Binary Solid–Liquid Solubility Determination and Model Correlation of

6 days ago - School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189 , P. R. C.. ‡ Southeast University—Red Sun Resear...
0 downloads 0 Views 856KB Size
Article Cite This: J. Chem. Eng. Data XXXX, XXX, XXX−XXX

pubs.acs.org/jced

Binary Solid−Liquid Solubility Determination and Model Correlation of Quizalofop‑p‑ethyl in Different Pure Solvents Zhudan Jin,† Cunbin Du,† Ruimei Dong,† Yi Xue,‡ Bin Qiao,† Ying Zhang,† Tingting Ye,† and Mingliang Wang*,†,‡ †

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. C. Southeast UniversityRed Sun Research Center for Intelligent Industry, Nanjing 211189, P. R. C.

Downloaded via UNIV OF LOUISIANA AT LAFAYETTE on March 22, 2019 at 01:25:39 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.



ABSTRACT: The solid−liquid equilibrium for quizalofop-p-ethyl in 12 solvents (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, N,N-dimethylformamide (DMF), acetone, acetonitrile, ethyl acetate, 1,4-dioxane, toluene, and 1-hexane) was measured by using a static equilibrium method at temperatures T = 273.15−313.15 K under a pressure of 101.2 kPa. The results show that the solubility in those 12 monosolvents increases with increasing temperature. At a given temperature range, they gradually decrease in the following order: 1,4-dioxane > acetonitrile > DMF > toluene > acetone > ethyl acetate > 1-butanol > 1-propanol > 1-hexane > 2-propanol > ethanol > methanol. Moreover, a modified Apelblat model, λh model, Wilson model, and NRTL model were used to correlate the experiment values. Compared with the results of the above models, the calculated values provided good results with the experimental data. Consequently, the values of root-mean-square deviation (RMSD) and relative average deviation (RAD) were no more than 4.57 × 10−4 and 2.29%, respectively. Furthermore, the thermodynamic properties of quizalofop-p-ethyl in monosolvents were calculated. From the analysis results, the dissolution process of quizalofop-p-ethyl was a spontaneous and entropy-driven process. The experimental solubility and the models in this study could be helpful in the application in the field of purification and recrystallization.



INTRODUCTION Quizalofop-p-ethyl (CAS no. 100646-51-3, Figure 1) is a new novel selective herbicide discovered in 1979 and developed by

dichloroquinoxaline. Both methods produce a lot of impurities, byproducts, and intermediate products, resulting in a low yield and low purity of products.5,6 However, there is a lack of a stable and high yield method for the purification of the crude quizalofop-p-ethyl. In order to obtain a higher purity quizalofop-p-ethyl, the purification and separation of quizalofop-p-ethyl is the last process in the whole synthesis of quizalofop-p-ethyl. Crystallization is an important unit operation in many branches of the chemical industry where it is widely used for purification. The basis of crystallization is solubility. Thus, it is necessary to establish the solid−liquid equilibrium phase diagram of quizalofop-p-ethyl for purification, subsequent process design, and yield improvement. In the previous publications, quizalofop-p-ethyl obtained from the known process is purified by recrystallization in methanol, ethanol, and N,N-dimethylformamide (DMF) and washed with ethanol or solvent mixtures; therefore, we continue to investigate the solubility in C1−C4 alcohols. In addition, toluene was selected as a solvent priority during the preparation process of quizalofop-p-ethyl.2,6,7 Furthermore, ethyl acetate, acetone, acetonitrile, 1,4-dioxane, and 1-hexane were common and widely used solvents in chemical and pharmaceutical industries. On the basis of the considerations mentioned above, fundamental solubility data for the purification of the crude products and preparation of the

Figure 1. Chemical structure of quizalofop-p-ethyl.

Nissan Chemical Industries, Ltd. It is a post-emergence herbicide for the selective control of annual and perennial grass weeds primarily in broadleaf crops.1,2 In addition, it is a highly effective class of herbicide due to its high activity, high selectivity, and low toxicity.3 As a result, it has been used effectively in a number of crops, including soybeans and cereal grains, such as wheat and rice, to control grass weeds. It has broad prospects for raw drug synthesis and pharmaceutical processing.3,4 Up to now, it has been commercialized and marketed by major agrochemical companies at home and abroad. At present, two main ways have been reported to synthesize quizalofop-p-ethyl.2,5−9 One method is using 2,6dichloroquinoxaline as a raw material, esterification with hydroquinone to obtain 4-(6-chloro-2-quinoxalinyloxy) phenol, and then condensation with ethyl p-toluenesulfonyl lactate. The other method uses ethyl p-toluenesulfonyl lactate as a raw material, reaction with hydroquinone to obtain 4hydroxyphenoxypropionate, and then condensation with 2,6© XXXX American Chemical Society

Received: December 9, 2018 Accepted: March 8, 2019

A

DOI: 10.1021/acs.jced.8b01181 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 1. Source and Purity of the Materials Used in the Work molar mass g·mol−1

CAS numbers

melting point (K)

quizalofopp-ethyl

372.80

100646-51-3

348.76a 349.15−350.15b 349.15c

methanol ethanol 1-propanol 2-propanol 1-butanol toluene 1-hexane DMF ethyl acetate acetonitrile 1,4-dioxane acetone benzoic acid water

32.04 46.07 60.06 60.06 74.12 92.14 86.18 73.09 88.11 41.05 88.11 58.05 122.12 18.02

67-56-1 64-17-5 71-23-8 67-63-0 71-36-3 108-88-3 110-54-3 68-12-2 141-78-6 75-05-8 123-91-1 67-64-1 65-85-0 7732-18-5

chemicals

melting enthalpy kJ·mol−1

density kg·m−3 (295 K)

source

28.97a

1301d

Nanjing Red Sun Co., Ltd.

