h e y f o u n d g o o d r e t e n t i o n of v i t a m i n C s t o r e d at constant — 2 0 ° C or l o w e r for 3 m o n t h s . A t h i g h e r t e m p e r a t u r e s , o r at fluctuating t e m p e r a t u r e s , t h e r e w a s s u b s t a n t i a l r e d u c t i o n of v i t a m i n C w i t h i n 3-months storage. C r e t e n t i o n u n d e r b o t h constant a n d
N o other studies of v i t a m i n
fluctuating
temperature were found.
P r o p e r storage of c a n n e d a n d b o t t l e d s i n g l e - s t r e n g t h f r u i t juices is essential for m a x i m a l v i t a m i n C r e t e n t i o n . N a g y , i n his r e v i e w of
the
l i t e r a t u r e ( 3 8 ) , c o n c l u d e s that storage at 21 ° C ( t h e t e m p e r a t u r e t h a t m a y be close to the average y e a r - r o u n d n o n r e f r i g e r a t e d c o m m e r c i a l storage conditions)
for u p w a r d s of a y e a r results i n v i t a m i n C retentions of
greater t h a n 7 5 % .
H o w e v e r , storage t e m p e r a t u r e s i n excess of
28°C
cause m a r k e d a s c o r b i c a c i d d e s t r u c t i o n , a n d at 38 ° C l i t t l e v i t a m i n C w a s retained.
R e f r i g e r a t i o n storage
(4-10°C)
r e s u l t e d i n excellent
(90%
or m o r e ) r e t e n t i o n of t h e v i t a m i n , after 1 y e a r .
Table V I . Effect of Constant and Fluctuating Temperatures U p o n the Ascorbic A c i d and Thiamine Contents of Salisbury Steak Ascorbic Acid Content Storage Conditions Initial 3 Months -10°C -20°C -30°C 6 Months -10°C -20°C -30°C
Constant Temperature
Fluctuating Temperature
Thiamine Content Constant Temperature
Fluctuating Temperature
3.0
3.6 1.8 2.8 2.8
1.0 2.0 2.5
2.8 2.9 3.2
1.8 2.1 2.6
1.2 1.6 1.3
1.1 1.1 1.1
1.9 2.7 2.7
1.8 1.7 2.6
Source: Reference 108. Note: Data presented as milligram of vitamin specified per 100 g.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
21.
519
Vitamin C in Foods
ERDMAN AND KLEIN
S q u i r e s a n d H a n n a ( 1 0 9 ) c o l l e c t e d samples of seventeen b r a n d s o f commercial
reconstituted
orange
juices
i n plastic-coated
cardboard
containers a n d stored t h e m u n d e r r e f r i g e r a t i o n at 4 ° C . T h e y r e p o r t e d that the average r e d u c t i o n i n R A A w a s a b o u t 2 % / d . Fermentation.
Selective f e r m e n t a t i o n of foodstuffs f o r p r e s e r v a t i o n ,
e n h a n c e m e n t o f n u t r i t i v e v a l u e , i m p r o v e m e n t of
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
of
alcoholic
beverages has b e e n
flavor,
practiced probably
or preparation
since p r e h i s t o r i c
times b y p e o p l e s of n e a r l y every c i v i l i z a t i o n (110). D u r i n g f e r m e n t a t i o n of foods, o n e often c a n f i n d a net increase i n content of c e r t a i n B v i t a m i n s , s u c h as r i b o f l a v i n a n d n i a c i n , b e c a u s e of m i c r o b i a l synthesis.
However,
d e p e n d i n g u p o n o t h e r p r o c e s s i n g steps, t h e f e r m e n t e d f o o d m a y o r m a y not r e t a i n t h e n e w l y s y n t h e s i z e d n u t r i e n t s . S e p a r a t i o n of m i l k i n t o t h e c u r d a n d w h e y fractions p r i o r to cheese m a n u f a c t u r e causes a p a r t i t i o n of w a t e r - s o l u b l e substances ( w h e y ) f r o m the c u r d .
M o r e t h a n 8 0 % of t h e v i t a m i n C a n d t h i a m i n e is r e m o v e d
w i t h the whey fraction
(111).
D e s a l t i n g of t h e b r i n e d u r i n g p i c k l e
m a n u f a c t u r e results i n a 1 0 0 % v i t a m i n C loss.
W h e n d e s a l t i n g is n o t
p r a c t i c e d , losses of a s c o r b i c a c i d are a b o u t 4 0 - 5 0 %
(110).
It w a s r e p o r t e d i n 1939 (112) t h a t d u r i n g t h e a c t i v e f e r m e n t a t i o n p e r i o d of s a u e r k r a u t p r o d u c t i o n , t h e v i t a m i n C content w a s e q u a l t o that of t h e o r i g i n a l c a b b a g e . T h e n , d u r i n g v a t storage, a s l o w , p r o g r e s sive loss of v i t a m i n C o c c u r r e d .
Further destruction ( 2 5 - 3 5 % ) occurred
d u r i n g p r e h e a t i n g a n d c a n n i n g operations.
M a r k e d loss o f v i t a m i n C
w a s f o u n d i n c a n n e d k r a u t stored at e l e v a t e d temperatures (113). recent r e p o r t R o et a l . (114) i n v e s t i g a t e d t h e v i t a m i n B
a c i d content of K i m c h i , a Chinese c a b b a g e f e r m e n t e d w i t h terium freundenreichii creased,
ss. shermanii.
v i t a m i n C content
Propionibac-
Although vitamin B i
decreased
(when
compared
In a
a n d ascorbic
12
2
content i n with
fresh
u n f e r m e n t e d K i m c h i ) d u r i n g t h e first 5 w e e k s o f f e r m e n t a t i o n . F r o m these a n d other studies o n e m u s t c o n c l u d e t h a t most f e r m e n t e d foods a r e n o t g o o d sources o f v i t a m i n C . E x c e p t i o n s w o u l d b e f r e s h c a b b a g e a n d o t h e r f e r m e n t e d vegetables t h a t h a v e n o t b e e n desalted. I o n i z i n g r a d i a t i o n f o r u s e i n f o o d systems c a n c o m e
Irradiation. from
electrons, x-rays, o r g a m m a
rays f r o m
cobalt-60
o r cesium-137.
T h e r e is l i t t l e rise i n t h e t e m p e r a t u r e w i t h i n t h e foodstuff, destruction
of
n u t r i e n t s is m i n i m i z e d .
peroxides are f o r m e d w i t h i n t h e f o o d .
