15 Characterization of the Copper(II) Site in Galactose Oxidase R O B E R T D . B E R E M A N , M U R R A Y J. E T T I N G E R , D A N I E L J. K O S M A N , and R O B E R T J. K U R L A N D
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
The Bioinorganic Graduate Research Group, Departments of Chemistry and Biochemistry, State University of New York at Buffalo, Buffalo, N Y 14214
Spectral and model studies of the Cu(II)-containing metallo protein galactose oxidase suggest that the enzymic metal coordination center is a square planar system involving two nitrogenous ligands. Model studies suggest that exogenous ligands coordinate in an equitorial position. Difference absorbance spectra with exogenous anions establish that only the 314-nm transition exhibited by the enzyme is of charge-transfer character. Difference absorbance, EPR, and fluoride relaxation are consistent with formation of a com plex with the anion ferricyanide near the copper site. In the enzyme, a histidine imidazole and tryptophan indole con tribute directly to catalysis. Spectral results imply that enzyme activity is associated with a relatively unique ge ometry of the active site Cu(II) complex.
/ ^ o p p e r is a n essential e l e m e n t t o most l i f e forms. ^
I n h u m a n s i t is t h e
t h i r d most a b u n d a n t trace e l e m e n t ; o n l y i r o n a n d z i n c a r e present
i n h i g h e r q u a n t i t y . U t i l i z a t i o n of c o p p e r u s u a l l y i n v o l v e s a p r o t e i n a c t i v e site w h i c h catalyzes a c r i t i c a l o x i d a t i o n r e a c t i o n , e.g., c y t o c h r o m e a m i n e oxidases, s u p e r o x i d e d i s m u t a s e , ferroxidases,
oxidase,
dopamines-hydrox-
ylase, a n d tyrosinase. A c c o r d i n g l y , a n i m a l s e x h i b i t u n i q u e
homeostatic
mechanisms for the absorption, distribution, utilization, a n d excretion of c o p p e r ( 1 ) . M o r e o v e r , at least t w o p o t e n t i a l l y l e t h a l i n h e r i t e d diseases of c o p p e r m e t a b o l i s m a r e k n o w n : W i l s o n ' s D i s e a s e a n d M e n k e s ' s K i n k y H a i r Syndrome ( 1 ) . C u ( I I ) sites i n p r o t e i n s h a v e b e e n classified i n t o t h r e e types b a s e d o n t h e i r s p e c t r a l p r o p e r t i e s ( 2 ) . T y p e I C u ( I I ) sites a r e c h a r a c t e r i z e d b y v e r y h i g h m o l a r a b s o r b t i v i t y values f o r t h e v i s i b l e b a n d n e a r 600 n m 263
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
264
BIOINORGANIC CHEMISTRY
(16.5kK).
II
A c c o r d i n g l y , p r o t e i n s w h i c h c o n t a i n T y p e I sites are o f t e n
r e f e r r e d to as b l u e c o p p e r proteins since t h e i r solutions are b l u e typical enzyme
at
concentrations i n a r e s e a r c h l a b o r a t o r y ( 1 0 " - 1 0 " M ). 5
4
T h e 6 0 0 - n m r e g i o n b a n d has b e e n s u g g e s t e d to arise f r o m η —» π* ( σ* ) c h a r g e transfer i n v o l v i n g a copper—cysteine studies ( 3 , 4 )
bond.
a n d recent m o d e l studies ( 5 )
Metal
replacement
t e n d to substantiate this
assignment. E l e c t r o n s p i n resonance ( E S R ) p a r a m e t e r s for these T y p e I sites are also different t h a n for s i m p l e c o p p e r complexes, p a r t i c u l a r l y i n the u n u s u a l l y l o w v a l u e for the s p i n H a m i l t o n i a n p a r a m e t e r , A is t y p i c a l l y less t h a n 100 G ( 2 ) .
z z
, which
T h e C u ( I I ) atoms i n these sites are b e
l i e v e d to b e i n a t r i g o n a l e n v i r o n m e n t ( 4 or 5 c o o r d i n a t e )
(6,7),
and
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
f u n c t i o n a l a c t i v i t y is associated w i t h a c h a n g e i n o x i d a t i o n state of the copper (8). T y p e I I C u ( I I ) , or l o w - b l u e c o p p e r , is less c o l o r e d at
common
r e s e a r c h concentrations. T h e s e systems h a v e r e c e i v e d less a t t e n t i o n t h a n T y p e I c o p p e r . H o w e v e r , e v e n l o w - b l u e c u p r i c c o p p e r c a n possess h i g h m o l a r a b s o r b t i v i t i e s w h e n c o m p a r e d w i t h s i m p l e c o o r d i n a t i o n complexes of C u ( I I ) . T h e C u ( I I ) sites i n s u c h proteins also y i e l d A
z z
values n o r
m a l l y greater t h a n 140 G , i.e., m o r e l i k e that of l o w m o l e c u l a r w e i g h t s q u a r e p l a n a r C u ( I I ) complexes (2, 8 ) . T h e o n l y a v a i l a b l e c r y s t a l s t r u c t u r e of a c o p p e r p r o t e i n is that of a l o w b l u e p r o t e i n b o v i n e e r y t h r o c y t e superoxide dismtuase ( 9 ) .
T h e t w o c o p p e r atoms i n this p r o t e i n are
e a c h c o o r d i n a t e d to f o u r h i s t i d i n e nitrogens i n a n a p p r o x i m a t e square planar array. F e w prototypes are a v a i l a b l e for T y p e I I I C u ( I I ) .
These
systems
are E S R i n a c t i v e , i.e., a l t h o u g h C u ( I I ) is present, n o E S R s p e c t r u m c a n be
obtained.
R e c e n t m a g n e t i c s u s c e p t i b i l i t y results i n d i c a t e that the
T y p e I I I C u ( I I ) i n R h u s laccase is a n a n t i f e r r o m a g n e t i c - c o u p l e d C u ( I I ) d i m e r (10).
L i t t l e , h o w e v e r , is k n o w n a b o u t the c o p p e r l i g a n d s or the
n a t u r e of the d i m e r i c i n t e r a c t i o n . T h e entire m e t a l a c t i v e site i n a n y m e t a l l o p r o t e i n consists of
the
m e t a l chelate p l u s a l l of the p r o t e i n groups w h i c h c o n t r i b u t e to its s p e c t r a l a n d c a t a l y t i c p r o p e r t i e s . A c o p p e r p r o t e i n has b o t h v e r y s p e c i a l a n d specific c a t a l y t i c a n d s p e c t r a l p r o p e r t i e s .
T h e p r e m i s e of o u r r e
s e a r c h is that b o t h the c a t a l y t i c a n d s p e c t r a l properties m u s t reflect the same u n i q u e characteristics of the l i g a n d s to the m e t a l , the g e o m e t r y of t h e m e t a l c o m p l e x , the p r o p e r t i e s of the a c t i v e site p r o t e i n groups, a n d the g e n e r a l p r o t e i n e n v i r o n m e n t of the a c t i v e site. O u r u l t i m a t e objective is to e l u c i d a t e the p e r t i n e n t i n t e r r e l a t i o n s h i p s a m o n g these p a r a m e t e r s . V a r i a t i o n s i n a n y or a l l of these factors m i g h t b e the u n d e r l y i n g basis for the d i s t i n g u i s h i n g s p e c t r a l a n d c h e m i c a l properties of the t w o classes of p a r a m a g n e t i c c o p p e r i n c o p p e r p r o t e i n s .