0.994

HPLCg

786.5e 789.3e 805.3e 803.5e 810.9e 871.0e 654.8e 944.5e 900.3e 776.8e 1033.7e 784.5e 1265d 1002.9

Sinopharm Chemical Reagent Co., Ltd., China

0.997 0.995 0.994 0.994 0.995 0.996 0.994 0.996 0.995 0.994 0.996 0.995 0.995 conductivity acetonitrile > DMF > toluene > acetonitrile > acetone > ethyl acetate > 1-butanol > 1-propanol > 1-hexane > 2-propanol > ethanol > methanol. Table 4 presents some properties of the studied solvents, which corresponds to polarities, dipole moments (μ), dielectric constants (ε), and Hildebrand solubility parameters (δH).24 From Figure 4 and Tables 3 and 4, for polar protic solvents (methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol), these solvents can provide protons. Therefore, hydrogen bond donation (HBD) interaction of the solvent with the solute plays a main role in quizalofop-p-ethyl-alcohol interactions. The sequence of the solubility in the mole fraction is in accordance with the polarities, dipole moments (μ), dielectric constants (ε), and Hildebrand solubility parameters (δH). The solubility data in these polar protic solvents ranked as 1butanol > 1-propanol > 2-propanol > ethanol > methanol. Quizalofop-p-ethyl molecule is very large when solute dissolves in solvents, and solvents are easier to self-associate. Due to the methanol molecule being the smallest in alcohol, the methanol−methanol interaction is the strongest. As a result, the solubility is lowest in methanol and largest in 1-butanol. For other aprotic solvents, these solvents can accept protons. Therefore, the hydrogen bond acceptance (HBA) interaction of the solvent with the solute plays a main role in the solute− solvent interactions. The order of them from high to low is in

Here, x1 and x2 represent the mole fraction of the solute and solvent, respectively. The three mixing properties in real solution could be computed by the following equations Δmix M = ME + Δmix M id

ΔfusH Tm

(20)

RESULTS AND DISCUSSION Melting Properties of Quizalofop-p-ethyl. The DSC curve of quizalofop-p-ethyl was graphed in Figure 3. From the DSC curve, the Tm and ΔfusH of quizalofop-p-ethyl are 348.76 K and 28.97 kJ·mol−1, respectively. The Tm obtained in this work is lower than the value reported in the previous refs 3 and 17. Many factors might cause these results, such as measured conditions, samples, and/or equipment. D

DOI: 10.1021/acs.jced.8b01181 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Experimental Mole Fraction Solubility (x) of Quizalofop-p-ethyl in Different Monosolvents at the Temperature Range of T= (273.15−313.15) K under 101.2 kPaab 100x

100x T (K)

xexp

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 100 RAD

0.02653 0.04007 0.06157 0.09327 0.1404 0.2079 0.3066 0.4502 0.6577

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 100 RAD

0.05841 0.08525 0.1163 0.1541 0.2101 0.2850 0.3901 0.5347 0.7240

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 100 RAD

0.1899 0.2422 0.3094 0.3961 0.5066 0.6487 0.8318 1.066 1.377

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 100 RAD

0.1279 0.1560 0.1930 0.2469 0.3114 0.3979 0.5043 0.6508 0.8527

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 100 RAD

0.2512 0.3165 0.3896 0.4909 0.6177 0.7774 0.9896 1.262 1.618

288.15 293.15

4.043 4.862

xApelblat

xλh

Methanol 0.02655 0.02602 0.04066 0.04046 0.06179 0.06202 0.09321 0.09387 0.1396 0.1405 0.2077 0.2082 0.3069 0.3063 0.4506 0.4486 0.6575 0.6561 0.32 0.57 Ethanol 0.06131 0.05948 0.08338 0.08279 0.1135 0.1142 0.1546 0.1564 0.2105 0.2129 0.2869 0.2888 0.3908 0.3908 0.5323 0.5293 0.7248 0.7199 1.27 1.38 1-Propanol 0.1910 0.1882 0.2427 0.2426 0.3093 0.3113 0.3950 0.3980 0.5055 0.5080 0.6480 0.6483 0.8318 0.8286 1.069 1.064 1.375 1.376 0.20 0.35 2-Propanol 0.1278 0.1227 0.1572 0.1562 0.1953 0.1981 0.2449 0.2505 0.3096 0.3165 0.3946 0.4000 0.5065 0.5069 0.6544 0.6457 0.8506 0.8296 0.61 1.61 1-Butanol 0.2539 0.2477 0.3140 0.3133 0.3908 0.3948 0.4893 0.4964 0.6159 0.6235 0.7791 0.7838 0.9899 0.9879 1.263 1.252 1.617 1.599 0.35 0.98 1,4-Dioxane 4.029 4.029 4.897 4.902

xWilson

xNRTL

T (K)