However,
free
so h e a t
r a d i c a l s and
I n t h e U n i t e d States, i r r a d i a t i o n
is classified as a f o o d a d d i t i v e a n d its use i n t h e f o o d i n d u s t r y has b e e n severely r e s t r i c t e d to s u c h areas as p r e v e n t i o n of potato s p r o u t i n g and wheat infestation. A s is n o t e d i n C h a p t e r 3 i n this b o o k , a s c o r b i c a c i d reacts
very
r a p i d l y w i t h free r a d i c a l s f o r m e d f r o m w a t e r . T h e e n d p r o d u c t s of t h i s
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
520
ASCORBIC
r e a c t i o n c o u l d b e D H A o r other n o n b i o l o g i c a l l y a c t i v e f o r m s
ACID
of t h e
v i t a m i n . V i t a m i n C i n i r r a d i a t e d f o o d systems c a n b e c o n s i d e r e d to a c t as a free r a d i c a l scavenger, b u t as s u c h its o v e r a l l content i n i r r a d i a t e d food w o u l d be reduced. J o s e p h s o n et a l . (115) c o n c l u d e f r o m t h e i r r e v i e w of t h e effects o f i o n i z i n g r a d i a t i o n t r e a t m e n t of foods that n u t r i e n t d e s t r u c t i o n , s u c h as
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
to v i t a m i n C , i n i r r a d i a t e d foods is no greater t h a n t h a t o c c u r r i n g w h e n f o o d is p r e s e r v e d b y m o r e c o n v e n t i o n a l means. I n a d d i t i o n , i f i r r a d i a t i o n is p e r f o r m e d o n f r o z e n foods, t h e losses of v i t a m i n C are r e d u c e d . Storage
P r o p e r storage
of Preserved Foods.
conditions for pre
s e r v e d foods w i l l extend t h e i r shelf life. E x t e n d e d storage at h i g h t e m p e r a t u r e s , o r at h i g h h u m i d i t y w i t h i n a d e q u a t e p a c k a g i n g w i l l l e a d to d e t e r i o r a t i o n of t h e f o o d p r o d u c t s ' sensory q u a l i t y a n d n u t r i e n t content. A n e x a m p l e of t h e effects of p o o r p a c k a g i n g a n d p o o r storage c o n d i t i o n s f o r c r a n b e r r y sauce is i l l u s t r a t e d i n T a b l e V I I .
Table V I I .
Effects of Packaging Upon Quality of Cranberry Sauce (
P
H
-
2.7)
After Storage for 5 Weeks at 37° C at 80% RH in Packages Made of:
Test M o i s t u r e (Jo) Acceptability (hedonic scale) Ascorbic acid ( m g / 1 0 0 g)
Prior to Storage
Aluminum No. 2 Laminated Lined Tin Can Film
Polyester Film (2 layers)
Polyester Film (1 layer)
56.1 7.3
55.9 6.7
56.0 7.2
54.5 6.3
53.5 5.3
89.2
73.4
71.7
0.4
0.0
Source: Reference 149,
Ascorbic Acid Losses During Food Preparation It has b e e n suggested that, d u r i n g p r e p a r a t i o n of f o o d f o r t h e t a b l e either i n o r o u t of t h e h o m e , losses of n u t r i e n t s o c c u r that surpass those i n c u r r e d d u r i n g p r o c e s s i n g (116).
A n extensive r e v i e w of t h e l i t e r a t u r e
d o n e i n 1960 (117), w h i c h w a s u p d a t e d i n 1975 ( 9 2 ) , r e v e a l e d t h a t f e w n e w d a t a h a v e b e e n r e p o r t e d i n t h e i n t e r v e n i n g years.
E r d m a n (57)
suggested t h a t m o r e i n f o r m a t i o n , p a r t i c u l a r l y o n t h e effects of c o o k i n g p r o c e d u r e s o n n u t r i e n t r e t e n t i o n , w a s necessary. W e d o n o t i n t e n d to p r o v i d e c o m p r e h e n s i v e c o v e r a g e of t h e e a r l y w o r k o n a s c o r b i c a c i d r e t e n t i o n i n h o m e p r e p a r e d foods i n this s e c t i o n ,
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
21.
ERDMAN AND KLEIN
521
Vitamin C in Foods
b u t to i n d i c a t e t h e c r i t i c a l p o i n t s w h e r e losses m a y occur.
T h e increased
c o n s u m p t i o n of f o o d a w a y f r o m h o m e , i n a f o o d service f a c i l i t y , s u c h as s c h o o l a n d business cafeterias, restaurants, a n d fast f o o d stands, influence t h e n u t r i e n t s a v a i l a b l e to t h e consumer.
will
Nutrient data collected
i n t h e 1940s h a v e b e c o m e less u s e f u l because of changes i n r a w m a t e r i a l s , f o o d p r o c e s s i n g , t e c h n o l o g y , a n d e q u i p m e n t (118). T h e r e f o r e , o n e m u s t
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
v i e w t h e i n f o r m a t i o n a v a i l a b l e about t h e influence of v a r i o u s processes a n d p r o c e d u r e s o n v i t a m i n C content of foods as i n d i c a t i v e , r a t h e r t h a n absolute. I n most studies of v i t a m i n C content of p r e p a r e d f o o d , t h e v a r i e t y of f r u i t o r vegetable is r a r e l y r e p o r t e d o r k n o w n . T h e c o n s u m e r , unless s h e / h e is t h e g a r d e n e r as w e l l , has little c o n t r o l over t h e v a r i e t y o f f r u i t or v e g e t a b l e p u r c h a s e d or a v a i l a b l e . I n c o m m e r c i a l r e t a i l i n g of fruits a n d vegetables, t h e decisions r e g a r d i n g v a r i e t y are i n f l u e n c e d b y season, growing
area, a n d q u a l i t y characteristics of t h e p r o d u c t
other
than
D u r i n g preparation for cooking,
most
nutritive value. Preparation for Cooking.
p l a n t materials r e q u i r e some p e e l i n g a n d t r i m m i n g . I n a d d i t i o n , s u b d i v i sion of large w h o l e vegetables is often d o n e to speed c o o k i n g times a n d to p r o v i d e m o r e u n i f o r m size pieces.
T r i m m i n g losses v a r y c o n s i d e r a b l y
d e p e n d i n g o n t h e t y p e of f o o d , its c o n d i t i o n a n d freshness,
a n d the
m e t h o d of c o o k i n g to b e used. A h a n d b o o k of f o o d y i e l d s (119) p r o v i d e s extensive i n f o r m a t i o n a b o u t losses a n d gains i n w e i g h t of f o o d d u r i n g different stages of p r e p a r a t i o n . T h e extent of t r i m m i n g f o r most fruits a n d vegetables w i l l i n f l u e n c e the t o t a l i n i t i a l n u t r i e n t content.
Since a s c o r b i c a c i d is u s u a l l y c o n c e n
t r a t e d i n t h e outer leaves o r layers of t h e f r u i t o r vegetables, r e m o v a l of these portions m a y result i n a c o n s i d e r a b l e loss
(37,67,120,121).
Losses i n a s c o r b i c a c i d content o w i n g to a d v a n c e p r e p a r a t i o n ( c u t t i n g a n d s h r e d d i n g ) d o o c c u r (122-125), b u t the a m o u n t is u n p r e d i c t a b l e a n d inconsistent. T h e losses are i n f l u e n c e d b y t h e degree o f s u b d i v i s i o n , s o a k i n g i n w a t e r , m a t e r i a l of the c u t t i n g i n s t r u m e n t , t i m e of s t a n d i n g , a n d t e m p e r a t u r e of storage
during standing.
D e s t r u c t i o n o f ascorbic
acid
i n c u t c a b b a g e has b e e n r e p o r t e d to b e as l o w as 3 % (121) a n d as h i g h as 4 0 % (122). A c c o r d i n g to V a n D u y n e et a l . (122) r e t e n t i o n of r e d u c e d a s c o r b i c a c i d i n c a b b a g e that w a s s h r e d d e d a n d a l l o w e d to s t a n d f o r 1 h i n a i r , 1 h i n w a t e r , or 3 h i n w a t e r w a s over 8 7 % i n a l l cases.
Similarly,
p e e l e d potatoes, q u a r t e r e d o r w h o l e , d i d n o t lose significant amounts of ascorbic a c i d d u r i n g a 1 - 3 - h s o a k i n g p e r i o d (126).