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
15.
Galactose
265
Copper(II) Site in Galactose Oxidase
BEREMAN ET AL.
Oxidase—Background
O u r recent interest has c e n t e r e d o n the f u n g a l e n z y m e ,
galactose
oxidase, w h i c h m a y b e the o n l y c o p p e r p r o t e i n w i t h a single n o n - b l u e Cu(II)
( i n the n o n - b l u e f a m i l y ) a n d w h i c h contains no other p r o s t h e t i c
groups.
( W e take the v i e w that E S R parameters e s t a b l i s h the f a m i l i e s
of the c u p r i c sites.
O p e r a t i o n a l l y , one g o a l of the copper—protein
re-
s e a r c h is to d e t e r m i n e p r e c i s e l y w h a t is constant a n d w h a t varies a m o n g the v a r i o u s examples of e a c h t y p e of C u ( I I ) site.) a f e w p e r t i n e n t properties of this e n z y m e . i s o l a t e d b y C o o p e r i n 1959 ( I I ) .
W e can summarize
G a l a c t o s e oxidase w a s
first
E a r l y available literature about
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
e n z y m e was c o n t r i b u t e d p r i m a r i l y b y H o r e c k e r a n d c o - w o r k e r s T h e e n z y m e is e l a b o r a t e d b y Dactylium p r o t e i n (13).
dendroides a n d is a n e x t r a c e l l u l a r
Its m o l e c u l a r w e i g h t has b e e n r e c e n t l y e s t a b l i s h e d i n these
laboratories to b e 68,000 ± 3,000 daltons (14). has b e e n r e p o r t e d pH =
the (12).
12 ( 1 5 ) .
T h e single C u ( I I )
diethyl dithiocarbamate
A n a m i n o a c i d analysis
T h e p r o t e i n has a n isoelectric p o i n t a r o u n d
(14).
atom can be readily removed
coordination
or b y
H S. 2
The
by
apoenzyme
is
stable, a n d r e c o n s t i t u t i o n of the e n z y m e results i n t o t a l r e a c t i v a t i o n (12, 16).
A s the n a m e i m p l i e s , the e n z y m e catalyzes the o x i d a t i o n of g a l a c -
tose b y m o l e c u l a r o x y g e n as i n d i c a t e d b e l o w : CH OH
CHO
2
HO +
H 0 2
N e a r l y a n y p r i m a r y a l c o h o l serves as a substrate w i t h the e x c e p t i o n methanol and ethanol. hexachloroiridate(IV)
F e r r i c y a n i d e (17, 1 8 ) , p o r p h y r e x i d e (18)
c a n r e p l a c e o x y g e n as o x i d a n t .
(18),
2
of and
Hexachloro-
i r i d a t e ( I V ) is c o n s u m e d to the e x c l u s i o n of o x y g e n i n a e r o b i c m i x t u r e s . W h e n hexachloroiridate(IV) and H 0 2
2
serve as o x i d a n t a n d r e d u c t a n t
r e s p e c t i v e l y , the n o r m a l r e a c t i o n , v i s - a - v i s H 0 , is r e v e r s e d , a n d o x y g e n 2
is p r o d u c e d
2
(18).
T h e first s p e c t r a l s t u d y of galactose oxidase w a s the r e p o r t of the e l e c t r o n s p i n resonance
s p e c t r u m b y B l u m b e r g et a l . ( 1 9 ) .
c e n t l y , C l e v e l a n d et a l . (20)
M o r e re-
reported a further E S R study w h i c h was
b a s e d o n a c o m p u t e r fit to the s p e c t r u m . T h e y c o n c l u d e d that f o u r n i t r o gens w e r e b o u n d to the C u ( I I ) Ligands
atom.
to Metal in Galactose Oxidase:
ESR and Model Studies
M o d e l systems m a y b e v e r y u s e f u l i n e l u c i d a t i n g the atoms l i g a n d e d to the c o p p e r . W e earlier p r o p o s e d a p s e u d o - s q u a r e p l a n a r N 0 2
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2
Schiff
266
BIOINORGANIC C H E M I S T R Y
II
b a s e c o m p l e x of c o p p e r as a m o d e l for the e q u i t o r i a l c o o r d i n a t i o n of C u ( I I ) i n galactose oxidase ( 2 1 ) .
T h a t m o d e l c o m p l e x m i m i c s some of
the s p e c t r a l properties of the e n z y m i c C u ( I I ) . I n s u p p o r t of that m o d e l , b e t t e r - r e s o l v e d E S R spectra of the e n z y m e h a v e b e e n o b t a i n e d . F i g u r e 1 shows the t i m e - a v e r a g e d E S R s p e c t r u m of galactose oxidase at 100 °K. A five-line s u p e r h y p e r f i n e s p l i t t i n g o n the p a r a l l e l lines ( A
z z
component)
c a u s e d b y t w o nitrogens is c l e a r l y i n d i c a t e d . T h i s c o n c l u s i v e l y d e m o n strates that at least t w o n i t r o g e n atoms m u s t b e l i g a n d e d to the c o p p e r a t o m ; the presence
of f o u r nitrogens ( 2 0 )
appears u n l i k e l y .
(Recent
s p i n - e c h o d a t a are consistent w i t h c o o r d i n a t i o n of the C u ( I I ) b y h i s t i d i n e i m i d a z o l e n i t r o g e n atoms.
(Work
two
i n collaboration w i t h J .
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
P e i s a c h a n d W . M i m s ). ) H o w e v e r , the Schiff base c o m p l e x lacks the s t a b i l i t y t o w a r d s r e d u c t i o n b y C N " that characterizes the C u ( I I ) i n galactose oxidase. W h i l e the e n z y m e b i n d s a single C N " e v e n at l a r g e C N " excess ( 2 2 ) , the C u ( I I ) i n the m o d e l is r e d u c e d b y the l i g a n d . T o assess the u n d e r l y i n g s t r u c t u r a l c o m p o n e n t s w h i c h s t a b i l i z e the e n z y m i c C u ( I I ) t o w a r d s r e d u c t i o n by C N " , a
five-coordinate
m o d e l ( F i g u r e 2) h a v i n g square b i p y r a m i d a l
symmetry was prepared (23).
( T h e c o n d i t i o n s a n d system
procedures
Figure I . ESR spectrum of galactose oxidase at ~ 5 Χ Ι0~ Μ. Τ = 100°Κ, average of six scans. Obtained with Nicolet Lab-80 CAT on a Varian E-9 spectrometer. Insert shows the second and third parallel lines and the fiveline superhyperfine splitting. 4
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
15.
BEREMAN E T AL.
Copper(II)
Site
Cu (TAAB) + S (CH CH 0Na) 2
2
2
in Galactose
F i g u r e
2
.