0.02625 0.04054 0.06186 0.09339 0.1397 0.2073 0.3059 0.4497 0.6602 0.48

0.02621 0.04055 0.06193 0.09351 0.1398 0.2073 0.3057 0.4492 0.6604 0.54

298.15 303.15 308.15 313.15 100 RAD

6.006 7.254 8.943 10.93

0.05991 0.08294 0.1140 0.1558 0.2119 0.2876 0.3901 0.5304 0.7256 1.24

0.05976 0.08296 0.1142 0.1561 0.2122 0.2876 0.3894 0.5292 0.7259 1.27

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 100 RAD

0.8031 0.9469 1.140 1.375 1.656 1.959 2.383 2.886 3.529

0.1889 0.2428 0.3110 0.3972 0.5067 0.6466 0.8274 1.065 1.384 0.34

0.1898 0.2423 0.3096 0.3959 0.5065 0.6485 0.8313 1.068 1.376 0.07

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 100 RAD

0.3472 0.4145 0.4988 0.6047 0.7387 0.9064 1.135 1.390 1.734

0.1220 0.1562 0.1990 0.2524 0.3191 0.4026 0.5077 0.6412 0.8129 2.29

0.1242 0.1571 0.1981 0.2494 0.3138 0.3958 0.5022 0.6443 0.8441 1.22

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 100 RAD

0.5136 0.6147 0.7276 0.8653 1.056 1.256 1.545 1.860 2.318

0.2520 0.3138 0.3920 0.4912 0.6173 0.7787 0.9871 1.2594 1.622 0.31

0.2520 0.3138 0.3919 0.4911 0.6173 0.7789 0.9874 1.260 1.621 0.30

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 100 RAD

0.1552 0.1974 0.2458 0.3171 0.4005 0.5062 0.6463 0.8214 1.049

4.005 4.910

4.034 4.895

273.15 278.15 283.15 288.15 293.15 298.15 303.15

1.363 1.817 2.268 2.951 3.801 4.805 6.073

E

xexp

xApelblat

xλh

1,4-Dioxane 5.968 7.278 8.906 10.96 0.47 DMF 0.8064 0.8002 0.9561 0.9566 1.139 1.143 1.363 1.367 1.637 1.637 1.974 1.968 2.387 2.376 2.895 2.891 3.521 3.553 0.55 1.17 Ethyl Acetate 0.3451 0.3402 0.4137 0.4145 0.4994 0.5043 0.6067 0.6134 0.7414 0.7470 0.9107 0.9121 1.124 1.119 1.394 1.382 1.735 1.724 0.37 0.99 Toluene 0.5200 0.5108 0.6120 0.6114 0.7260 0.7316 0.8675 0.8761 1.043 1.051 1.263 1.265 1.536 1.532 1.879 1.867 2.309 2.302 0.65 0.68 1-Hexane 0.1557 0.1542 0.1965 0.1967 0.2484 0.2498 0.3147 0.3164 0.3994 0.4003 0.5075 0.5065 0.6458 0.6426 0.8225 0.8193 1.048 1.053 0.38 0.47 Acetonitrile 1.393 1.381 1.792 1.787 2.300 2.300 2.944 2.944 3.758 3.753 4.785 4.773 6.078 6.063

5.967 7.288 8.920 10.94 0.42

xWilson 6.000 7.317 8.915 10.87 0.63

xNRTL 5.962 7.283 8.919 10.94 0.41

0.7999 0.9546 1.142 1.368 1.642 1.975 2.384 2.889 3.524 0.43

0.7992 0.9552 1.143 1.368 1.642 1.974 2.382 2.888 3.528 0.80

0.3436 0.4159 0.5034 0.6098 0.7407 0.9041 1.112 1.385 1.758 0.82

0.3377 0.4142 0.5062 0.6173 0.7519 0.9163 1.1193 1.3745 1.7038 1.50

0.5125 0.6125 0.7315 0.8743 1.047 1.260 1.526 1.869 2.324 0.58

0.5001 0.6083 0.7367 0.889 1.070 1.285 1.543 1.853 2.231 1.73

0.1528 0.1963 0.2506 0.3186 0.4036 0.5103 0.6447 0.8155 1.036 0.93

0.1553 0.1963 0.2486 0.3151 0.3997 0.5075 0.6452 0.8217 1.050 0.34

1.373 1.784 2.303 2.955 3.772 4.795 6.078

1.370 1.786 2.307 2.959 3.773 4.791 6.069

DOI: 10.1021/acs.jced.8b01181 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. continued 100x