B a s e d o n t h e sparse
d a t a , i t appears that t h e s o a k i n g of vegetables i n w a t e r f o r short p e r i o d s of t i m e p r i o r to c o o k i n g results i n s m a l l losses o f ascorbic a c i d . I f a v e g e t a b l e is s h r e d d e d o r c u t , t h e losses w i l l b e i n c r e a s e d .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
522
ASCORBIC ACID
C o o k i n g of Vegetables. bic acid retention were freezing;
I n t h e 1940s, m a n y of t h e studies o f ascor
concerned
i n t h e next d e c a d e ,
with
processes
studies o f c o o k i n g
of blanching a n d methods
including
pressure c o o k i n g , " w a t e r l e s s " c o o k i n g , a n d s t e a m i n g w e r e m o r e
common.
T h e d e v e l o p m e n t of e l e c t r o n i c c o o k i n g also s t i m u l a t e d r e s e a r c h i n t h e e a r l y 1960s. S i n c e that t i m e , there h a v e b e e n r e l a t i v e l y f e w n e w reports
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
o n v i t a m i n r e t e n t i o n i n c o o k e d foods. I n assessing t h e c o o k i n g studies, c a u t i o n m u s t b e u s e d i n i n t e r p r e t i n g results.
C l e a r l y , t h e a m o u n t of w a t e r a n d t h e t i m e of h e a t i n g m u s t b e
specified. D i f f i c u l t y i n d e t e r m i n i n g t h e degree of "doneness" m a y i n f l u ence t h e observations. T h e a m o u n t of s u b d i v i s i o n of t h e vegetables m u s t also b e c o n s i d e r e d .
I t s h o u l d b e p o i n t e d o u t that i n a l m o s t a l l of t h e
investigations c i t e d o n l y o n e c o o k i n g t i m e , a n " o p t i m u m " , w a s u s e d . A l t h o u g h there a r e r e c o m m e n d a t i o n s f o r c o o k i n g times a n d a m o u n t s of w a t e r to b e u s e d i n h o m e c o o k i n g , i t is l i k e l y t h a t t h e average p r e p a r e r deviates s u b s t a n t i a l l y f r o m t h e r e c o m m e n d a t i o n s
food
because
of
p e r s o n a l preferences, i n e x p e r i e n c e , or other factors. I t w o u l d b e interest i n g to d e t e r m i n e w h a t
cooking
methods
are a c t u a l l y u s e d ,
a n d to
d e t e r m i n e t h e effects of a r a n g e of h e a t i n g times a n d t e m p e r a t u r e s o n ascorbic a c i d r e t e n t i o n i n vegetables. BAKING,
STEAMING,
A N D PRESSURE
COOKING.
The
most
common
m e t h o d of c o o k i n g vegetables is b y b o i l i n g i n w a t e r . T h e p r o p o r t i o n of w a t e r to v e g e t a b l e u s e d c a n v a r y greatly f r o m a 0 : 1 (waterless to a 5:1 r a t i o ( w a t e r to c o v e r ) .
cooking)
U s u a l recommendations for vegetable
c o o k e r y are t o use a " m i n i m u m a m o u n t " of w a t e r , w h i c h c a n r a n g e f r o m a ratio of 0.25:1 to 1:1 d e p e n d i n g o n t h e f o o d .
I n making recommenda
tions f o r t h e a m o u n t of w a t e r to b e u s e d , p a l a t a b i l i t y as w e l l as n u t r i e n t r e t e n t i o n are c o n s i d e r e d . E x a m p l e s o f t h e effects of different ratios o f w a t e r t o vegetable u s e d i n v a r i o u s c o o k i n g m e t h o d s o n ascorbic a c i d r e t e n t i o n a r e s h o w n i n T a b l e V I I I . T h e w a t e r to vegetable r a t i o u s e d i n t h e c o o k i n g p r o c e d u r e is i m p o r t a n t because
losses o f ascorbic
a c i d are p r i m a r i l y c a u s e d b y
l e a c h i n g of t h e v i t a m i n . C o o k i n g m e t h o d s that r e d u c e exposure t o l a r g e q u a n t i t i e s o f w a t e r , s u c h as pressure c o o k i n g , s t e a m i n g , a n d m i c r o w a v e c o o k i n g , w o u l d b e e x p e c t e d to result i n h i g h e r t o t a l a s c o r b i c a c i d r e t e n t i o n (10,127-132). W h e n t h e same o r s i m i l a r r a t i o o f w a t e r t o v e g e t a b l e is u s e d i n a n y of t h e c o o k i n g m e t h o d s , ascorbic a c i d losses a r e a p p r o x i m a t e l y t h e same, i f c o o k i n g times are c o m p a r a b l e (131-135). a l l vegetables
cooked
I n almost
i n a m i n i m u m a m o u n t o f w a t e r , ascorbic
r e t e n t i o n i n t h e vegetables
acid
w a s over 7 0 % , regardless of t h e c o o k i n g
m e t h o d u s e d . E h e a r t a n d G o t t (136) n o t e d t h a t w h e n n o w a t e r o r v e r y s m a l l a m o u n t s w e r e u s e d , ascorbic a c i d r e t e n t i o n w a s a b o u t t h e same. H o w e v e r , i f l a r g e q u a n t i t i e s of w a t e r ( 5 : 1 r a t i o ) w e r e u s e d f o r b o i l i n g
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
21.
E R D M A N AND K L E I N
523
Vitamin C in Foods
Table VIII. Effects of Some Common Cooking Methods on Ascorbic A c i d Retention in Vegetables
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
Vegetable and Cooking Method Broccoli microwave saucepan (boiling) microwave s a u c e p a n (boiling) saucepan waterless c o o k i n g Cabbage microwave microwave saucepan ( b o i l i n g ) pressure cooker microwave saucepan (boiling) microwave saucepan (boiling) Spinach microwave saucepan microwave saucepan
vegetables,
Water: Vegetable Ratio
Cooking Time (min)
Percent Retention
References
2:1 2:1 0.4:1 5.5:1 0.5:1 0.2:1
3 10 5 6.5 10 8
72 59 87 45 88 82
150 150 130 ISO 132 132
0:1 3.5:1 4:1 1.25:1 0.25:1 5:1 0.5:1 0.5:1
5 4 25 3 4 6.5 12 14
93 85 20 50 80 38 72 69
150 150 150 150 ISO ISO 134 134
0:1 0:1 0.25:1 0.25:1
7 7 6.5 7
56 61 47 50
134 134 135 135
as w a s d o n e b y G o r d o n a n d N o b l e
( 1 3 0 ) , ascorbic
acid
retention was m u c h lower i n conventionally cooked than i n microwave c o o k e d vegetables, e v e n t h o u g h c o o k i n g times w e r e s i m i l a r . Studies i n w h i c h the ascorbic
a c i d r e t e n t i o n a n d c o n t e n t of
the
c o o k i n g l i q u i d w e r e d e t e r m i n e d (130,133,134) s h o w e d t h a t t o t a l a s c o r b i c acid retention was generally about 9 0 % (137) liquid
after c o o k i n g .
S w e e n e y et a l .
r e p o r t e d that t o t a l percent r e t e n t i o n i n b r o c c o l i solids p l u s c o o k i n g d i d not decrease
greatly w i t h time.
Therefore,
ascorbic
acid
a p p e a r e d to b e r e l a t i v e l y heat stable a l t h o u g h i t w a s easily l e a c h e d i n t o t h e c o o k i n g w a t e r . W h e n l a r g e r p r o p o r t i o n s of w a t e r w e r e u s e d ( 1 3 0 ) , a h i g h e r p e r c e n t a g e of ascorbic a c i d w a s f o u n d i n the c o o k i n g l i q u i d , w h i c h emphasizes the i m p o r t a n c e of u s i n g m i n i m u m a m o u n t s of w a t e r i n vegetable
cookery.