267
Oxidase
Cu[Nfi]
(see
model
text)
r e p o r t e d b y B u s c h et a l . ( 2 3 ) , f o r t h e N S c o m p l e x d o n o t y i e l d t h e 4
complex reported.
M o r e likely, the complex they obtained was one i n
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
w h i c h o n l y one side of t h e b r i d g i n g - O - C - C - S - C - C - O - g r o u p is a t t a c h e d to the T A A B b a c k b o n e a n d the other e n d is free, p r o b a b l y as the a l c o h o l . A
detailed synthetic procedure
preparation
(24)).
for the complex
l i g a t i o n y i e l d s i o n i c b o n d s to C u ( I I I ) . synethetically more purpose
atom
T h u s a n N S system, w h i c h is 4
easily a p p r o a c h e d , w i l l p r o b a b l y serve t h e same
as a n N 0 S 2
d i s c u s s e d here is i n
I n a qualitative w a y , nitrogen a n d oxygen
2
system.
T h e utility
of t h e m o d e l
lies i n its
encompassing t w o possibly important structural features—axial ligation b y s u l f u r (14, 2 5 ) a n d a " c a g e " s h i e l d i n g o n e a x i a l p o s i t i o n f r o m exogenous l i g a n d s . T a b l e I s u m m a r i z e s t h e p e r t i n e n t E S R a n d C N " d a t a . I n fact, n o n e of these m a c r o c y c l i c C u ( I I )
complexes
b i n d C N " at a l l as
e v i d e n c e d b y b o t h o p t i c a l a b s o r b a n c e a n d E S R studies. T h u s , a l t h o u g h t h e y are stable to C N " , t h e i r s t a b i l i t y is c a u s e d b y a t o t a l l a c k of r e a c t i v i t y t o w a r d s C N " , q u i t e u n l i k e t h e e n z y m e . A l s o , as i n d i c a t e d i n T a b l e I, there is little i n d i c a t i o n of a x i a l l i g a t i o n b y either - S - o r - O - as e v i denced
b y t h e E S R parameters.
W e conclude
f r o m these d a t a t h a t
b i n d i n g of exogenous l i g a n d s r e q u i r e s access t o a n essentially e q u i t o r i a l c o o r d i n a t i o n site a n d that t h e r i g i d m a c r o c y c l e is s i m p l y too r i g i d t o a l l o w this s u b s t i t u t i o n . T h e a p p a r e n t l a c k of a x i a l c o o r d i n a t i o n b y - S m a y b e c a u s e d b y t h e t h i o e t h e r s s o m e w h a t w e a k e r affinity f o r C u ( I I ) (cf. RS~) a n d does n o t r u l e o u t m e r c a p t i d e l i g a t i o n i n t h e p r o t e i n (14, 25).
H o w e v e r , b o t h t h e m a g n i t u d e of t h e s p i n H a m i l t o n i a n p a r a m e t e r s
w h e n c o m p a r e d w i t h other systems ( 2 6 ) a n d t h e l a c k of a s u b s t a n t i a l l i n e a r electric field effect ( L E F E ) o n t h e g-values m a k e i t u n l i k e l y that s u l f u r l i g a t i o n , i f present at a l l , is e q u i t o r i a l . I n this l i m i t e d w a y , t h e N S system is g e o m e t r i c a l l y , i f n o t c h e m i c a l l y , a p p r o p r i a t e . 4
Galactose Oxidase:
Optical
Transitions
and Anion
Binding
G i v e n some n o t i o n of t h e n a t u r e of t h e e n d o g e n o u s l i g a n d s , w e c a n next ask h o w exogenous l i g a n d s p e r t u r b t h e c o p p e r a t o m a n d w h a t this c a n t e l l us a b o u t t h e e l e c t r o n i c transitions e x h i b i t e d b y t h e C u ( I I ) a t o m i n galactose oxidase.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
268
BIOINORGANIC C H E M I S T R Y
Table I.
Stoichiometry of C N " Ligation to (and Redox Stability
Complex
Ligand
C u ( T A A B ) [S ( C H C H 0 ) Cu ( T A A B ) [0 ( C H C H 0 ) Cu(TAAB) [CH N(CH CJ Cu(TAAB) [CH (CH CH Cu(tren-0H)BPh ' Cu(F Ac) en Cu(Ac) en Cu(tren-NH Ph)BPh ' G a l a c t o s e oxidase 2
2
2
2
2
3
2
2
2
4
3
c
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
h c d
N N N N N N N N N
2 2
2
2
d
r
2
a
2
] ] 0) ] 0) ] b
e
2
2
II
4
4 4 4
Symmetry
Type S 0 N
C (pseudo) C (pseudo) C (pseudo) C (pseudo) C v (pseudo?) rhombic planar ( C ) rhombic planar (C v) C (pseudo) rhombic planar (C y) 4 V
4 V
4 V
4
4
2 2 4
2
4 V
0 0 0 N 0
3
2
2 V
2
2
3 V
2
(?)
2
Values in Gauss. See Figure 2 and Refs. 23 and 24 for explanation of terminology. tren-NH Ph-(2,2^2''-triaminotriethylamine-phenylamine)copper(II). Ph = - C H . 2
6
5
A t least five e l e c t r o n i c transitions c a n b e d e t e c t e d b y
absorbance,
difference a b s o r b a n c e , a n d c i r c u l a r d i c h r o i c ( C D ) s p e c t r a f o r
galactose
oxidase p r i o r to r e s o l u t i o n b y c o m p u t e r analysis or m a g n e t i c C D studies. T h e s e o c c u r at energies w h i c h c o r r e s p o n d to 314, 395, 500, 630, a n d about 7 7 5 n m ( T a b l e I I )
(27).
N o t e w o r t h y a m o n g these b a n d s are t h e
transitions n e a r 650, 450, a n d 800 n m since t h e y are e x h i b i t e d b y a l l copper proteins ( 2 ) .
I n a n y event, since o n l y a m a x i m u m of f o u r db-d
transitions are p e r m i t t e d , at least one of the t r a n s i t i o n s e x h i b i t e d b y galactose oxidase m u s t b e c h a r g e transfer i n n a t u r e . M o r e o v e r , a l t h o u g h the pseudo-square w o u l d not b e
p l a n a r s y s t e m w h i c h is l i k e l y i n galactose
expected
to e x h i b i t l o w e r e n e r g y
oxidase
transitions, C D
and
m a g n e t i c C D s p e c t r a i n the n e a r - i n f r a r e d r e g i o n s h o u l d b e o b t a i n e d as h a v e b e e n r e c e n t l y r e p o r t e d i n T y p e I C u ( I I ) systems
(28).
It is i n t e r e s t i n g to c o n s i d e r the effect of exogenous l i g a n d s ( w h i c h h a v e p r e v i o u s l y b e e n s h o w n to b i n d to t h e C u ( I I ) a t o m i n n e r s p h e r e b y E S R studies ( 2 2 ) ) o n the o p t i c a l s p e c t r u m of galactose oxidase. Table II.