100x T (K)

x

exp

308.15 7.634 313.15 9.768 100 RAD 273.15 278.15 283.15 288.15 293.15 298.15 303.15

0.4209 0.5090 0.6254 0.7465 0.9217 1.112 1.363

x

Apelblat

x

λh

Acetonitrile 7.706 9.819 0.90 Acetone 0.4208 0.4235 0.5106 0.5127 0.6202 0.6202 0.7538 0.7503 0.9168 0.9088 1.116 1.104 1.358 1.348 7.701 9.733 0.90

x

Wilson

x

NRTL

7.691 9.732 0.71

7.683 9.741 0.69

0.4208 0.5100 0.6206 0.7550 0.9174 1.114 1.354

0.4196 0.5113 0.6218 0.7553 0.9169 1.113 1.354

T (K)

x

exp

308.15 1.648 313.15 2.013 100 RAD

x

Apelblat

1.653 2.012 0.42

xλh Acetone 1.657 2.058 0.96

xWilson

xNRTL

1.650 2.019 0.42

1.650 2.018 0.47

a x denotes the experimental mole fraction solubility of quizalofop-pethyl at the studied temperature T. RAD denotes the relative average deviation, respectively. bStandard uncertainties u are u(T) = 0.02 K and u(p) = 400 Pa. Relative standard uncertainty ur is ur(x) = 0.026. xexp, experiment data; xApelblat, calculated by Apelblat model; xλh, calculated by λh model; xWilson, calculated by Wilson model; and xNRTL, calculated by NRTL model.

Figure 4. Solubility (x) of quizalofop-p-ethyl in mole fraction in monosolvents at different temperatures. (a) ▼, 1,4-Dioxane; ■, acetonitrile; ▲, DMF; and ●, toluene. (b) ★, Acetone; ◀, 1-butanol; ◆, 1-hexane; and ▶, ethanol. (c) △, Ethyl acetate; ◇, 1-propanol; ○, 2-propanol; and □, methanol. Calculated curves by modified Apelblat equation.

enhances the solubility; thus, the solubility of quizalofop-pethyl in 1,4-dioxane is the greatest. On the other hand, the polarity of the quizalofop-p-ethyl molecule is much stronger than that of the 1-hexane molecule. As a result, the solubility of quizalofop-p-ethyl in 1-hexane is the lowest. In general, it is too complicated to explicate the solubility behavior based on a single reason. This case may be due to many factors, e.g., solute−solvent interactions, solvent−solvent interactions, and molecular shapes and sizes.

accordance with the polarities, dipole moments (μ), dielectric constants (ε), and Hildebrand solubility parameters (δH), expect for 1,4-dioxane and toluene. It seems as though that the polarities are a significant factor to affect the solubility behavior, but the polarities are not the only factor for the solubility of quizalofop-p-ethyl. Both the quizalofop-p-ethyl molecule and 1,4-dioxane molecule have an ether group. On the basis of the principle that similar structures are more likely to be dissolved by each other, the structural similarity between quizalofop-p-ethyl and 1,4-dioxane due to the ether group F

DOI: 10.1021/acs.jced.8b01181 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. Physical Properties for the Selected Solventsa μ (298 K)

ε (293 K)

δH (298 K)

solvent

polarity (water 100)

(D)

(F·m−1)

(cal1/2·cm−3/2)

methanol ethanol 1-propanol 2-propanol 1-butanol acetonitrile ethyl acetate toluene 1,4-dioxane 1-hexane acetone DMF

76.2 65.4 61.7 54.6 60.2 46 23 9.9 16.4 0.9 35.5 40.4

1.7 1.7 1.7 1.66 1.66 3.2 1.7 0.4 0.4 0 2.9 3.8

32.6 22.4 20.1 18.3 18.2 37.5 6.02 2.38 2.21 1.9 20.6 36.7

14.5 13.4 11.9 11.5 11.4 11.9 9.1 8.9 10.0 6.9 10.0 12.1

are larger, and the interactions are stronger. In addition, the modified Apelblat model and λh model are semiempirical models. The parameters of A, B, and C in the modified Apelblat model, obtained in the solvent of 2-propanol that have the greatest values, indicate that the solution nonideality and solute activity coefficient have the greatest influence upon the solute solubility, and temperature has the greatest influence upon the fusion enthalpy of a solute in 2-propanol. Parameters obtained in a solvent of acetonitrile have the smallest values and have a minimum impact. Moreover, so as to demonstrate the difference between the calculated and experimental solubility, the computed solubility of quizalofop-p-ethyl in monosolvents with the modified Apelblat equation is graphed in Figure 4. What’s more, the values of RAD for quizalofop-p-ethyl in monosolvents are listed in Table 3. From Table 5, the RMSD value is highest for the system of quizalofop-p-ethyl + 1,4-dioxane (4.57 × 10−4). However, the RAD values do not exceed 2.29%, qhich is obtained with the Wilson model. In a word, the thermodynamic models can all be employed to correlate the solubility of quizalofop-p-ethyl in the monosolvents. Thermodynamic Results. According to the experimental data and the values of the parameters in the Wilson model and NRTL model, the ΔmixG, ΔmixH, and ΔmixS are computed and listed in Tables 6 and 7, respectively. The mixing properties calculated by these two methods are similar, and they all can be used to calculate mixing properties. The ΔmixG for a solution can be used to explain the dissolution ability of solute. From Tables 6 and 7 and Figure 5, we can see that the ΔmixG values are all negative. The values decrease with the increase in

a

Taken from ref 24.

