18
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: November 28, 1979 | doi: 10.1021/bk-1979-0112.ch018
Beyond the 2-D Chemical Structure N. C. COHEN Centre de Recherches ROUSSEL-UCLAF, 102 Route de Noisy, 93230 Romainville, France
The s p e c t a c u l a r d e v e l o p m e n t o f t h e QSAR t h e o r i e s has domin a t e d t h e r e c e n t e v o l u t i o n o f d r u g - d e s i g n , and t h e c o n d i t i o n s f o r t h e u s e o f t h e s e t h e o r i e s a r e now w e l l e s t a b l i s h e d . Being cons t r u c t e d on a p a r t i c u l a r c h e m i c a l f o r m u l a , w i t h an i m p l i c i t common i n v a r i a n t c h e m i c a l s k e l e t o n , t h e s e methods a r e n o t a l w a y s a b l e t o go beyond t h e c h e m i c a l f r a m e o f t h e p a r t i c u l a r f a m i l y s t u d i e d . The r e c e n t a d v a n c e o f m o l e c u l a r b i o l o g y has w i d e n e d t h e c l a s s i c a l h o r i z o n s o f d r u g r e s e a r c h w h i c h has been c a r r i e d o u t u n t i l now on m a i n l y t w o - d i m e n s i o n a l l i n e s , a n d b a s e d on t h e s y n t h e s i s o f c h e m i c a l a n a l o g s o f known compounds. T h i s a d v a n c e i s due t o t h e discovery o fthe three dimensional s p e c i f i c i t y o f molecular i n t e r a c t i o n s w h i c h i s a f u n d a m e n t a l key t o t h e u n d e r s t a n d i n g o f l i f e processes. The c o n c e p t s o f m o l e c u l a r r e c o g n i t i o n a n d d i s c r i m i n a t i o n c o n s i d e r e d i n t h e l i g h t o f d r u g r e s e a r c h a l l o w one t o go beyond t h e c l a s s i c a l d r u g m a n i p u l a t i o n and o p t i m i z a t i o n . Geometr i c a l and a s s o c i a t e d e l e c t r o n i c p r o p e r t i e s a r e o f g r e a t importance t o t h i s new a p p r o a c h . New T r e n d s F o r t h e c o n c e p t i o n o f new m o l e c u l a r s t r u c t u r e s i t i s f i r s t n e c e s s a r y t o be a b l e t o e v a l u a t e t h e g e o m e t r i c a l p r o p e r t i e s o f reference molecules. T h e o r e t i c a l c a l c u l a t i o n s o f conformations a r e now a c c u r a t e enough s o t h a t t h i s p o i n t c a n be t a k e n as r e a d even f o r m o l e c u l e s n o t y e t s t u d i e d e x p e r i m e n t a l l y . W i t h t h e a i d o f t h e s e now c l a s s i c a l t e c h n i q u e s t h e d r u g - d e s i g n e r c a n go f u r t h e r and a d d r e s s h i m s e l f t o t h e t h r e e f o l l o w i n g f u n d a m e n t a l i t e m s : 1-
How t o r e v e a l , what t h r e e d i m e n s i o n a l s t r u c t u r a l e n t i t i e s (pharmacophore) a r e r e s p o n s i b l e f o r t h e b i o l o g i c a l p r o p e r t i e s o f a known a c t i v e compound, a n d what c o u l d be t h e a c t i v e c o n f o r m a t i o n o f t h i s compound, i f more t h a n one c o n f o r m e r i s p r o b a b l e .
2.
How t o e v a l u a t e t o what e x t e n t d i f f e r e n t m o l e c u l e s c a n 0-8412-0521-3/79/47-112-371$05.00/0 ©
1979 A m e r i c a n C h e m i c a l Society
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
372
COMPUTER-ASSISTED DRUG DESIGN
m i m i c t h e s p a t i a l a r r a n g e m e n t o f atoms o f a known a c t i v e compound o r i t s p u t a t i v e p h a r m a c o p h o r e . 3.