Electronic Transitions Exhibited by Galactose Circular
(While
Oxidase"
Dichroism
Absorbance
[Θ] [(dey cm )/ dMol] 2
X(nm)
v(cm~ )
314 445 630 775
31,800 22,500 15,900 12,900
1
1
e(M~
1
cm' )
1,370 1,155 1,015 905
1
\(nm)
v(
cm' )
314 395 500 610
31,800 25,300 20,000 16,400
1
+18,900 +3,000 +1,500 -8,200
Data from Ref. 27.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
15.
BEREMAN E T AL.
of)
Some 4 - and 5-Coordinate C o p p e r ( I I ) Complexes"
Copper(II) Site in Galactose Oxidase
269
(24)
CN- Effects &zz
g^
1:1 Complex
144/2.160' 145/2.159' 179/2.171 144/2.160' 163 187.2/2.220" 211/2.186* 163/2.244* 173/2.273
no no no no ? no no ? yes
9
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
h
e f 0 Λ
Excess stable stable stable stable reduces reduces reduces reduces stable
Cu(II) Cu(II) Cu(II) Cu(II)
-
Cu(I) Cu(I) Cu(I) Cu(I)
(F3Ac)2en == ^A^'-ethylenebisCtrifluoroacetylacetoniminato)copper(II). (Ac)2en = N,iV'-ethylenebis(acetylacetoniminato)copper(II). Data in D M F solvent. Data in C H O H solvent, 2
5
it w a s n o t i n d i c a t e d i n o u r p r e v i o u s l y r e p o r t e d a n i o n b i n d i n g studies t h a t i n n e r c o o r d i n a t i o n sphere b i n d i n g occurs, m o r e recent s u p e r h y p e r f i n e d e t e c t i o n of exogenous l i g a n d b i n d i n g c e r t a i n l y substantiates this fact. F u r t h e r changes i n the A
z z
c o m p o n e n t are q u i t e s i m i l a r to the fine studies
of C o l e m a n et a l . (29, 30) o n a r t i f i c i a l C u ( I I ) p r o t e i n s w h e r e exogenous l i g a n d s gave s u p e r h y p e r f i n e s t r u c t u r e to the E S R s p e c t r u m . )
A z i d e , for
e x a m p l e , at a p p r o x i m a t e l y 100:1 m o l a r excess causes a v e r y l a r g e b l u e shift of t h e 7 7 5 - n m p e a k n o t s h o w n h e r e a n d t h e 630- a n d 4 4 5 - n m a b s o r b a n c e b a n d s ( F i g u r e 3 ). A b s o r b a n c e m a x i m a n e a r 380 n m w i t h a z i d e h a v e b e e n a t t r i b u t e d to c h a r g e transfer c o m p l e x e s i n o t h e r p r o t e i n s ( 3 1 ) , b u t since the shift f r o m 445 is t h e same as for the 6 3 0 - n m b a n d i n e n e r g y terms, w e suggest t h a t this 3 8 0 - n m b a n d is r e l a t e d to the 4 5 0 - n m b a n d . C y a n i d e also u n i f o r m l y b l u e shifts the three l o w e n e r g y transitions. M o s t i m p o r t a n t l y , c o m m o n a n i o n exogenous l i g a n d s affect m a i n l y the i n t e n s i t y of the 3 1 4 - n m t r a n s i t i o n , b u t n o t its energy. G e n e r a l l y , t r a n s i t i o n i n t e n sity increases are t w o to three f o l d w i t h the b i n d i n g of s u c h a n i o n s . T h e s i m p l e fact that anions affect the e n e r g y of t h e l o w e s t e n e r g y t r a n s i t i o n s s i m i l a r l y suggests t h a t these are p r i m a r i l y d-d 314-nm transition m a y be
a transition w i t h
i n c h a r a c t e r w h i l e the u n i q u e c h a r g e transfer
character. A l l anions w h i c h b i n d to the C u ( I I ) i n galactose oxidase l o w e r t h e g
z z
and A
values ( 2 2 ) .
z z
b l u e shift i n the "d-d"
T h i s is consistent w i t h ( b u t n o t r e q u i r e d f o r ) a t r a n s i t i o n s (32, 3 3 , 3 4 ) .
Fe(CN)
6
3
" is the o n l y
a n i o n a m o n g the l i m i t e d ones w e h a v e s t u d i e d w h i c h p r o d u c e s a r e d shift i n the o p t i c a l b a n d s ( F i g u r e 4 ) . of F e ( C N )
6
3
A t 1:1, 5 : 1 , or 100:1 m o l a r ratios
~ to e n z y m e the same difference a b s o r b a n c e s p e c t r u m is
o b t a i n e d , a n d i t is consistent w i t h c o m p l e x f o r m a t i o n b e t w e e n galactose oxidase a n d the a n i o n . N a m e l y , the p o s i t i v e difference peaks at 455, 830,
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
270
BIOINORGANIC CHEMISTRY
II
a n d near-650 n m i n d i c a t e r e d shifts of the c o p p e r t r a n s i t i o n s . S i m i l a r to the other anions s t u d i e d , f e r r i c y a n i d e also leads to r e l a t i v e l y l a r g e i n creases i n a b s o r b a n c e .
A n a l o g o u s to the effects of a z i d e , for e x a m p l e , the
i n t e n s i t y effects of f e r r i c y a n i d e are m o r e p r o n o u n c e d o n the 445- a n d 7 7 5 - n m transitions t h a n o n the 6 3 0 - n m b a n d .
F u r t h e r e v i d e n c e for a
F e ( C N ) ~ - p r o t e i n c o m p l e x is the o b s e r v a t i o n that r e m o v a l of the a n i o n 3
6
is v e r y difficult, e.g., b y t r e a t m e n t w i t h a n a n i o n exchange r e s i n . Fe(CN) absorbance
G
4
'
also
apparently binds
spectrum
( F i g u r e 4)
to
the p r o t e i n ; the
difference
i n d i c a t e s a s m a l l r e d shift.
Again,
i n c r e a s i n g the m o l a r r a t i o of f e r r o c y a n i d e causes n o f u r t h e r a b s o r b a n c e changes.
T h e t w o anions a d d e d at i d e n t i c a l 5:1 m o l a r ratios to e n z y m e
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
cause a difference s p e c t r u m consistent w i t h a c o m p e t i t i v e b i n d i n g to the p r o t e i n ; the r e s u l t a n t difference a b s o r b a n c e is that e x p e c t e d for a n e q u a l p a r t i t i o n i n g of the e n z y m e b e t w e e n the t w o anions ( F i g u r e 4 ) . S i m i l a r results are o b t a i n e d b y relaxation Fe(CN) by 60%
6
3
of
added
1 9
F " or
of
m o n i t o r i n g the C u ( I I ) - m e d i a t e d
bulk water
(35,36).
For
example,
~ decreases t h e r e l a x i v i t y of the C u ( I I ) t o w a r d s w a t e r protons while F e ( C N )
6
4
" has little effect.
A d d i t i o n of e q u a l m o l a r
a m o u n t s of these anions p r o d u c e s a 3 0 % r e d u c t i o n . Effects s u c h as these o c c u r at as l i t t l e as 1:1 m o l a r ratios
(37).