It is f r e q u e n t l y stated that s t e a m i n g vegetables is most b e n e f i c i a l i n r e t a i n i n g ascorbic a c i d i n the f o o d . (56)
A n e x a m i n a t i o n of t h e sparse d a t a
i n the l i t e r a t u r e does not s u p p o r t this t h e o r y , h o w e v e r .
cases, the l e n g t h e n e d c o o k i n g t i m e necessary to soften t h e
In many vegetables
c a n result i n d e s t r u c t i o n of v i t a m i n C b y h e a t a n d o x i d a t i o n . I f vegetables
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
524
ASCORBIC ACID
are extensively s u b d i v i d e d p r i o r to c o o k i n g
(e.g., s h r e d d e d o r t h i n l y
s l i c e d ) , t h e n s t e a m i n g m e t h o d s are satisfactory f o r p a l a t a b l e , n u t r i t i o u s vegetables.
F o r l a r g e r pieces o r w h o l e vegetables,
t h e use of s m a l l
a m o u n t s of w a t e r a n d c o n v e n t i o n a l o r m i c r o w a v e c o o k i n g m e t h o d s w i l l b e q u i c k e r a n d m o r e effective i n r e t a i n i n g a s c o r b i c a c i d . I t s h o u l d b e p o i n t e d o u t t h a t t h e d a t a f o r steamed a n d b o i l e d vegetables f r o m t h e
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
same
sources
are n o t r e a d i l y a v a i l a b l e .
Thus, the recommendations
r e g a r d i n g s t e a m i n g are i n f e r r e d r a t h e r t h a n k n o w n . MICROWAVE COOKING.
W h e n sales o f m i c r o w a v e ovens i n c r e a s e d i n
the 1970s, t h e n u t r i t i o n a l benefits w e r e a d v e r t i s e d . R e c e n t studies h a v e confirmed the early
findings
(134,136) t h a t m i c r o w a v e c o o k i n g results
i n g o o d r e t e n t i o n of a s c o r b i c a c i d , p r e s u m a b l y because of t h e l o w w a t e r to vegetable ratios a n d short c o o k i n g times u s e d . I n a r e v i e w of m i c r o w a v e effects o n n u t r i e n t r e t e n t i o n , K l e i n
(138)
pointed out that the
a m o u n t of w a t e r u s e d i n c o o k i n g , a n d to a lesser extent, t h e c o o k i n g t i m e , affect ascorbic a c i d losses m o r e t h a n t h e source of energy or t h e t y p e of c o o k i n g . I f short c o o k i n g times a n d s m a l l a m o u n t s o f w a t e r are u s e d , m o r e ascorbic a c i d w i l l b e r e t a i n e d i n a n y c o o k i n g m e t h o d . M a b e s a a n d B a l d w i n (139) f o u n d t h a t f r o z e n peas, c o o k e d w i t h o r w i t h o u t w a t e r i n m i c r o w a v e ovens or c o n v e n t i o n a l l y , v a r i e d i n a s c o r b i c a c i d content.
W h e n t h e same r a t i o of w a t e r to v e g e t a b l e
(1:4) was
u s e d i n the m i c r o w a v e a n d c o n v e n t i o n a l m e t h o d s , ascorbic a c i d retentions were similar ( 7 0 % ) , but lower than w h e n no water was used i n the microwave oven (retention > 9 6 % ). I n a s t u d y of ascorbic a c i d r e t e n t i o n i n f r o z e n c a u l i f l o w e r IX)
(Table
( 1 4 0 ) , t h e ascorbic a c i d c o n t e n t a n d r e t e n t i o n i n t h e vegetables
cooked w i t h no water was significantly higher ( p < 0 . 0 5 )
t h a n those
c o o k e d w i t h i n c r e a s i n g p r o p o r t i o n s of w a t e r ( 0 . 2 5 : 1 , 0.5:1, 1 : 1 ) . H o w ever, t h e c a u l i f l o w e r c o o k e d w i t h o u t w a t e r w a s n o t as p a l a t a b l e .
Table I X .
Ascorbic A c i d Retention in Frozen Cauliflower Cooked with Various Ratios of Water to Vegetable Water: Ratio
Cooking Time ( min)
0:1 0.25:1 0.5:1 1:1
5.5 5.5 5 5
Vegetable
U n c o o k e d cauliflower C o o k e d cauliflower
Ascorbic Acid* (mg/100
51.4 52.2 45.5 43.1 42.3
± ± ± ± ±
Percent g)
3.9 8.1 2.5 1.5 0.7
Retention
0
100 99.8 ± 88.0 ± 82.9 ± 81.1 ±
° Mean ± sd for four samples.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
7.7 4.9 2.8 1.6
21.
Vitamin C
ERDMAN AND KLEIN
K l e i n et a l . ( 1 3 5 )
525
in Foods
f o u n d t h a t a p p r o x i m a t e l y one-half of the i n i t i a l
ascorbic a c i d i n f r e s h r a w s p i n a c h w a s r e t a i n e d i n the c o o k e d vegetable. T h e a m o u n t of w a t e r a n d v e g e t a b l e
(1:4)
constant, a n d c o o k i n g times w e r e s i m i l a r . ascorbic
a c i d content
between
used i n each method
was
N o significant differences i n
conventionally and microwave
cooked
spinach were found.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
I n most f r o z e n vegetables,
sufficient ice clings to the p r o d u c t
p r o v i d e a d e q u a t e m o i s t u r e for c o o k i n g i n t h e m i c r o w a v e o v e n .
to
When
fresh vegetables are p r e p a r e d b y this m e t h o d , some w a t e r is g e n e r a l l y a d d e d to p r e v e n t s c o r c h i n g o r u n d e s i r a b l e p a l a t a b i l i t y characteristics. T h e m i c r o w a v e m e t h o d c a n b e c o n s i d e r e d essentially a waterless m e t h o d , since i t is unnecessary to a d d l a r g e q u a n t i t i e s of w a t e r to the vegetable. FRYING.
T h e d e e p fat f r y i n g t e c h n i q u e is u s e d for r e l a t i v e l y f e w
vegetables w i t h the n o t a b l e e x c e p t i o n of potatoes.
D o m a s et a l .
(141)
r e p o r t e d that r e t e n t i o n of ascorbic a c i d w a s over 7 5 % i n f r i e d potatoes, w h i l e P e l l e t i e r et a l . (142) (143)
n o t e d a b o u t 6 0 % r e t e n t i o n . A u g u s t i n et a l .
o b s e r v e d t h a t w i t h d e e p fat f r i e d p o t a t o p r o d u c t s , a s c o r b i c a c i d
retentions w e r e u n r e a l i s t i c a l l y h i g h .
T h e s e investigators suggested t h a t
this result w a s c a u s e d b y interference w i t h the c o m m o n l y u s e d assay methods
by
browning compounds
formed
during cooking.
Thus,
no
c o n c l u s i o n s c a n b e d r a w n f r o m the a v a i l a b l e studies. A u g u s t i n et a l . (32) suggested that the h i g h p e r f o r m a n c e l i q u i d c h r o m a t o g r a p h i c m e t h o d of d e t e r m i n i n g ascorbic a c i d s h o u l d b e of use i n s e p a r a t i n g the b r o w n i n g compounds and ascorbic acid. T h e r e has b e e n some interest i n t h e o r i e n t a l m e t h o d of s t i r - f r y i n g because this is essentially a waterless m e t h o d of c o o k i n g , u s u a l l y w i t h v e r y short c o o k i n g times.