We purpose
How t o c o n c e i v e o f a method f o r d e s i g n i n g o r i g i n a l chemic a l compounds w h i c h c o n f o r m t o t h e d e s i r e d r e q u i r e m e n t s . have d e v e l o p e d a c o m p u t e r p r o g r a m MIMETIC-GEMO, t h e o f w h i c h i s t o be o f some h e l p i n a n s w e r i n g p o i n t s 1
and
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: November 28, 1979 | doi: 10.1021/bk-1979-0112.ch018
2.
Mimetic-Gemo T h i s c o m p u t e r p r o g r a m i s a b l e t o compare t h e m o l e c u l a r g e o m e t r i e s o f d i f f e r e n t m o l e c u l e s w i t h o u t any r e s t r i c t i o n s on t h e i r r e l a t i v e chemical s t r u c t u r e . The o n l y i m p l i c i t a s s u m p t i o n i s t h a t t h e compounds s t u d i e d a r e s u p p o s e d t o a c t b i o l o g i c a l l y by t h e same mechanism o f a c t i o n . The p r o g r a m i s a b l e t o compare a s e t o f a t l e a s t two m o l e c u l e s ( t h e a c t u a l v e r s i o n i s programmed f o r a maximum o f n = 6 m o l e c u l e s ) . The m o l e c u l e s a r e c o n s i d e r e d as f r e e t o move and t o m o d i f y t h e i r g e o m e t r i e s , p r o v i d e d t h a t t h e g l o b a l d e f o r m a t i o n o f each m o l e c u l e does n o t i n c r e a s e t h e t o t a l m o l e c u l a r e n e r g y by more t h a n a p r e - e s t a b l i s h e d amount ( i . 9 . 10-15 kcal/mole). A t t h e b e g i n n i n g o f t h e c a l c u l a t i o n s an i n i t i a l p o s i t i o n i s c h o s e n f o r each m o l e c u l e , t o g e t h e r w i t h t h e r e l a t i v e o r i e n t a t i o n s one t o t h e o t h e r , t h e t o t a l sum o f m o l e c u l e s f o r m i n g a set of n overlapping molecular geometries. The p a r a m e t e r used t o c h a r a c t e r i z e t o what e x t e n t t h e "mimetism" i s a c h i e v e d i s S^. t h e t o t a l exposed m o l e c u l a r a r e a o f t h i s set of overlapping molecules. The a i m o f t h e c a l c u l a t i o n s i s t o f i n d what a r e t h e g e o m e t r i e s o f each o f t h e n m o l e c u l e s w h i c h lead to a minimal value of S j . I n MIMETIC-GEMO t h e m o l e c u l a r e n e r g i e s and d e f o r m a t i o n s a r e c a l c u l a t e d u s i n g a p r e v i o u s l y d e s c r i b e d c o m p u t e r p r o g r a m (1J, w h i l e t h e m i n i m i z a t i o n i s c o n d u c t e d w i t h a s t a n d a r d r o u t i n e [2J • When t h e minimum i s r e a c h e d , i t i s i n t e r e s t i n g t o know f o r each molecule: - what i s i t s f i n a l g e o m e t r y and t h e c o r r e s p o n d i n g m o l e c u l a r energy, - what a r e t h e o v e r l a p p i n g and t h e n o n - o v e r l a p p i n g m o i e t i e s o f one compound r e l a t i v e t o t h e o t h e r s . I t i s a l s o u s e f u l t o a s c e r t a i n what a r e t h e g e n e r a l geometf e a t u r e s common t o t h e w h o l e s e t o f m o l e c u l e s s t u d i e d . The p r i n c i p l e o f m i n i m i z i n g t h e t o t a l e x p o s e d m o l e c u l a r s u r f a c e a r e a S j p a r a m e t e r i s a rough b u t p r a c t i c a l i n d e x . B e t t e r t h a n t h e manual m a n i p u l a t i o n o f a p p r o x i m a t e m o l e c u l a r m o d e l s t h i s c r i t e r i o n can be a p o w e r f u l t o o l f o r r e v e a l i n g t h e 3-D m i m e t i s m between s e v e r a l m o l e c u l e s . An example t o i l l u s t r a t e t h e rical
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
18.
COHEN
Beyond
the 2-D
Chemical
p o s s i b i l i t i e s o f t h i s approach
Structure
i s given
373
below.