T h e s e results c o u l d b e a t t r i b u t e d to a c h a n g e i n the r e d o x state of the e n z y m e c o p p e r (17,38). Ί
1
1
2.0
1
H o w e v e r , E S R spectra at 1:1 a n d 6:1 m o l a r
Γ
ι
/ \ / χ / \
1
1
1
1
1
1—^i
1
Γ
1.5
ο
M 1.0
5h
360
400
440
480
560
600
640
Figure 3. Copper absorbance spectrum of galactose oxidase (775 nm not recorded) (-) and the enzyme in the presence of sodium azide ( ). Spectra were recorded in 5-cm cells, 0.1 M sodium phosphate buffer, pH 7.0.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
15.
BEREMAN
E TA L .
271
Copper(II) Site in Galactose Oxidase
Figure 4. Visible absorbance spectrum of galactose oxidase ( ) and the difference absorbance spectra with 5:1 molar ratios of ferricyanide ( ), ferrocyanide (- · and the two together (- · -). The scale on the right is for both solutions containing Fe(CN) ~. Spectra were recorded in 4.5-cm double compartment cells; 0.1 M sodium phosphate buffer, pH 7.0. 3
6
ratios of F e ( C N ) ~ - t o - e n z y m e i n d i c a t e l i t t l e c h a n g e i n t h e s p e c t r a l i n 6
3
tensity ( F i g u r e 5 ) . T h u s , t h e effects seen i n a b s o r b a n c e a n d n u c l e a r s p i n r e l a x a t i o n at these ratios c a n n o t o b v i o u s l y b e a t t r i b u t e d to a n o x i d a t i o n of C u ( I I ) to C u ( I I I ) , f o r e x a m p l e (17,38).
T h e fact t h a t t h e difference
a b s o r b a n c e does n o t c h a n g e e v e n u p to 1 0 0 : 1 m o l a r r a t i o suggests t h a t as f a r as t h e l i g a n d field e n e r g y of t h e e n z y m i c c o p p e r a n d t h e t r a n s i t i o n p r o b a b i l i t i e s are c o n c e r n e d , t h e a d d i t i o n of f u r t h e r F e ( C N )
6
3
" is u n i m -
p o r t a n t . T h i s is of interest since t h e C u ( I I ) E S R s i g n a l (as i n F i g u r e 5 ) d i s a p p e a r s at these h i g h ratios. T h u s , t h e effects of f e r r i c y a n i d e o n t h e o p t i c a l a b s o r b a n c e a n d s p i n characteristics of t h e C u ( I I ) a r e a p p a r e n t l y d i s t i n c t . W h e t h e r o r n o t t h e differences are r e l a t e d to differences i n t h e observation temperature used, w h i l e a possible explanation ( 3 9 ) , remains a n i n t r i g u i n g b u t u n r e s o l v e d q u e s t i o n . F u r t h e r i n f o r m a t i o n o n t h e effects of F e ( C N )
6
3
' m a y b e p r o v i d e d b y x-ray spectroscopic experiments n o w
i n progress. A t i m e - d e p e n d e n t , a p p a r e n t r e d u c t i o n of F e ( C N )
6
3
" b y both the
h o l o - a n d a p o e n z y m e s is i n d i c a t e d b y difference a b s o r b a n c e
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
measure-
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
272
BIOINORGANIC
CHEMISTRY
II
Figure 5. Electron spin resonance spectrum of galactose oxidase (A) and galactose oxidase and Fe(CN) ~ at a 1:1 (B) and 1:6 (C) molar ratio spectra were recorded at 100°K, with a power of 20 mw (9.115 GHz) and a modulation amplitude of 2G; [galactose oxidase] = 0.5 mM. 3
6
merits, as i n F i g u r e 4. A t a 1:1 m o l a r r a t i o of f e r r i c y a n i d e - t o - e n z y m e , the difference s p e c t r u m ( F i g u r e 4) s l o w l y ( τ ι /
2
^ 7 h r ) changes to y i e l d a
single n e g a t i v e difference p e a k at 420 n m , the A
m a x
for F e ( C N )
6
3
~.
The
s o l u t i o n , too, loses its c h a r a c t e r i s t i c y e l l o w color c a u s e d b y F e ( C N ) d u r i n g this p e r i o d .
6
3
~
T h e f a c t t h a t this r e d u c t i o n is i n d e p e n d e n t of t h e
p r e s e n c e of the C u ( I I ) i n the e n z y m e a n d t h a t , w i t h t h e
holoenzyme,
t h e o n l y difference p e a k is that a t t r i b u t a b l e to the r e d u c t i o n of F e ( C N )
6
3
~
(i.e., n o c o p p e r difference peaks p r e s e n t ) i n d i c a t e s that the p r o t e i n , a n d n o t t h e C u ( I I ) , is i n v o l v e d i n this r e d o x r e a c t i o n . T h i s p r o t e i n p r o d u c t has not b e e n c h a r a c t e r i z e d . Non-Ligand
Active
Site Groups
O t h e r p r o t e i n groups w h i c h c o n t r i b u t e to the m o l e c u l a r d y n a m i c s of t h e e n t i r e c o p p e r a c t i v e site m u s t b e c o m p l e m e n t a r y to i n n e r - c o o r d i n a -
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
15.
BEREMAN E T A L .
273
Copper(II) Site in Galactose Oxidase
t i o n sphere l i g a n d s to the c o p p e r a t o m . O n e of the most d r a m a t i c results w h i c h first suggested
that a t r y p t o p h a n r e s i d u e m i g h t b e w i t h i n
the
a c t i v e site locus was the n e a r - u v - C D s p e c t r u m of galactose oxidase i n t h e presence of d i h y d r o x y a c e t o n e
( w h i c h is a n excellent s u b s t r a t e )
or
the a l d e h y d e p r o d u c t of the galactose r e a c t i o n , e a c h i n the absence
of
oxygen.
B i n d i n g of a substrate or p r o d u c t has e n o r m o u s effects o n the
t r y p t o p h a n o p t i c a l a c t i v i t y i n the 2 8 5 - 3 0 0 - n m r e g i o n (40).
Furthermore,
i n c o r p o r a t i o n of c o p p e r i n t o the a p o e n z y m e causes a 2 9 % r e d u c t i o n i n tryptophan
fluorescence
(41).
A holoenzyme-apoenzyme
difference a b
sorbance s p e c t r u m also c l e a r l y shows p e r t u r b a t i o n of a t y p t o p h a n e n v i r o n m e n t b y the c o p p e r a t o m ( 2 7 ) .
W h i l e these results c o u l d reflect v e r y
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
i n d i r e c t i n t e r a c t i o n s , selective o x i d a t i o n of the t r y p t o p h a n s i n galactose oxidase w i t h n - b r o m o s u c c i n i m i d e
( N B S ) revealed a critical structure-
f u n c t i o n r o l e for at least one r e s i d u e (41, 42).
G a l a c t o s e oxidase is i n a c
t i v a t e d as exactly t w o of its 18 t r y p t o p h a n s are o x i d i z e d . M o r e o v e r , the i n a c t i v a t i o n profile i m p l i e s that just one of the most r e a c t i v e residues i n the e n z y m e is p r o b a b l y associated w i t h the i n a c t i v a t i o n (41).