Correlation and Calculation Results. During the regression process, the densities of the studied solvents were taken from the ref 24. The density of quizalofop-p-ethyl was calculated by Advanced Chemistry Development (ACD/ Laboratories) Software V11.02 (1994−2016 ACD/Laboratories). The Tm and △fusH of quizalofop-p-ethyl are taken from this work. The values of the parameters in each model, along with the RMSD values, are presented in Table 5. What’s more, the Wilson model and NRTL model are activity coefficient models. The parameters of a12, b12, a21, and b21 are the interaction energy parameters. The values of the parameters

Table 5. Parameters of the Equations and RMSD Values for Quizalofop-p-ethyl in Different Monosolvents modified Apelblat equation B

Wilson equation

C

104 RMSD

a12

23.35 36.71 34.85 54.78 44.19 41.99 42.85 34.02 32.97 24.44 19.73 31.84

0.04 0.18 0.13 0.23 0.17 0.43 0.93 1.04 0.14 0.44 3.42 2.79

−8.137 −2.269 1.212 1.320 −0.477 4.732 5.023 1.590 1.517 2.436 −2.424 −0.062

b21

104 RMSD

1685.94 −190.38 2058.14 −987.62 −1742.34 1985.20 1729.40 −2450.45 341428.7 −15560.7 −305.74 294.272

0.10 0.23 0.28 1.44 0.22 1.13 0.85 0.84 0.56 0.51 2.97 4.57

solvent

A

methanol ethanol 1-propanol 2-propanol 1-butanol ethyl acetate toluene DMF 1-hexane acetone acetonitrile 1,4-dioxane

−139.08 −233.27 −223.59 −357.78 −286.64 −273.51 −279.85 −220.56 −211.78 −156.48 −120.84 −204.18

solvent

λ

h

104 RMSD

a12

b12

a21

b21

α

104 RMSD

methanol ethanol 1-propanol 2-propanol 1-butanol ethyl acetate toluene DMF 1-hexane acetone acetonitrile 1,4-dioxane

0.0515 0.0287 0.0315 0.0169 0.0312 0.0233 0.0255 0.0396 0.0219 0.0261 0.2612 0.1790

129533 171156 115014 200497 105375 111234 88185.2 56558.7 156552 94909.7 14365.9 15384.6

0.08 0.31 0.18 0.86 0.83 0.88 0.93 1.17 0.25 1.69 3.86 3.17

10.46 −13.89 5.673 30.04 4.318 45.99 77.52 4.337 5.783 −5.469 −21.79 13.16

348.48 7170.03 −1640.22 8702.49 −1448.23 10922.9 18488.6 −1192.69 −1610.76 2300.80 8734.69 −3327.68

−5.898 −0.405 −3.483 4.622 −3.043 5.190 5.021 1.470 −2.100 4.125 −6.109 −3.974

3060.21 1386.01 2020.57 −172.74 2094.02 −603.322 −668.105 190.06 1629.79 −713.14 1725.70 1148.73

0.35 0.47 0.30 0.47 0.30 0.35 0.20 0.35 0.35 0.30 0.20 0.20

0.11 0.26 0.07 0.45 0.20 1.48 3.25 0.80 0.14 0.52 2.73 2.82

−39.17 5445.50 5962.50 11957.4 8953.85 8817.79 9335.76 6791.20 5557.75 3796.70 1608.16 5955.91 λh equation

G

b12

a21

2926.45 4.203 1260.95 3.782 13.62 −3.252 89.06 35.55 617.00 8.000 −1022.54 −3.936 −1189.88 −3.105 −418.91 11.67 128.131 1164.82 −552.07 62.29 375.45 5.332 −282.22 427.78 NRTL equation

DOI: 10.1021/acs.jced.8b01181 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 6. Calculated Values for ΔmixG, ΔmixH, and ΔmixS by the Wilson modela T (K)

ΔmixG (J·mol−1)

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−2.248 −3.260 −4.757 −6.828 −9.690 −13.51 −18.64 −25.44 −34.32

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−4.988 −6.845 −8.894 −11.27 −14.49 −18.46 −23.50 −29.73 −37.06

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−16.11 −19.64 −23.89 −28.97 −34.95 −42.00 −50.26 −59.78 −71.03

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−10.73 −12.65 −15.03 −18.19 −21.71 −25.98 −30.77 −36.57 −43.49

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−21.25 −25.44 −29.88 −35.60 −42.23 −49.91 −59.17 −69.84 −82.20

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−68.05 −76.79 −87.79 −100.2 −113.8 −127.3 −144.4 −162.4 −182.5