T h e o r e t i c a l l y , this w o u l d p r o v i d e m a x i m u m
v i t a m i n C r e t e n t i o n . E h e a r t a n d G o t t (136)
found that w h e n broccoli
w a s c o o k e d b y a s t i r - f r y i n g m e t h o d , ascorbic a c i d r e t e n t i o n w a s h i g h e r t h a n w h e n it w a s c o o k e d b y m i c r o w a v e s or i n l a r g e a m o u n t s of w a t e r . U s i n g a l o w ratio of w a t e r to vegetable
(0.5:1) i n conventional cooking
r e s u l t e d i n less loss of ascorbic a c i d t h a n d i d the m i c r o w a v e
cooking
m e t h o d u s e d ( 0 . 9 : 1 ) . I n g r e e n beans, c o n v e n t i o n a l c o o k i n g i n the l o w e s t w a t e r to vegetable r a t i o ( 0 . 5 : 1 ) r e s u l t e d i n h i g h e r a s c o r b i c a c i d r e t e n t i o n t h a n m i c r o w a v e or s t i r - f r y i n g . B o w m a n et a l . (144)
s t u d i e d the effect of s t i r - f r y i n g o n ascorbic a c i d
r e t e n t i o n i n green p e p p e r s a n d s p i n a c h . C o o k i n g times f o r the s t i r - f r i e d vegetables w e r e c o n s i d e r a b l y shorter t h a n those u s e d f o r c o n v e n t i o n a l c o o k i n g m e t h o d s , a n d ascorbic a c i d r e t e n t i o n w a s h i g h e r . T h e s e i n v e s t i gators n o t e d that ascorbic a c i d r e t e n t i o n w a s s l i g h t l y h i g h e r i n m i c r o w a v e t h a n c o n v e n t i o n a l l y b o i l e d vegetables, b u t the differences w e r e significant i n o n l y three of the sixteen vegetables tested.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
526
ASCORBIC
ACID
C h a p m a n (145) c o m p a r e d a s c o r b i c a c i d c o n t e n t a n d r e t e n t i o n i n t h r e e vegetables
(broccoli, cabbage, a n d cauliflower)
c o o k e d b y stir-
frying, microwave cooking, a n d conventional cooking.
W i t h the times
and methods used
( T a b l e X ) ascorbic
acid retention was highest i n
c o n v e n t i o n a l l y c o o k e d vegetables, f o l l o w e d b y m i c r o w a v e a n d s t i r - f r i e d . A t least t w o factors c o u l d b e r e s p o n s i b l e f o r l o w values associated w i t h
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
s t i r - f r y i n g ; size of pieces, l e n g t h a n d t e m p e r a t u r e of c o o k i n g . T o ensure m o r e u n i f o r m h e a t i n g of s t i r - f r i e d vegetables, t h e f o o d w a s c u t i n s m a l l e r pieces, a n d t h e t i m e w a s i n c r e a s e d to p r o v i d e a p r o d u c t w i t h texture comparable w i t h conventional a n d microwave
cooked products.
The
h i g h e r heat u s e d i n s t i r - f r y i n g together w i t h l o n g exposure c o u l d result i n l o w ascorbic a c i d retention.
Table X .
Percent Retention of Ascorbic A c i d in Vegetables Cooked by Three Methods
Method of Preparation Broccoli conventional microwave stir-fry Cabbage conventional microwave stir-fry Cauliflower conventional microwave stir-fry
Water: Vegetable Ratio
Cooking Time (min)
Vegetables
Liquid
Total
0.9:1 0.9:1 no w a t e r
11 11 15
81 76 72
12 14
93 90 72
0.5:1 0.5:1 no w a t e r
6 8 6
83 78 81
10 8
93 86 81
0.5:1 0.5:1 no w a t e r
8 8 14
84 84 79
6 5
90 88 79
Percent Retention
— —
—
Source: Reference 1J+5.
BAKING.
Potatoes a r e a m o n g t h e m o s t c o m m o n l y b a k e d vegetables
M o s t of the studies i n d i c a t e t h a t t h e r e is g o o d r e t e n t i o n of a s c o r b i c a c i d i n b a k e d potatoes (143,146).
P e l l e t i e r et a l . (142) r e p o r t e d t h a t p o t a
toes b a k e d i n t h e s k i n r e t a i n e d 7 8 % of t h e a s c o r b i c a c i d , as c o m p a r e d w i t h boiled i n the skin, 8 1 % ; peeled a n d boiled, 7 3 % ; a n d fried 7 2 % . A u g u s t i n et a l . (143) r e p o r t e d 9 1 % r e t e n t i o n i n b a k e d potatoes. Holding and Reheating of Cooked Foods.
Recent work b y Augustin
et a l . (44,143) o n h o m e a n d i n s t i t u t i o n a l p r e p a r a t i o n of potatoes e m p h a sizes t h e p o i n t s at w h i c h a s c o r b i c a c i d losses c a n o c c u r .
T h e increased
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
21.
527
Vitamin C in Foods
ERDMAN AND KLEIN
use of p r e c o o k e d foods i n households a n d i n s t i t u t i o n s suggests t h e n e e d for f u r t h e r i n v e s t i g a t i o n . V e r y f e w studies o f the effects of
cooking,
h o l d i n g , a n d r e h e a t i n g p r o c e d u r e s a p p e a r i n the l i t e r a t u r e . C r o s b y et a l . (147)
r e v i e w e d the effects of i n s t i t u t i o n a l f o o d service
m e t h o d s o n a s c o r b i c a c i d losses i n vegetables h e l d hot, a n d s h o w e d t h a t c o n s i d e r a b l e losses of v i t a m i n C c a n be e x p e c t e d
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
1975, A n g et a l . (148)
during holding.
In
i n d i c a t e d t h a t ascorbic a c i d i n m a s h e d
potatoes
p r e p a r e d a n d r e h e a t e d a n d h e l d b y c o n v e n t i o n a l f o o d service
methods
was e x t r e m e l y u n s t a b l e , w i t h losses of over 7 5 % r e p o r t e d i n some cases. A u g u s t i n et a l . (143)
r e p o r t e d t h a t the ascorbic a c i d content
of
c o o k e d , c h i l l e d , a n d r e h e a t e d b a k e d potatoes decreased d u r i n g r e f r i g e r a t i o n a n d m i c r o w a v e r e h e a t i n g , r e s u l t i n g i n a net loss of a p p r o x i m a t e l y 3 0 % of the a s c o r b i c a c i d ( d r y w e i g h t b a s i s ) . S i m i l a r results w e r e n o t e d for ascorbic a c i d f o r t i f i e d , r e h y d r a t e d m a s h e d potatoes, s u c h as those c o m m o n l y u s e d i n s c h o o l l u n c h p r o g r a m s , a l t h o u g h the losses w e r e n o t as h i g h as w i t h b a k e d potatoes. A s t u d y d o n e b y C h a r l e s a n d V a n D u y n e (132)
is w i d e l y c i t e d as
e v i d e n c e of losses of ascorbic a c i d d u r i n g h o m e r e f r i g e r a t o r storage a n d r e h e a t i n g of c o o k e d vegetables. I n seven of the n i n e vegetables e x a m i n e d , the concentrations of a s c o r b i c a c i d w e r e s i g n i f i c a n t l y r e d u c e d b y h o l d i n g in the refrigerator for 1 d ( T a b l e X I ) .
A f t e r 1 d of r e f r i g e r a t i o n a n d
r e h e a t i n g , the losses w e r e significant i n a l l p r o d u c t s a n d r a n g e d f r o m 34 to 6 8 % .
F u r t h e r h o l d i n g for 2 or 3 d p r i o r to r e h e a t i n g r e s u l t e d i n
f u r t h e r significant decreases
i n ascorbic a c i d content.