One mani
festation of the specificity of the r e a c t i o n is the o b s e r v a t i o n that t r y p t o phan
o p t i c a l a c t i v i t y associated
affected.
with
o n l y the 2 9 0 - n m
T h e 2 9 5 - n m p e a k is unaffected ( F i g u r e 6 ) .
e x t r e m u m is
A new extremum
80
60
θ
W 20
0
-20 -40 250
270
290
310
Wavelength ,nm Figure 6. Near-uv CD spectrum of galactose oxidase in 0.1 M sodium phosphate buffer, pH 7.0 ( ) and the NBS-modified enzyme; 2 trp equivalents oxidized (- · ·). Spectra were recorded in a 1-cm cell.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
274
BIOINORGANIC
CHEMISTRY
II
n e a r 250 n m reflects o p t i c a l a c t i v i t y of the o x i n d o l e p r o d u c t of the o x i dation reaction.
Fluorescence
is also m a r k e d l y affected;
residues o x i d i z e d a c c o u n t for 4 8 % of the t o t a l
fluorescence
the first t w o of the e n z y m e
w h i c h f u r t h e r i n d i c a t e s that t h e most r e a c t i v e t r y p t o p h a n residues h a v e u n i q u e properties
(41).
W h a t is most i n t e r e s t i n g a b o u t this m o d i f i c a t i o n is w h a t i t suggests a b o u t the m o l e c u l a r i n t e r a c t i o n s w i t h i n the c o p p e r a c t i v e site.
Prior
e x p e r i m e n t s e s t a b l i s h e d that w i t h the n a t i v e e n z y m e , galactose i n the a b s e n c e of
oxygen
m a r k e d l y reduces
its c o p p e r o p t i c a l a c t i v i t y , b u t
o x y g e n i n the absence of galactose has n o significant effect (40).
The
fact that galactose also m a r k e d l y reduces c o p p e r o p t i c a l a c t i v i t y i n the Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
N B S - i n a c t i v a t e d e n z y m e suggests that the i n a c t i v a t i o n i n v o l v e s a n effect o n catalysis s p e c i f i c a l l y r a t h e r t h a n b i n d i n g . T h e same influence c a n b e drawn from
fluorescence
data
(41).
W h a t is p a r t i c u l a r l y i n t e r e s t i n g
here is that w h i l e b i n d i n g of c o m m o n exogenous l i g a n d s i n v a r i a b l y leads to a u n i f o r m r e d u c t i o n i n e a c h of the o p t i c a l a c t i v i t y transitions, t h e i n a c t i v a t i o n b y selective t r y p t o p h a n o x i d a t i o n is associated w i t h a d e crease at 314 n m , b u t a n increase near 600 n m . W h i l e several alternate inferences are possible for the increase n e a r 600 n m , one p o s s i b i l i t y is that the c h a n g e i n c h e m i s t r y of the c o p p e r site as e x e m p l i f i e d b y a b o l i t i o n of catalysis i n this case m a y reflect a c o n v e r s i o n of the n o r m a l p s e u d o - s q u a r e
planar geometry
to a n e n v i r o n m e n t
c h a r a c t e r i z e d b y a decrease i n a x i a l u n p a i r e d e l e c t r o n d e n s i t y (see III).
T h i s m i g h t b e b r o u g h t a b o u t b y b o n d i n g changes a n d / o r
Table stereo
c h e m i c a l effects, b o t h of w h i c h c a n effect the a x i a l e l e c t r o n d e n s i t y . I n t e r e s t i n g l y , the c u p r i c i o n i n this m o d i f i e d p r o t e i n is r a p i d l y r e d u c e d b y c y a n i d e . A t a 10:1 m o l a r r a t i o , C N " effects c o m p l e t e r e d u c t i o n Table III. Spin Hamiltonian Parameters for Liganded and Non-Liganded Native and Modified Galactose Oxidase" Enzyme Form/Ligand (Ratio) Native C N " (1:1) N -(100:1) N B S oxidized C N " reduces C u ( I I ) Iodoacetamide alkylated" CN(1:1) 6
3
0
Ass
gzz
A χχ
176.5 155.8 166.8 166.0
2.273 2.226 2.262 2.267
28.8 41.6 27.2 38.0
2.048 2.035 2.049 2.055
30.1 45.2 27.9 43.0
2.058 2.048 2.040 2.065
177.8 160.1
2.268 2.234
30.5 38.8
2.035 2.041
30.6 43.0
2.064 2.051
" S p e c t r a were o b t a i n e d o n a V a r i a n E-9 X - b a n d s p e c t r o m e t e r at 110°K with a 100-KH. m o d u l a t i o n a m p l i t u d e of 2 G a u s s a n d a m i c r o w a v e power of 30 m w at 9.5 GHz w i t h p r o t o n G a u s s m e t e r a n d f r e q u e n c y c o u n t e r for spectral m a r k i n g .
{22). (42).
b c d
U4).
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
15.
275
Copper(II) Site in Galactose Oxidase
BEREMAN E T A L .
4
5
6
7
8
9
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
pH Figure 7. Flot of the pH-dependent values for the oxidation rate of β-methyl-O-galactopyranoside at 1.4 raM 0 by galactose oxidase (k ) and the rate of inactivation of galac tose oxidase by I m M iodoacetamide. The smooth curve for the former (O) is calculated using pK values 6.3 and 7.1 with k t —1350 sec . The curve for the latter process (Φ) corre sponds to pK values 6.3 and 7.6 with a pHindependent rate of 2.2 min' . 2
catapp
a
ca
1
a
1
(Table III).
A t o m i c a b s o r p t i o n analysis shows t h a t the c o p p e r is s t i l l
present i n the e n z y m e . T h e s e t w o facts c o u p l e d w i t h the 6 0 0 - n m r e g i o n i n t e n s i t y increase m i g h t b e i n t e r p r e t e d to suggest t h a t a s t e r e o c h e m i c a l d i s t o r t i o n a c c o m p a n i e s t r y p t o p h a n o x i d a t i o n i n galactose oxidase.
For
e x a m p l e , a s a d d l i n g of the p l a n a r e n v i r o n m e n t w o u l d b e e x p e c t e d l o w e r the r e d u c t i o n p o t e n t i a l of the C u ( I I ) - C u ( I )
to
couple.
T h e a c t i v e site role of one other p r o t e i n m o i e t y has b e e n e x a m i n e d i n d e t a i l . I n the first r e p o r t e d w o r k w i t h galactose oxidase, p H - r a t e d a t a w e r e r e p o r t e d that i m p l i c a t e d a n i m i d a z o l e g r o u p (11).
The pH-depend-
ence of b o t h the e n z y m i c r e a c t i o n as w e l l as e n z y m e i n a c t i v a t i o n b y i o d o a c e t a m i d e reflects the essential i o n i z a t i o n of a conjugate a c i d , p K = a
( F i g u r e 7)
(43).
6.3
I n a c t i v a t i o n is c a u s e d b y the specific a l k y l a t i o n of a
s i n g l e h i s t i d i n e at its N - 3 n i t r o g e n (43).
T h e alkaline
pH-dependence
m a y reflect the i o n i z a t i o n of a c o p p e r - b o u n d w a t e r m o l e c u l e ( v i d e s u p r a ) (36, 37, 43, 44).