Example
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: November 28, 1979 | doi: 10.1021/bk-1979-0112.ch018
I n o u r r e s e a r c h g r o u p a p o t e n t h y p o l i p i d e m i c a g e n t has been f o u n d (compound I I I ) (3) w h i c h i s a c t i v e as t r e l o x i n a t e ( I I ) (4J and c l o f i b r a t e (I_) (J5) i n l o w e r i n g t h e t r i g l y c e r i d e and c h o l e s terol levels.
Chemical Formulas: Chemical Structures of Clofibrate (I), Treloxinate (11), and RU-25961 (III).
The two compounds JEI and I I I a r e much more p o t e n t ( i n R a t s ) t h a n t h e m a r k e t e d p r o d u c t I_. W h i l e i t i s easy t o r e c o g n i z e t h e common p - c h l o r o - p h e n o x y a c e t i c e s t e r i n a l l compounds, t h e o r i g i n o f t h e enhanced a c t i v i t i e s o f s t r u c t u r e s I_I and I I I i s q u e s t i o n a b l e and MIMETIC-GEMO w o u l d a p p e a r t o be u s e f u l f o r f i n d i n g o u t w h e t h e r t h e s e two m o l e c u l e s m i g h t n o t have more i m p o r t a n t f e a t u r e s i n common. Results H a v i n g s e p a r a t e l y c a l c u l a t e d t h e s t a b l e c o n f o r m e r s o f t h e two m o l e c u l e s (J3j), MIMETIC-GEMO c a l c u l a t i o n s w e r e t h e n p e r f o r m e d on t h e a c i d f o r m o f t h e compounds (7J, a l l o w i n g each one a t o l e r a n c e o f 15 k c a l / m o l e f o r i t s d e f o r m a t i o n s . A t t h e s t a r t i n g p o i n t t h e two p - c h l o r o - p h e n o x y g r o u p s w e r e c o i n c i d e n t and t h e more s t a b l e c o n f o r m e r was c h o s e n f o r each p r o d u c t . In this position the total s u r f a c e a r e a S j was e q u a l t o 369 A w h i l e t h e i s o l a t e d m o l e c u l e s had m o l e c u l a r e x p o s e d a r e a s o f 295 a n d 313 ft ^ t r e l o x i n a t e and RU-25961 r e s p e c t i v e l y . A f i r s t minimum was r e a c h e d when S j had d e c r e a s e d t o 341 with energies f o r the i s o l a t e d molecules (above t h e minimum t a k e n a s o r i g i n ) o f 14.6 k c a l / m o l e f o r 2
2
o
r
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
374
COMPUTER-ASSISTED DRUG DESIGN
t r e l o x i n a t e and 12.2 k c a l / m o l e f o r RU-25961. D u r i n g t h e m i n i m i z a t i o n t h e ^10IC2C^CI^) t o r s i o n a n g l e o f the f r e e phenyl group o f I I I has r o t a t e d f r o m an i n i t i a l v a l u e o f 58.0 d e g r e e s t o t h e f i n a l v a l u e o f 26.8 d e g r e e s , i n d i c a t i n g t h a t a m i m e t i s m i s p o s s i b l e , w h i c h i n c r e a s e s t o w a r d t h e l o w e s t v a l u e s o f $. S t a r t i n g f r o m t h e same p o i n t f o r JEI and a c o n f o r m a t i o n o f I I I o p t i m i z e d f o r $ = 0°, a s e c o n d minimum was o b t a i n e d w i t h t h e e n e r g y v a l u e s o f 9.7 k c a l / m o l e f o r t r e l o x i n a t e and 11.2 k c a l / m o l e f o r RU-25961. The f i n a l v a l u e s o f $ and S j b e i n g r e s p e c t i v e l y -7.2 d e g r e e s and 345 A . F i g u r e 1 shows t h e o v e r l a p o b t a i n e d i n t h i s c a s e . S p a c e f i l l i n g c o m p u t e r d r a w i n g s (8) f o r each m o l e c u l e a r e shown i n f i g u r e s 2a and 2b; t h e y show how a r e m a r k a b l e m i m e t i s m i s p o s s i b l e , w h i c h was n o t a t a l