Therefore,
the
p r a c t i c e of r e f r i g e r a t i n g a n d w a r m i n g leftover vegetables is n o t r e c o m m e n d e d f r o m the s t a n d p o i n t of ascorbic a c i d r e t e n t i o n .
Table X I . Effect of Holding and Reheating Cooked Vegetables on Ascorbic A c i d Retention Ascorbic Acid Retention Vegetable
Freshly Cooked
Asparagus Broccoli C a b b a g e , shredded Peas S n a p beans Spinach
86 88 73 88 83 52
Refrigerated Id 82 68° 44 52 41° 48 b
b
Refrigerated 1 d, Reheated 66' 60" 33' 43' 29' 32"
Source: Reference 182 ° Significantly lower (p > 0.05) than corresponding mean for freshly cooked sample. ^Significantly lower (p > 0.01).
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
528
ASCORBIC
ACID
Conclusions A s c o r b i c a c i d s t a b i l i t y d u r i n g h a r v e s t i n g , h a n d l i n g , storage, or p r o c essing of foods is often q u i t e p o o r unless steps are t a k e n to
prevent
v i t a m i n C d e s t r u c t i o n . T h e m a j o r routes of v i t a m i n C loss f r o m foods are t h r o u g h t h e r m a l d e s t r u c t i o n , w a t e r l e a c h i n g a n d e n z y m a t i c o x i d a t i o n . O n e c a n m i n i m i z e e n z y m a t i c d e s t r u c t i o n b y a v o i d i n g b r u i s i n g of f r u i t Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
a n d vegetables a n d t h r o u g h p r o p e r storage c o n d i t i o n s .
Water leaching
can also be r e d u c e d d u r i n g s o a k i n g , w a s h i n g , b l a n c h i n g , a n d c o o k i n g b y use of m i n i m a l w a t e r , a n d i n the case of b l a n c h i n g a n d c o o k i n g , the use of steam or m i c r o w a v e p r o c e s s i n g . S o m e t h e r m a l d e s t r u c t i o n of the v i t a m i n is i n e v i t a b l e i n b l a n c h i n g , d r y i n g , c a n n i n g , a n d c o o k i n g operations. H o w e v e r , some types of t h e r m a l p r o c e s s i n g , s u c h as h i g h t e m p e r a t u r e , s h o r t - t i m e c o o k i n g , w i l l u s u a l l y result i n o p t i m a l amounts of v i t a m i n C i n the f o o d "as c o n s u m e d " . Lund
(69)
has p u b l i s h e d a t a b l e c o n t a i n i n g the D
d e s t r u c t i o n of constituents i n foods.
m
values
for
F r o m T a b l e X I I i t is e v i d e n t t h a t
v i t a m i n s are m o r e t h e r m a l l y resistant t h a n are v e g e t a t i v e cells, spores, or
d e s t r u c t i v e enzymes.
I n fact,
most
v i t a m i n s are
more thermally
resistant t h a n are the o r g a n o l e p t i c q u a l i t i e s of color, flavor, a n d texture. A s a g e n e r a l r u l e , one c a n process a f o o d for o p t i m a l sensory q u a l i t y a n d be r e l a t i v e l y sure of o p t i m a l t h e r m a l s t a b i l i t y of the v i t a m i n s c o n t a i n e d i n the foods.
Table XII.
Thermal Resistance of Constituents in Foods T>
Constituents
a
121
(min)
100-1,000 5-500 1-10 0.1-5.0 0.002-0.02
Vitamins C o l o r , texture, flavor Enzymes Spores V e g e t a t i v e cells Source: Reference 69. ° Time at 121° C to decrease concentration by 90%.
U n f o r t u n a t e l y , the t h e r m a l resistance of a s c o r b i c a c i d falls i n the l o w e n d of the scale ( a r o u n d 100, d e p e n d i n g o n a , p H , a n d other f a c t o r s ) i n w
Table X I I .
Therefore, a
final
food product could display
acceptable
sensory q u a l i t i e s b u t s t i l l h a v e lost a significant a m o u n t of v i t a m i n C . If one is c o n c e r n e d w i t h the v i t a m i n C r e t e n t i o n i n foods, t h e n great care m u s t b e t a k e n i n a l l facets of h a n d l i n g , storage, a n d p r o c e s s i n g of t h a t f o o d .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
21.
E R D M A N AND K L E I N
Vitamin C in Foods
529
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
Literature Cited
1. Berk, Z. "Introduction to the Biochemistry of Foods"; Elsevier: Amster dam, 1976; p. 92. 2. Bauernfeind, J. C.; Pinkert, D. M. Adv. Food Res. 1970, 18, 219. 3. Tannenbaum, S. R. In "Principles of Food Science, Part I"; Fennema, O., Ed.; Dekker: New York, 1976. 4. Bessey, O. A.; King, C. G. J. Biol. Chem. 1933, 103, 687. 5. Bessey, O. A. J. Biol. Chem. 1938, 126, 771. 6. Association of Vitamin Chemists, "Methods of Vitamin Assay," 3rd ed.; Interscience: New York, 1966; p. 287. 7. Association of Official Analytical Chemists, "Official Methods of Analysis," 12th ed.; Freed, M. Ed.; AOAC: Washington, D. C., 1975. 8. Loeffler, H. J.; Ponting, J. D. Ind. Eng. Chem., Anal. Ed. 1942, 14, 846. 9. Egberg, D.; Larson, P.; Honold, G. J. Sci. Food Agric. 1973, 24, 789. 10. Noble, I.; Hanig, M. M. D. Food Res. 1948, 13, 461. 11. Pelletier, O.; Brassard, R. J. Food Sci. 1977, 42, 1471. 12. Matthews, R. F.; Hall, J. W. J. Food Sci. 1978, 43, 532. 13. Brecht, P. E.; Keng, L.; Bisogni, C. A.; Muager, H. M. J. Food Sci. 1976, 41 945. 14. Deutsch, M. J.; Weeks, C. E. J. Assoc. Off. Agric. Chem. 1965, 48, 1248. 15. Mills, M. B.; Damron, D. M.; Roe, J. H. Anal. Chem. 1949, 21, 707. 16. Kirk, J.R.;Ting, N. J. Food Sci. 1975, 40, 463. 17. Kirk, J.; Dennison, D.; Kokoczka, P.; Heldman, D. J. Food Sci. 1977, 42, 1274. 18. Dennison, D. B.; Kirk, J. R. J. Food Sci. 1978, 43, 609. 19. Singh, R. P.; Heldman, D. R.; Kirk, J. R. J. Food Sci. 1976, 41, 304. 20. Roy, R. R.; Conetta, A.; Salpeter, J. J. Assoc. Off. Anal. Chem. 1976, 59, 1244. 21. Egberg, D. C.; Potter, R. H.; Heroff, J. C. J. Assoc. Off. Anal. Chem. 1977, 60, 126. 22. Dunmire, D. L.; Reese, J. D.; Bryan, R.; Seegers, M. J. Assoc. Off. Anal. Chem. 1979, 62, 648. 23. Roe, J. H.; Kuether, C. A. J. Biol. Chem. 1943, 147, 339. 24. Roe, J. H. "Methods of Biochemical Analysis"; Interscience: New York, 1954; Vol. 1, p. 115. 25. Bourgeois, C. F.; Mainguy, P. R. Int. J. Vitam. Res. 1975, 44, 70. 26. Pelletier, O. J. Lab. Clin. Med. 1968, 72, 674. 27. Roe, J. H.; Mills, M. B.; Oesterling, M. J.; Dameron, C. M. J. Biol. Chem. 1948, 174, 201. 28. Smoot, J. M.; Nagy, S. J. Agric. Food Chem. 1980, 28, 417. 29. Guadagni, D. G ; Nimmo, C. C.; Jansen, E. F. Food Technol. 1957, 11, 389. 30. Sood, S. P.; Saitori, L. E.; Wittmer, D. P.; Haney, W. G. Anal. Chem. 1976, 48, 796. 31. Pachla, L. A.; Kissinger, P. T. Anal. Chem. 1976, 48, 364. 32. Augustin, J.; Beck, C.; Morousek, G. I. Food Sci. 1981, 46, 312. 33. Farrow, R. P.; Kemper, K.; Chin, H. B. Food Technol. 1979, 33(2), 52. 34. Baker, L. R. In "Nutritional Evaluation of Food Processing"; Harris, R. S.; Karmas, E., Eds.; Avi: Westport, CT, 1975; p. 19. 35. Bender, A. E. "Food Processing and Nutrition"; Academic: New York, 1978. 36. Harris, R. S. In "Nutritional Evaluation of Food Processing"; Harris, R. S.; Karmas, E., Eds.; Avi: Westport, CT, 1975; p. 33. 37. Parton, M. B.; Green, M. E. Ohio Agric. Exp. Stn., Res. Bull. 1954, 742.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
530
38. 39. 40. 41. 42. 43.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82.