ΔmixH (J·mol−1) Methanol 6.301 9.461 14.42 21.63 32.15 46.91 67.92 97.49 138.5 Ethanol 5.737 8.292 11.20 14.68 19.70 26.22 34.98 46.43 60.50 1-Propanol 1.933 2.783 4.001 5.747 8.223 11.75 16.75 23.80 33.98 2-Propanol 0.923 1.120 1.377 1.744 2.174 2.735 3.402 4.281 5.424 1-Butanol −10.19 −9.911 −9.122 −8.248 −6.947 −5.155 −2.885 0.015 3.524 DMF −67.87 −72.66 −80.04 −88.95 −99.30 −109.5 −124.4 −141.1 −161.6

ΔmixS (J·K−1·mol−1)

T (K)

ΔmixG (J·mol−1)

0.031 0.046 0.068 0.099 0.143 0.203 0.286 0.399 0.552

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−29.40 −33.60 −38.52 −44.25 −50.91 −58.52 −67.85 −77.26 −88.62

0.039 0.054 0.071 0.090 0.117 0.150 0.193 0.247 0.312

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−35.76 −41.29 −48.14 −54.82 −63.62 −72.36 −82.71 −93.20 −105.0

0.066 0.081 1.629 0.120 0.147 0.180 0.221 0.271 0.335

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−115.9 −146.5 −175.6 −215.7 −261.7 −311.5 −368.5 −431.2 −505.2

0.043 0.050 0.058 0.069 0.081 0.096 0.113 0.133 0.156

288.15 293.15 298.15 303.15 308.15 313.15

−294.9 −337.3 −390.4 −442.9 −504.9 −567.8

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−43.59 −49.74 −56.13 −63.36 −72.52 −81.28 −92.71 −103.9 −118.2

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−13.14 −15.98 −19.07 −23.24 −27.76 −33.01 −39.28 −46.30 −54.34

0.040 0.056 0.073 0.095 0.120 0.150 0.186 0.227 0.274 0.001 0.015 0.027 0.039 0.049 0.060 0.066 0.069 0.067

ΔmixH (J·mol−1) Ethyl Acetate −22.74 −25.89 −29.45 −33.35 −37.47 −41.41 −45.19 −46.41 −45.02 Acetone −29.15 −27.13 −29.66 −33.61 −40.28 −47.57 −57.05 −67.39 −79.97 Acetonitrile 38.68 51.21 63.50 81.75 103.9 129.3 160.2 196.5 242.9 1,4-Dioxane −90.35 −107.5 −130.7 −155.1 −186.7 −221.6 Toluene −41.52 −48.09 −54.81 −62.34 −71.99 −80.33 −90.98 −99.26 −108.1 1-Hexane 1.614 2.039 2.521 3.219 4.018 5.004 6.267 7.781 9.647

ΔmixS (J·K−1·mol−1) 0.024 0.028 0.032 0.038 0.046 0.057 0.075 0.100 0.139 0.024 0.051 0.065 0.074 0.080 0.083 0.085 0.084 0.080 0.566 0.711 0.844 1.032 1.247 1.479 1.744 2.037 2.389 0.710 0.784 0.871 0.949 1.033 1.106 0.008 0.006 0.005 0.004 0.002 0.003 0.006 0.015 0.032 0.054 0.065 0.076 0.092 0.108 0.128 0.150 0.176 0.204

a ΔmixG, ΔmixS, and ΔmixS denote the mixing Gibbs free energy, mixing enthalpy, and mixing entropy, respectively.

H

DOI: 10.1021/acs.jced.8b01181 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 7. Calculated Values for ΔmixG, ΔmixH, and ΔmixS by the NRTL modela T (K)

ΔmixG (J·mol−1)

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−2.628 −3.789 −5.507 −7.873 −11.13 −15.45 −21.23 −28.83 −38.64

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−5.949 −8.181 −10.63 −13.44 −17.27 −21.94 −27.83 −34.97 −43.11

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−17.08 −20.78 −25.25 −30.64 −37.03 −44.60 −53.52 −63.83 −75.96

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−12.06 −14.24 −16.94 −20.57 −24.60 −29.51 −34.97 −41.60 −49.40

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−22.87 −27.35 −32.09 −38.18 −45.23 −53.36 −63.09 −74.19 −86.83

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−69.14 −78.05 −89.20 −101.7 −115.4 −128.8 −145.7 −163.3 −182.6

ΔmixH (J·mol−1) Methanol 4.570 7.164 11.37 17.71 27.32 41.32 62.09 92.63 137.2 Ethanol 3.089 4.578 6.296 8.351 11.32 15.15 20.33 27.11 35.43 1-Propanol −3.011 −1.242 1.471 5.492 11.29 19.49 30.97 46.75 68.78 2-Propanol −1.240 −1.508 −1.860 −2.371 −2.980 −3.794 −4.790 −6.157 −8.030 1-Butanol −14.84 −15.09 −14.44 −13.37 −11.17 −7.451 −1.647 7.202 20.32 DMF −67.31 −74.36 −83.90 −94.85 −107.1 −118.8 −135.4 −153.6 −175.7

ΔmixS (J·K−1·mol−1)

T (K)

ΔmixG (J·mol−1)