l o b v i o u s f r o m t h e s e p a r a t e 2-D c h e m i c a l s t r u c t u r e s o f t h e two compounds. U s i n g s e v e r a l o t h e r s t a r t i n g p o i n t s i t was n o t p o s s i b l e t o go b e l o w t h e v a l u e s o f 341 - 345 A o f t h e S j i n d e x a l r e a d y o b t a i n e d . I t a p p e a r e d p o s s i b l e t o i m p r o v e t h e s e r e s u l t s by i n c r e a s i n g t h e energy t o l e r a n c e p e r m i t t e d t o the m o l e c u l e s d u r i n g the o p t i m i z a t i o n F o r i n s t a n c e w i t h t o l e r a n c e v a l u e s o f 25 and 40 k c a l / m o l e t h e c o r r e s p o n d i n g minimum v a l u e s o f S j were r e s p e c t i v e l y 327 A ($=9°) and 318 A ($ = -10°). E l e c t r o n i c Aspect
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: November 28, 1979 | doi: 10.1021/bk-1979-0112.ch018
2
2
2
2
We have f o u n d i t u s e f u l t o have i n f o r m a t i o n on b o t h m o l e c u l a r g e o m e t r y and e l e c t r o n i c c h a r a c t e r i s t i c s i n t h e same f r a m e . For t h i s p u r p o s e we have c o n c e i v e d a " f o u r - d i m e n s i o n a l s y m b o l i s m " (9) which c o n s i s t s o f a v i s u a l i z a t i o n of the envelope o f the molecules s t u d i e d , on t h e s u r f a c e o f w h i c h e n e r g y c o n t o u r s o f t h e e l e c t r o s t a t i c m o l e c u l a r p o t e n t i a l a r e drawn. T h i s k i n d o f r e p r e s e n t a t i o n i s shown i n f i g u r e s 3a and 3b. The m o l e c u l a r e n v e l o p e i s d e f i n e d by c o n s i d e r i n g t h a t each atom has a r a d i u s R s u c h as a
where Ry^ i s t h e Van d e r Waals r a d i u s o f t h e atom, and R a c o n s t a n t v a l u e t a k e n h e r e t o 1.5 A. The e l e c t r o s t a t i c m o l e c u l a r p o t e n t i a l used i n t h e s e c a l c u l a t i o n s i s t h e c l a s s i c a l C o u l o m b i c e x p r e s s i o n o f t h e i n t e r a c t i o n o f a + 1e c h a r g e a t t h e p o i n t c o n cerned. The e l e c t r o n i c d e n s i t i e s o f t h e atoms b e i n g o b t a i n e d by e x t e n d e d H u c k e l m o l e c u l a r o r b i t a l c a l c u l a t i o n s C l j y . From t h e s e d r a w i n g s i t can be s e e n t h a t t h e s i m i l a r i t i e s between t h e two molecules are not o n l y g e o m e t r i c a l but a l s o e l e c t r o n i c . The shape and t h e v a l u e s o f t h e e n e r g y c o n t o u r s a l l o w an a p p r e c i a t i o n o f t h e e x t e n t t o w h i c h t h e two compounds can be c o n s i d e r e d as m i m e t i c s . Conclusion 0
T h e s e d a t a show t h a t s i m i l a r i t i e s between c h e m i c a l compounds can e x i s t f r o m t h e p o i n t o f v i e w o f t h e m o l e c u l a r g e o m e t r y , w h i c h a r e n o t o b v i o u s f r o m t h e 2-D s t r u c t u r e s . What i s needed f o r t h e f u t u r e o f d r u g - d e s i g n i s t o d e v e l o p new o r i g i n a l m o l e c u l a r a r c h i t e c t u r e s c o n c e i v e d on t h e b a s i s o f s p a t i a l m i m e t i s m between g e o m e t r i c a l and e l e c t r o n i c f e a t u r e s .
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COHEN
Beyond
the 2-D Chemical
375
Structure
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: November 28, 1979 | doi: 10.1021/bk-1979-0112.ch018
18.
Figure 1.