ASCORBIC ACID
Nagy, S. J. Agric. Food Chem. 1980, 28, 8. Liu, Y. K.; Luh, B. S. J. Food Sci. 1979, 44, 425. Malewski, W.; Markakis, P. J. Food Sci. 1971, 36, 537. Augustin, J.; McDole, R. E.; McMuster, G. M.; Painter, C. G.; Sparks, W. C. J. Food Sci. 1975, 40, 415, Shekhar, V. C.; Iritani, W. M.; Arteca, R. Am. Potato J. 1978, 55, 663. Burge, J.; Mickelsen, O.; Nicklow, C.; Marsh, G. L. Ecol. Food Nutr. 1975, 4, 27. Augustin, J.; Johnson, S. R.; Tertzel, C.; Toma, R. B.; Shaw, R. L.; True, R. H.; Hogan, J. M.; Deutsch, R. M. J. Food Sci. 1978, 43, 1566. Watada, A. E.; Aulenbach, B. B.; Worthington, J. T. J. Food Sci. 1976, 41, 856. Betancourt, L. A.; Stevens, M. A.; Kader, A. A. J. Am. Soc. Hortic. Sci. 1977, 102, 721. Pantos, C. E.; Markakis, P. J. Food Sci. 1973, 38, 550. Matthews, R. F.; Crill, P.; Locascio, S. J. Proc. Fla. State Hortic. Soc. 1974, 87, 214. Murphy, E. F. Proc. Am. Soc. Hortic. Sci. 1939, 36, 498. Sites, J. W.; Reitz, H. J. Proc. Am. Soc. Hortic. Sci. 1951, 56, 103. Isherwood, F. A.; Mapson, K. W. Anna. Rev. Plant Physiol. 1962, 13, 329. Anonymous Food Technol. 1974, 28(1), 71. Smith, P. F. Proc. Int. Citrus Symp., 1st 1969, 1559. Atkins, C. D.; Wiedenhold, E.; Moore, E. L. Fruit Prod. J. 1945, 24, 260. McCollum, J. P. Proc. Am. Soc. Hortic. Sci. 1944, 45, 382. Lachance, P. A. In "Nutritional Evaluation of Food Processing," 2nd ed.; Harris, R. S.; Karmas, E., Eds.; Avi: Westport, CT, 1975; p. 463. Erdman, J. W., Jr. Food Technol. 1979, 33(2), 38. Krochta, J. M.; Feinberg, B. In "Nutritional Evaluation of Food Process ing"; Harris, R. S.; Karmas, E., Eds.; Avi: Westport, CT, 1975; p. 98. O'Brien, M.; Kasmire, R. F. Trans. ASAE 1972, 15, 566. Mapson, L. W. In "The Biochemistry of Fruits and Their Products"; Hulme, A. C., Ed.; Academic: New York; Vol. 1, 1970. Ezell, B. D.; Wilcox, M. S. J. Agric. Food Chem. 1959, 7, 507. Klein, B. P., unpublished data. Zepplin, M.; Elvehjem, C. A. Food Res. 1944, 9, 100. Eheart, M. S. Food Technol. 1970, 24, 1009. Eheart, M. S.; Odland, D. J. Am. Diet. Assoc. 1972, 60, 402. Curran, J.; Erdman, J. W., Jr. Prof. Nutr. 1980, 12(3), 7. Smith, O. "Potatoes: Production, Storing, Processing," 2nd ed.; Avi: Westport, CT, 1977. Saguy, I.; Karel, M. J. Food Technol. 1980, 34(2), 78. Lund, D. B. Food Technol. 1977, 31 (2), 78. Ibid., 1979, 33(2), 28. Labuza, T. P. CRC Crit. Rev. FoodTechnol.1972, 3, 217. Lenz, M. K.; Lund, D. B. Food Technol. 1980, 34(2), 51. Villota, R.; Karel, M. J. Food Process. Preserv. 1980, 4, 141. Mohr, D. H., Jr. J. Food Sci. 1980, 45, 1432. Lathrop, P. J. Leung, H. K. J. Food Sci. 1980, 45, 152. Labuza, T. P. J. Food Sci. 1979, 44, 1162. Wanninger, L. A. Food Technol. 1972, 26, 42. Lee, S. H.; Labuza, T. P. J. Food Sci. 1975, 40, 370. Laing, B. M.; Schlueter, D. L.; Labuza, T. P. J. Food Sci. 1978, 43, 1440. Lund, D. B. In "Nutritional Evaluation of Food Processing"; Harris, R.S.;Karmas, E., Eds.; Avi: Westport, CT, 1975; p. 205. Lee, Y. C.; Kirk, J. R.; Bedford, C. L.; Heldman, D. R. J. Food Sci. 1977, 42, 640. Blaug, S. M.; Hajratwala, B. J. Pharm. Sci. 1972, 61 (4), 556. ;
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
21. ERDMAN AND KLEIN Vitamin C in Foods
531
83. Mulley, E. A.; Stumbo, C. R.; Hunting, W. M. J. Food Sci. 1975, 40, 985. 84. Hamm, D.; Lund, D. B. J. Food Sci. 1978, 43, 631. 85. Labuza, T. P.; Shapero, M.; Kamman, J. J. Food Process. Preserv. 1979, 2, 91. 86. Purwadaria, H. K.; Heldman, D. R.; Kirk, J. R. J. Food Process. Eng. 1979 3, 7. 87. Saguy,I.;Mizrahi, S.; Villota, R.; Karel, M. J. Food Sci. 1978, 43, 1861. 88. Riemer, J.; Karel, M. J. Food Process. Preserv. 1978, 1, 293. 89. Van Arsdel, W. B.; Guadagni, D. G. Food Technol. 1959, 13, 14. 90. Rao, M. A.; Lee, C. Y.; Katz, J.; Cooley, H. J. J. Food Sci. 1981, 46, 636. 91. Priestley, R. J. "Effects of Heating on Food Stuffs"; Appl. Sci.: London, 1979. 92. Harris, R. S.; Karmas, E. "Nutritional Evaluation of Food Processing," 2nd ed.; Avi: Westport, CT, 1975. 93. Benterud, A. In "Physical Chemical and Biological Changes in Food Caused by Thermal Processing"; Hoyem, T.; Kvale, O., Eds.; Appl. Sci.: London, 1977; p. 185. 94. Lathrop, P. J.; Leung, H. K. J. Food Sci. 1980, 45, 995. 95. Selman, J. D. Food Chem. 1978, 3, 189. 96. Morrison, M. H. J. Food Technol. 1974, 9(4), 491. 97. Salunkhe, D. K.; Pao, S. K.; Dull, G. G. CRC Crit. Rev. Food Technol. 1973, 4(1), 1. 98. Thompson, S. Y. "Ultra-high Temperature Processing of Dairy Products"; Soc. Dairy Technologists: London, 1969. 99. Lee, C. Y.; Downing, D. L.; Iredale, H. D.; Chapman, J. A. Food Chem. 1976, 1, 15. 100. Bluestein, P. M.; Labuza, T. P. In "Nutritional Evaluation of Food Processing," 2nd ed.; Harris, R. S.; Karmas, E., Eds.; Avi: Westport, CT, 1975; p 289. 