Bingyuan Huang, Xiao Guo, Duck Hyun Lee, Peter F. Green

Bingyuan Huang, Xiao Guo, Duck Hyun Lee, Peter F. Green and Akram I. Boukai ... LaDce strain affect the curvature of the energy band, resul ng in ...
1 downloads 13 Views 1MB Size
Silicon  Quantum  Dot  Superla7ces  for  High  Efficiency  Thermoelectrics   Bingyuan  Huang,  Xiao  Guo,  Duck  Hyun  Lee,  Peter  F.  Green  and  Akram  I.  Boukai   Department  of  Materials  Science  and  Engineering,  University  of  Michigan,  Ann  Arbor,  MI  

Project  Overview   Ø  Advantages  of  silicon  as  a  thermoelectric  material.   •  High  abundance  on  the  Earth.   •  Less  toxic  than  other  thermoelectric  materials,  e.g.,  Pb,  Bi,  Te.   •  BeKer  integraLon  with  electric  devices.     Ø  Thermoelectric  figure  of  merit  

ZT =

S 2σ

T , Power Factor = S 2σ

    κ S − thermopower , σ − electrical conductivity , κ − thermal conductivity , T − temperature •  At  room  temperature,  ZT  of  bulk  silicon  is  only  ~0.01.   •  Control  S,  σ  and  κ  independently.     Ø  Decrease  the  thermal  conducLvity  using  nanostructures.   •  As  feature  dimensions  shrink  to  the  phonon  mean  free  path  (~300nm),  strong   scaKering  of  phonons  should  occur  and  κ  decreases.  In  the  meanLme,  the  electrical   conducLvity  is  not  heavily  affected.    

Thermopower  CharacterizaLon  

Device  FabricaLon  

Ø  All thermopower measurements were conducted in a cryostat using a LabVIEW interface.

Ø  Nanomesh is made on the strained silicon thin film on SiO2 through steps as shown in the right schematics. •  PS-PMMA block copolymer layer is first spincoated on top of the strained silicon. •  After annealing and UV treatment, PMMA is removed by acetic acid. •  Nanomesh is imprinted into strained silicon thin film by DRIE through the PS mask. •  PS is finally removed by Piranha cleaning.

A schematic of the experimental setup.

A screenshot of the LabVIEW program

Ø  SEM images show almost perfect hexagonal nanomesh on the strained silicon.

Top view. nearly 20nm with pitches about 40 nm.

Ø  Increase  the  electrical  conducLvity  using  crystal  la7ce  strain.   •  La7ce  strain  affect  the  curvature  of  the  energy  band,  resulLng  in  lower  effecLve   mass  of  charge  carriers  and  consequently  higher  mobility  and  conducLvity.   Ø  In  this  work,  nanomesh  structure  was  made  on  strained  silicon  thin  films.   •  Thermopower  values  were  enhanced  for  both  strained  silicon  and  normal  silicon  by   adding  nanomesh  .   ZT≈0.4 at 300K •  Strained  silicon  showed  higher  electrical  conducLvity  than   normal   silicon.  

Ø  Thermopower is improved by adding nanomesh for both strained silicon and normal silicon. Raw data Linear fitting

0 Strained Silicon 1.2E19 doping w/o nanomesh Silicon 1.45E19 doping w/o nanomesh

Electrical  ConducLvity   CharacterizaLon  

Ø  Raman  spectroscopy  was  conducted            to  verify  that  nanomesh  didn’t  release          all  la7ce  strain  in  the  strained  silicon.                                  The  green  curve  indicates  that  the                            nanomesh  did  release  some  la3ce                            strain.  However,  most  strain  is  s8ll                            retained.    

500

400

350

300 Strained Silicon 3.3E19 doping no nanomesh Silicon 2.5E19 doping no nanomesh 250

200

250

300

350

Temperature (K)

400

450

450

300 250 200

Strained Silicon 3.3E19 doping no nanomesh Strained Silicon 2.5E19 doping nanomesh Silicon 8.14E19 doping nanomesh

150 100 100

-100

-150

-200

-250

200

220

240

260

280

300

320

Temperature (K)

500

450

-220

Thermopower (µV/K)

Thermopower (µV/K)

Ø  Strained silicon shows much higher electrical conductivity than normal silicon, both with and without nanomesh.

Electric Conductivity (Ω−1cm-1)

Raman  Spectroscopy  

-50

Ø  Electrical conductivity were measured in a cryostat using a four-point setup.

Electric Conductivity (Ω−1cm-1)

 

-200

150

200

250

300

Temperature (K)

350

400

450

340

360

380

Silicon w/ nanomesh Silicon w/o nanomesh

-240

-260

-280

-300

280 290 300 310 320 330 340 350 360 370 380

Temperature (K)