Overlap reached after minimization of S for the acid forms of treloxinate (II) and RU-25961 (III) (S = 345 A ) T
T
2
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COMPUTER-ASSISTED DRUG DESIGN
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: November 28, 1979 | doi: 10.1021/bk-1979-0112.ch018
376
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COHEN
Beyond
the 2-D Chemical
Structure
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: November 28, 1979 | doi: 10.1021/bk-1979-0112.ch018
18.
Figure 2b.
Three dimensional mimetism between the acid forms of RU-25961
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
377
378
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: November 28, 1979 | doi: 10.1021/bk-1979-0112.ch018
COMPUTER-ASSISTED DRUG DESIGN
A 0 s 40.0
Figure 3a.
TETA =-220.0
LAHDA = 240.0
ALFA s 0.0
BETA =
ro t ).0
2 OAnnc s 0.0
Envelope of the acid forms of the molecules with the energy contours (Kcal) of the electrostatic molecular potential for treloxinate
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
COHEN
Beyond
the 2-D Chemical
Structure
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: November 28, 1979 | doi: 10.1021/bk-1979-0112.ch018
18.
Figure 3b.
Envelope of the acid forms of the molecules with the energy contours (Kcal) of the electrostatic molecular potential for RU-25961
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
379
380
COMPUTER-ASSISTED DRUG DESIGN
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: November 28, 1979 | doi: 10.1021/bk-1979-0112.ch018
Abstract QSAR theories are convenient for the design of new analogs of a known active compound but these theories are not always able to go beyond the chemical frame of the particular family studied. Considering structure-activity studies in the light of the three dimensional specificity of molecular interactions between drugs and receptors, conformational properties appear to be essential. To allow the design of new molecular architectures which could be able to mimic the essential features of known active compounds, i t is necessary to evaluate to what extent different molecules can mimic the spatial arrangement of atoms of a known active compound. The criterion of minimization of the total exposed molecular area of sets of overlapping molecules appears to be a powerful tool for revealing the 3-D mimetism between several molecules. During the minimization the molecules are not rigid but free to move and modify their geometries, provided that the molecular energies do not increase by more than a pre-established amount. Such calculations can reveal the biologically relevant molecular geometries and the possible associated pharmacophores. It is possible for the 3-D mimetism to be, not only geometrical but also electronic. Both properties can be visualized in a "four dimensional symbolism" which consists of a view of the envelope of the molecules studies, on the surface of which, energy contours of the electrostatic molecular potential are drawn. An example will be presented to illustrate the possibilities of this approach.
Literature Cited 1 COHEN N. C. Tetrahedron (1971) 27, 789 "GEMO, a computer program for the calculation of the preferred conformations of organic molecules." 2 Subroutine SCOOP supplied by the IBM Company. 3a CLEMENCE F., HUMBERT D. and DAGNAUX M. (1977) Belgian Patent BE 860,500. b CLEMENCE F., HUMBERT D., DAGNAUX M. and FOURNEX R. to be published. 4 GRISAR J. M., PARKER R. A., KARIYA T., BLOHM T. R., FLEMING R. W., PETROW V., WENSTRUP D. L. and JOHNSON R. G., J. Med Chem. (1972) 15, 1273 "Treloxinate and related hypolipidemic derivatives." 5 WITIAK D. T., NEWMAN H. A. I. and FELLER D. R. "Clofibrate and related Analogs. A Comprehensive Review." Marcel Dekker, New York, N.Y. 1977.
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
18. COHEN
Beyond the 2-D Chemical Structure
381
6 Calculated with the GENO program (ref. 1). 7 It is admitted that the active principle is the free carboxylic acid form, and we refer in all the calculations to these forms.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: November 28, 1979 | doi: 10.1021/bk-1979-0112.ch018
8 COHEN N. C. "Computer program VIF" supplied on request. 9 COHEN N. C. "Computer programs VISOPOT" unpublished work. 10 HOFFMANN R. J. Chem. Phys. (1963) 39, 1397 "An extended Hückel theory." RECEIVED
June 8, 1979.
Olson and Christoffersen; Computer-Assisted Drug Design ACS Symposium Series; American Chemical Society: Washington, DC, 1979.