0.026 0.039 0.060 0.089 0.131 0.190 0.275 0.394 0.561

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−30.38 −34.91 −40.22 −46.40 −53.56 −61.66 −71.40 −80.90 −91.76

0.033 0.046 0.060 0.076 0.097 0.124 0.159 0.202 0.251

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−36.36 −42.15 −49.27 −56.26 −65.52 −74.84 −85.99 −97.51 −110.6

0.052 0.070 0.094 0.125 0.165 0.215 0.279 0.359 0.462

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−117.0 −148.4 −178.7 −220.9 −269.9 −324.7 −389.3 −464.0 −557.2

0.039 0.046 0.053 0.063 0.074 0.086 0.099 0.115 0.132

288.15 293.15 298.15 303.15 308.15 313.15

−297.7 −340.2 −394.9 −450.6 −519.1 −592.5

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−44.22 −50.78 −57.65 −65.44 −75.27 −84.67 −96.74 −108.3 −122.6

273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

−14.13 −17.12 −20.38 −24.82 −29.67 −35.36 −42.22 −49.98 −58.95

0.029 0.044 0.062 0.086 0.116 0.154 0.203 0.264 0.342 0.007 0.013 0.018 0.024 0.028 0.034 0.034 0.032 0.022

ΔmixH (J·mol−1) Ethyl Acetate −15.45 −18.38 −22.05 −26.64 −32.42 −39.63 −49.39 −60.20 −74.67 Acetone −19.76 −21.75 −23.95 −25.15 −26.65 −26.65 −25.73 −22.49 −16.69 Acetonitrile 57.72 77.46 100.5 139.8 197.7 280.0 401.6 577.0 842.7 1,4-Dioxane −161.1 −133.7 −98.42 −46.90 21.04 110.3 Toluene −26.98 −32.23 −38.08 −45.19 −55.00 −65.24 −79.96 −95.90 −118.9 1-Hexane −4.511 −3.577 −1.990 0.3481 3.823 8.764 15.81 25.50 38.92

ΔmixS (J·K−1·mol−1) 0.055 0.059 0.064 0.069 0.072 0.074 0.073 0.067 0.055 0.061 0.073 0.089 0.108 0.133 0.162 0.199 0.243 0.300 0.639 0.812 0.986 1.252 1.595 2.028 2.609 3.378 4.470 0.474 0.704 0.994 1.332 1.753 2.244 0.063 0.067 0.069 0.070 0.069 0.065 0.055 0.040 0.012 0.035 0.049 0.065 0.087 0.114 0.148 0.191 0.245 0.313

a ΔmixG, ΔmixS, and ΔmixS denote the mixing Gibbs free energy, mixing enthalpy, and mixing entropy, respectively.

I

DOI: 10.1021/acs.jced.8b01181 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 5. Calculated mixing Gibbs energy at measured solubility points (a) based on the Wilson model and (b) based on the NRTL model. ▼, 1,4Dioxane; ■, acetonitrile; ▲, DMF; ●, toluene; ★, acetone; ◀, 1-butanol; ◆, 1-hexane; ▶, ethanol; △, ethyl acetate; ◇, 1-propanol; ○, 2propanol; and □, methanol.



temperature; besides, all the ΔmixS values are positive. So, the dissolution process of quizalofop-p-ethyl is spontaneous and favorable in the selected monosolvents.



CONCLUSIONS In this research, the solubility and the dissolution behaviors of quizalofop-p-ethyl in 12 monosolvents were determined experimentally at the temperatures from T = 273.15−313.15 K, and the atmosphere press is about 101.2 kPa. The solubility of quizalofop-p-ethyl in mole fraction in the studied monosolvents increased with increasing temperature. The order of solubility in mole fraction from high to low is 1,4dioxane > acetonitrile > DMF > toluene > acetone > ethyl acetate > 1-butanol > 1-propanol > 1-hexane > 2-propanol > ethanol > methanol. The dissolution behavior of quizalofop-pethyl in monosolvents was found to follow the “like dissolves like” rule. Furthermore, the intermolecular interactions may have an influence on the dissolution behavior. The modified Apelblat equation, λh equation, Wilson model, and NRTL model were used to correlate the experimental solubility data in monosolvents. The largest values of RMSD and RAD were 4.57 × 10−4 and 2.29%, respectively. On the whole, the selected thermodynamic models can all be employed to correlate the solubility of quizalofop-p-ethyl in monosolvents. Moreover, the mixing Gibbs energy, mixing enthalpy, and mixing entropy in the monosolvents were computed. Finally, it can be concluded, that the results in this research could provide guidance for industrial design and operation of crystallization processes of quizalofop-p-ethyl.