L i k e the N B S - m o d i f i e d p r o t e i n , the a l k y l a t e d e n z y m e
s t i l l b i n d s sugar substrate, as i n d i c a t e d b y T h u s , catalysis is a g a i n u n i q u e l y affected. m a l l y a n d does not r e d u c e the C u ( I I )
fluorescence
experiments
(43).
M o r e o v e r , C N " also b i n d s n o r (43).
C o r r e l a t e d to this is the
near i d e n t i t y of the s p i n H a m i l t o n i a n parameters of n a t i v e a n d a l k y l a t e d forms
(Table III).
w i t h i o d o a c e t a m i d e (43).
F u r t h e r m o r e , the a p o e n z y m e
does not
react
T h e r e f o r e , the affected i m i d a z o l e is most l i k e l y
n o t a c o p p e r l i g a n d . T h e a p o e n z y m e result does suggest, h o w e v e r , t h a t
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
276
BIOINORGANIC
CHEMISTRY
II
a c r i t i c a l r e l a t i o n s h i p b e t w e e n h i s t i d i n e r e a c t i v i t y a n d the c o p p e r a t o m does exist. M o r e o v e r , t h e N B S - o x i d i z e d p r o t e i n i s n o t a l k y l a t e d , w h i c h establishes a c r i t i c a l l i n k b e t w e e n the r e a c t i v e t r y p t o p h a n a n d h i s t i d i n e
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
residues (43) w h i c h are p r o b a b l y b o t h w i t h i n the active site locus.
400
500
600 700 Waveiength.nm
800
900
Figure 8. Copper absorbance spectrum of galactose oxidase ( ) and difference absorbance spectrum with the alkylated enzyme as the reference and the unmodified enzyme as the sample ( ). Spectra were recorded in 5-cm cells, O.I M sodium phosphate buffer, pH 7.0. R e s u l t s w i t h galactose oxidase i l l u s t r a t e that i t is e x t r e m e l y
danger-
ous t o r e l y o n a n y one s p e c t r a l m e t h o d t o evaluate a p e r t u r b a t i o n o f a m e t a l system.
E S R has b e e n a sensitive p r o b e f o r i n n e r
sphere l i g a n d s b u t a p p a r e n t l y a r e l a t i v e l y p o o r one conformation recorded
i n galactose oxidase.
T h e difference
coordination
of metal
spectrum
w i t h the a l k y l a t e d e n z y m e as t h e reference a n d t h e
e n z y m e as the s a m p l e
is i n d i s t i n g u i s h a b l e f r o m
the n a t i v e
a b s o r b a n c e s p e c t r u m , i.e., a l k y l a t i o n v i r t u a l l y abolishes
chelate
w h i c h is native
enzyme's
copper
absorb-
a n c e ( F i g u r e 8 ) . B y C D , some s m a l l m a g n e t i c a n d / o r electric transitions are d e t e c t e d w i t h the a l k y l a t e d e n z y m e ( F i g u r e 9 ) .
T h e l a c k o f shifts
i n energies o f the c o p p e r a b s o r b a n c e transitions f u r t h e r argues against a c h a n g e i n l i g a t i o n . T h e decrease i n t r a n s i t i o n p r o b a b i l i t y c a n b e best r a t i o n a l i z e d b y the c o p p e r chelate a s s u m i n g a m o r e
perhaps
centrosym-
m e t r i c g e o m e t r y . I n a n y event, i n a d d i t i o n t o its role as a specific b a s e
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
15.
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
τ
-8—I 300
1
1
277
Copper(II) Site in Galactose Oxidase
BEREMAN E T A L .
1
1
1
1
1
1
1
I I ι 320 340 360 380 400 420 440 460 480 Wav6iength,nm
1
1
1
r
I I 1 1— 500 520 540 560
Figure 9. Copper CD spectrum of galactose oxidase ( ) and the alkyl ated enzyme (· · -) which were recorded in 5-cm cells in 0.1 M sodium phos phate buffer, pH 7.0 catalyst, the affected h i s t i d i n e also p r o b a b l y influences a c t i v i t y t h r o u g h a c r i t i c a l role i n m a i n t a i n i n g the c o p p e r chelate c o n f o r m a t i o n (43). G a l a c t o s e oxidase c a n i l l u s t r a t e h o w l i g a n d s , g e o m e t r y , a n d a c t i v e site g r o u p s t o g e t h e r p r o v i d e the basis for the s t r u c t u r e - f u n c t i o n p r o p e r ties o f a m e t a l a c t i v e site.
F i g u r e 10 s u m m a r i z e s m u t u a l i n t e r a c t i o n s
AQ t Histidine
L
^
Tryptophan oxidation prevents Alkylation .·
Figure 10. Summary of interdependent interactions between the three groups proposed to be at the active site. Q = ffuorscence quantum yield, AE = difference absorbance, ΑΘ = change in ellipticity (CD). The dis tance estimation is derived from fluorescence energy-transfer methods. f
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
278
BIOINORGANIC CHEMISTRY
II
w h i c h m a y p e r t a i n b e t w e e n the c o p p e r chelate a n d a c t i v e site groups i n galactose oxidase. A r e p r e s e n t a t i o n of the a c t i v e site w h i c h contains these s t r u c t u r a l elements is seen i n F i g u r e 11. M o d e l a n d s p e c t r a l studies h a v e suggested the i n - p l a n e l i g a n d s . T h a t the c o p p e r influences the t r y p t o p h a n is s h o w n b y difference
absorbance
and
fluorescence
quantum yield.
The N B S -
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
m o d i f i c a t i o n i n t u r n demonstrates the c r i t i c a l influence of the t r y p t o p h a n
Figure 11. Diagrammatic representation of active site which includes a four-coordinate copper complex, sugar-substrate bound outer-sphere to the Cu(II) atom, imidazole and indole rings, and nonpolar side chains (X). The distance between the Cu(H) and indole is estimated by fluorescence energytransfer methods. o n the c o p p e r chelate.
T h e s p e c t r a l o v e r l a p b e t w e e n the
fluorescence
s p e c t r u m of the t r y p t o p h a n a n d the c o p p e r a b s o r b a n c e at 314 n m a l l o w s one to estimate the distance b e t w e e n these groups b y a F o r s t e r e n e r g y transfer c a l c u l a t i o n ( 4 1 ) .
T h e t r y p t o p h a n is p r o b a b l y n o t closer t h a n
12 A , b u t e v e n at this distance, i t c o u l d c o m e i n contact w i t h a b o u n d s u g a r substrate.
M o s t l i k e l y , the i n d o l e r i n g is one c o m p o n e n t
of
an
a c t i v e site cluster of h y d r o p h o b i c side chains w h i c h is c r i t i c a l to t h e c o n f o r m a t i o n of the entire a c t i v e site. S t r u c t u r e - f u n c t i o n roles h a v e b e e n suggested for u n i q u e t r y p t o p h a n residues i n other c o p p e r p r o t e i n s as w e l l
(44,45,46).