101. Henshall, J. D. Proc. Nutr. Soc. 1973, 32, 17. 102. Gee, M. Lebensm.-Wiss. Technol. 1979, 12, 147. 103. Jadhav, S.; Steele, L.; Hadziyev, D. Lebensm.-Wiss. Technol. 1975, 8, 225. 104. Maga, J. A.; Sizer, C. E. Lebensm.-Wiss. Technol. 1978, 11, 192. 105. Fennema, O. In "Nutritional Evaluation of Food Processing," 2nd ed.; Harris, R. S.; Karmas, E., Eds.; Avi: Westport, CT, 1975; p. 244. 106. Fennema, O. Food Technol. 1977, 31 (12), 32. 107. "Recommendations for the Processing and Handling of Frozen Foods," 2nd ed.; International Institute of Refrigeration: Paris, 1972; p. 144. 108. Kramer, A.; King, R. L.; Westhoff, D. C. Food Technol. 1976, 30(1), 56. 109. Squires, S. R.; Hanna, J. G. J. Agric. Food Chem. 1979, 27, 639. 110. Jones, I. D. In "Nutritional Evaluation of Food Processing," 2nd ed.; Harris, R. S.; Karmas, E., Eds.; Avi: Westport, CT, 1975; p. 324. 111. Kon, S. K. FAO Nutr. Stud. 1959, 17. 112. Pederson, C. S.; Mack, G. L.; Athawes, W. L. Food Res: 1939, 4, 31. 113. Pederson, C. S.; Whitcombe, J.; Robinson, W. B. Food Technol. 1956, 10, 365. 114. Ro, S. L.; Woodburn, M.; Sandine, W. E. J. Food Sci. 1979, 44, 873. 115. Josephson, E. S.; Thomas, M. H.; Calhoun, W. K. In "Nutritional Evalua tion of Food Processing," 2nd ed.; Harris, R. S.; Karmas, E., Eds.; Avi: Westport, CT, 1975; p. 393. 116. Anonymous. Food Technol. 1974, 28, 77. 117. "Nutritional Evaluation of Food Processing"; Harris, R. S.; Von Loesecke, H., Eds.; John Wiley & Sons: New York, 1960. 118. Watt, B. K.; Murphy, E. W. Food Technol. 1970, 24, 50.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 13, 2014 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch021
532
ASCORBIC ACID
119. Matthews, R. H.; Garrison, Y. J. "Food Yields Summarized by Different Stages of Preparation," USD A 1975, 102. 120. Schroder, G. M.; Satterfield, G. H.; Holmes, A. D. J. Nutr. 1943, 25, 503. 121. Kirk, M. M.; Tressler, D. K. Food Res. 1941, 6, 395. 122. Van Duyne, F. O.; Chase, J. T.; Simpson, J. I. Food Res. 1944, 9, 164. 123. Munsell, H. E.; Streightoff, F.; Bender, B.; Orr, M. L.; Ezekiel, S. R.; Leonard, M. H.; Richardson, M. E.; Koch, F. G. J. Am. Diet. Assoc. 1949, 25, 420. 124. Walker, A. R. P.; Arvidsson, U. B. S. Afr. J. Med. Sci. 1952, 17, 143. 125. Millross, J.; Speht, A.; Holdsworth, K.; Glew, G. "The Utilization of the Cook-Freeze Catering System for School Meals"; W. S. Maney & Son: Leeds, England, 1973. 126. Van Duyne, F. O.; Chase, J. T.; Simpson, J. I. Food Res. 1945, 27, 72. 127. Noble, I.; Waddell, E. Food Res. 1945, 10, 246. 128. Krehl, W. A.; Winters, R. W. J. Am. Diet. Assoc. 1950, 26, 1966. 129. Fisher, K. H.; Dods, M. L. J. Am. Diet. Assoc. 1952, 28, 726. 130. Gordon, J.; Noble, I. J. Am. Diet. Assoc. 1959, 35, 241. 131. Van Duyne, F. O.; Owen, R. F.; Wolfe, J. C.; Charles, V. R. J. Am. Diet. Assoc. 1951, 27, 1059. 132. Charles,V.; Van Duyne, F. O. J. Home Econ. 1954, 46, 659. 133. Thomas, M. H.; Brenner, S.; Eaton, A.; Craig, V. J. Am. Diet. Assoc. 1949, 25, 39. 134. Kylen, A. M.; Charles, V. R.; McGrath, B. H.; Schleter, J. M.; West, L. C.; Van Duyne, F. O. J. Am. Diet. Assoc. 1961, 39, 321. 135. Klein, B. P.; Kuo, C. H. Y.; Boyd, G. J. Food Sci. 1981, 46, 640. 136. Eheart, M. S.; Gott, C. Food Technol. 1964, 19, 867. 137. Sweeney, J. P.; Gilpin, G. L.; Staley, M. G.; Martin, M. E. J. Am. Diet. Assoc. 1959, 35, 354. 138. Klein, B. P. CRC Handb. Nutr. Foods, in press. 139. Mabesa, L. B.; Baldwin, R. E. J. Food Sci. 1979, 44, 932. 140. Klein, B. P., Reich, L., unpublished data. 141. Domas, A. A. M. B.; Davidek, J.; Velisek, J. Z. Lebensm.-Unters. Forsch. 1974, 154, 270. 142. Pelletier, O.; Nantel, C.; Leduc, R.; Tremblay, L.; Brassard, R. Can. Inst. Food Sci. Technol. J. 1977, 10, 138. 143. Augustin, J.; Marousek, G. I.; Tholen, L. A.; Bertelli, B. J. Food Sci. 1980, 45, 814. 144. Bowman, F.; Berg, E. P.; Chuang, A. L.; Gunther, M. W.; Trump, D. C.; Lorenz, K. Microwave Energy Applications Newsletter 1975, 8(3), 3. 145. Chapman, J. L., M.S. Thesis, Univ. Illinois, Urbana, 1978. 146. Kahn, R. M.; Halliday, E. G. J. Am. Diet. Assoc. 1944, 20, 220. 147. Crosby, M. W.; Fickle, B. E.; Andreassen, E. G.; Fenton, F.; Harris, K. W.; Burgain, A. M. N. Y. Agric. Exp. St., Cornell, Bull. 1953, 1891. 148. Ang, C. Y. W.; Chang, C. M.; Frey, A. E.; Livingston, G. E. J. Food Sci. 1975, 40, 997. 149. Heidelbaugh, N.D.; Karel, M. Mod. Fackag. 1970, 43(11), 80. 150. Campbell, C. L.; Lin, T. Y.; Proctor, B. E. J. Am. Diet. Assoc. 1958, 34, 365. RECEIVED for
review January 22, 1981.
ACCEPTED
July 20, 1981.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.