REFERENCES

(1) Sakata, G.; Makino, K.; Morimoto, K.; Ikai, T.; Hasebe, S. Synthesis and Herbicidal Activity of Optically Active Ethyl 2-[4-(6Chloro-2-quinoxalinyloxy) phenoxy]propanoate. J. Pestic. Sci. 1985, 10, 69−73. (2) Yang, X. Z.; Wei, N. C.; Liu, Q. M.; Dai, R. H.; Wang, Z.; Zhang, Y. L.; Zhang, J. L.; Liu, Y. X.; Li, L.; Hu, Q. L. Preparation method for quizalofop-p-ethyl. CN Patent CN102584724A, July 18, 2012. (3) Kalhor, M.; Dadras, A.; Mobinikhaledi, A.; Tajik, H. A new method for one-pot synthesis of aryloxyphenoxypropionate herbicides using 2,4,6-trichloro-1,3,5-triazine and (n‑BU)4NI as a homogeneous catalyst. J. Chil. Chem. Soc. 2011, 56, 833−836. (4) Coret Joel, M. Novel esters as useful broad spectrum herbicidal compounds. US Patent US7329770, Dec. 22, 2005. (5) Han, X. Y.; Dai, R. H.; Cheng, D. Q.; Wei, N. C.; Wang, J. K. Quizalofop-p-ethyl as well as synthetic method of intermediate 4-(6chloro-2 quinoxaline)phenol. CN Patent CN107915686A, April 17, 2018. (6) Wang, J. Y.; Ni, W.; Sun, X. F.; Li, J. Q.; Wang, B.; Shan, Y. X.; Yin, P.; Yin, F. S. Preparation method of quizalofop-p-ethyl. CN Patent CN106432109A, Feb. 22, 2017. (7) Qiao, Z.; Mu, C. X.; Wu, G. L.; Wang, J.; Luo, J. C.; Lu, F. Q.; Huang, M. F.; Wang, B. Q.; Zhang, N. Preparation method of Quizalofop-p-ethyl with high optical content. CN Patent CN101531640A, Sept. 16, 2009. (8) Kenzo, F.; Masataka, H.; Takahiro, M.; Kenichi, I. Processes for producing phenoxy propionic acid derivative. US Patent US6136977A, April 25, 1997. (9) Zhao, G. P.; Xu, S. L.; Hu, Z. G.; Wen, D.; Li, Z. J.; Hou, S. C.; Zhou, K. L.; Chen, K. F.; Liu, X. C.; Wang, D. F. Preparation method of quizalofop-p-ethyl. CN Patent CN102010378A, April 13, 2011. (10) Buchowski, H.; Ksiazczak, A.; Pietrzyk, S. Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J. Phys. Chem. 1980, 84, 975−979. (11) Apelblat, A.; Manzurola, E. Solubilities of o-acetylsalicylic, 4aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesiumDL-aspartate in water from T = (278 to 348) K. J. Chem. Thermodyn. 1999, 31, 85−91. (12) Apelblat, A.; Manzurola, E. Solubilities of L-glutamic acid, 3nitrobenzoic acid, p-toluic acid, calcium-L-lactate, calcium gluconate, magnesium-DL-aspartate, and magnesium-L-lactate in water. J. Chem. Thermodyn. 2002, 34, 1127−1136. (13) Wilson, G. M. Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 1964, 86, 127− 130.

AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. ORCID

Mingliang Wang: 0000-0002-3934-6100 Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This project is supported by the priority academic program development of Jiangsu higher education institutions (1107047002). J

DOI: 10.1021/acs.jced.8b01181 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(14) Renon, H.; Prausnitz, J. M. Estimation of parameters for the NRTL equation for excess Gibbs energies of strongly nonideal liquid mixtures. Ind. Eng. Chem. Process Des. Dev. 1969, 8, 413−419. (15) Stanley, M. W. Phase Equilibria in Chemical Engineering; Butterworth: New York, 1985. (16) Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed.; Prentice Hall PTR: Upper Saddle River, 1998. (17) Tomlin, C. D. S. The pesticide manual, 13th ed.; BCPC: UK, 2003. (18) Zhang, H.; Yin, Q. X.; Liu, Z. K.; Gong, J. B.; Bao, Y.; Zhang, M. J.; Hao, H. X.; Hou, B.; Xie, C. Measurement and correlation of solubility of dodecanedioic acid in different pure solvents from T = (288.15 to 323.15) K. J. Chem. Thermodyn. 2014, 68, 270−274. (19) Liu, X.; Hu, Y. H.; Liang, M. M.; Li, Y. L.; Yin, J. J.; Yang, W. G. Measurement and correlation of the solubility of maleic anhydride in different organic solvents. Fluid Phase Equilib. 2014, 367, 1−6. (20) Apelblat, A.; Manzurola, E.; Balal, N. A. The solubilities of benzenepolycaboxylic acids in water. J. Chem. Thermodyn. 2006, 38, 565−571. (21) Rosenbrock, H. H. An automatic method for finding the greatest or least value of a function. Comput. J. 1960, 3, 175−184. (22) Smith, J. M.; Ness, H. C. V.; Abbott, M. M. Introduction to Chemical Engineering Thermodynamics; McGraw-Hill: New York, 2001. (23) Kondepudi, D. K. Introduction to Modern Thermodynamics; John Wiley & Sons Ltd: Chichester, England, 2008. (24) Smallwood, I. M. Handbook of Organic Solvent Properties; Amoled: London, 1996.

K

DOI: 10.1021/acs.jced.8b01181 J. Chem. Eng. Data XXXX, XXX, XXX−XXX