Moreover, the
s i n g l e t r y p t o p h a n t h a t is q u e n c h e d b y i n c l u d i n g the c o p p e r
atom i n
a z u r i n is a p p a r e n t l y not i n contact w i t h t h e i n d o l e r i n g , as e v i d e n c e d b y metal replacement a n d phosphorescence
results
(45,46).
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
15.
BEREMAN E T A L .
Copper(II)
Site in Galactose
Oxidation of this tryptophan i n galactose alkylation of the histidine residue.
279
Oxidase
oxidase
also
prevents
Alkylation of the histidine residue
in turn markedly affects the fluorescence quantum yield of this tryptophan ( 43 ) and nearly abolishes the absorbance of the copper atom. T h e copper atom itself is also essential to the reactivity of this histidine. Thus, we appear to have a consistent set of highly interdependent components.
Not unexpectedly, the copper site cannot be fully understood
without considering its interactions with non-ligand protein groups. Acknowledgments
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
The work outlined here is a product of the cooperative efforts of the several graduate and undergraduate students who are members of the Bioinorganic Graduate Research Group. T h e Group is grateful for the support of the National Science Foundation (B404662) and the Graduate School of this University. Time-averaged E S R spectra were obtained with the aid of a Nicolet L a b 80 C A T ( N S F - M P S 7506183). R. D . B. is a recipient of a Camille and Henry Dreyfus Fellowship.
Literature Cited 1. Evans, G. W., Physiol. Rev. (1973) 54, 535. 2. Vänngård, T., "Copper Proteins," in "Biological Applications of Electron Spin Resonance," H. M. Swartz, J., R. Bolton, D. C. Borg, Eds., p. 441, Wiley-Interscienee, New York, 1972. 3. McMillin, D. R., Holwerda, R. Α., Gray, Η. B., Proc. Natl. Acad. Sci. USA (1974) 71, 1339. 4. McMillin, D. R., Rosenberg, R. G., Gray, Η. B., Proc. Natl. Acad. Sci. USA (1974) 71, 4760. 5. Bereman, R. D., Wang, F. T., Najdzionek, J., Braitsch, D. M., J. Am. Chem. Soc. (1976) 98, 7266. 6. Gray, H. B., ADV. CHEM. SER. (1977) 162, 145. 7. Spiro, T. S., Acc. Chem. Res. (1974) 7, 339. 8. "Biological and Biochemical Applications of Electron Spin Resonance," D. J. E. Ingram, Plenum, New York, 1969. 9. Richardson, J. S., Thomas, Κ. Α., Rubin, P. H., Richardson, D. C., Proc. Natl. Acad. Sci. USA (1975) 72, 1349. 10. Solomen, Ε. I., Dooley, D. M., Wang, R. H., Gray, H. B., Cerdonio, M., Mogno, F., Monani, G. L., J. Am. Chem. Soc. (1976) 98, 1029. 11. Cooper, J. Α., Smith, W., Bacila, M., Medina, H., J. Biol. Chem., (1959) 234, 445. 12. Amaral, D., Kelly-Falcoz, F., Horecker, B. L., Methods Enzymol. (1966) 9, 87. 13. Nobles, M. K., Madhosingh, C., Biochem. Biophys. Res. Commun. (1963) 12, 146. 14. Kosman, D. I., Ettinger, M. I., Weiner, R. E., Massaro, E. J., Arch. Biochem. Biophys. (1974) 165, 456. 15. Bauer, S., Blauer, G., Avigad, G., Isr. J. Chem. Proc. (1967) 5, 126. 16. Giblin, F., unpublished data. 17. Hamilton, G. Α., Libby, R. D., Hartzell, G. R., Biochem. Res. Commun. (1973) 53, 715.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV LAVAL on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch015
280
BIOINORGANIC C H E M I S T R Y
II
18. Kosman, D., unpublished data. 19. Blumberg, W., Horecker, B. L., Kelly-Falcoz, F., Peisach, J., Biochim. Biophys. Acta (1965) 96, 336. 20. Cleveland, L., Coffman, R. E., Coon, P., Davis, L., Biochemistry (1975) 14, 1108. 21. Giordano, R. S., Bereman, R. D., J. Am. Chem. Soc. (1974) 96, 1019. 22. Giordano, R. S., Bereman, R. D., Kosman, D. J., Ettinger, M. J.,J.Am. Chem. Soc. (1974) 96, 1023. 23. Katovic, V., Taylor, L. T., Busch, D. H., Inorg. Chem. (1971) 10, 458. 24. Bereman, R. D., Shields, G., unpublished data. 25. Kelly-Falcoz, F., Greenberg, H., Horecker, B. L., J. Biol. Chem. (1965) 240, 2966. 26. Peisach, J., Blumberg, W. E., Arch. Biochem. Biophys. (1974) 165, 691. 27. Ettinger, M. J., Biochemistry (1974) 13, 1242. 28. Solomon, E. J., Hare, L. W., Gray, H. B., Proc. Natl. Acad. Sci. USA (1976) 73, 1389. 29. Taylor, J. S., Mushak, P., Coleman, J. E., Proc. Natl. Acad. Sci. USA (1970) 67, 1410. 30. Taylor, J. S., Coleman, J. E., J. Biol. Chem. (1971) 246, 7058. 31. Williams, R. J. P., in "The Biochemistry of Copper," J. Peisach, P. Aisen, W. E. Blumberg, Eds., p. 131, Academic, New York. 32. Neiman, R., Kievelson, D., J. Chem. Phys. (1961) 35, 149. 33. Ibid. (1961) 35, 156. 34. Ibid. (1961) 35, 159. 35. Marwedel, B. J., Kurland, R. J., Kosman, D. J., Ettinger, M. J., Biochem. Biophys. Res. Commun. (1975) 63, 773. 36. Fabry, T. L., Kim, J. P., Titcomb, L. M., IBM Res. Rept. (1969) RW108, No. 11415. 37. Marwedel, B. J., Kurland, R. J., unpublished data. 38. Dyrkacz, G. R., Libby, R. D., Hamilton, G. Α., J. Am. Chem. Soc. (1976) 98, 626. 39. Nickerson, K. W., Phelan, N. F., Bioinorg. Chem. (1974) 4, 79. 40. Ettinger, M. J., Kosman, D.J.,Biochemistry (1974) 13, 1247. 41. Weiner, R. E., Ettinger, M. J., Kosman, D. J., Biochemistry, in press. 42. Kosman, D. J., Ettinger, M. J., Giordano, R. S., Bereman, R. D., Biochem istry, in press. 43. Kwiatkowski, L. D., Siconolfi, L., Ettinger, M. J., Weiner, R. E., Giordano, R. S., Bereman, R. D., Kosman, D. J., Arch. Biochem. Biophys., in press. 44. Morpurgo, L., Finazzi-Agró, Α., Rotilio, G., Mondovi, B., Biochem. Biophys. Acta (1974) 271, 292. 45. Finazzi-Agró, Α., Giovagnoli, C., Arigliano, L., Rotilio, G., Mondovi, B., Eur. J. Biochem. (1973) 34, 20. 46. Finazzi-Agró, Α., Rotilio, G., Avigliano, L., Guerrieri, P., Boffi, V., Mon dovi, B., Biochemistry (1970) 9, 2009. RECEIVEDJuly26, 1976.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.