15 Molecular Orbital Studies of Biological
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
Molecule Conformations L E M O N T B. KIER Massachusetts College of Pharmacy, 179 Longwood Ave., Boston, Mass. 02115
Over the past five years a number of studies have been reported on the prediction of biological molecule using molecular
orbital theory.
conformation
Several all-valence,
semi-
empirical molecular orbital methods have been used in these studies, with the extended Hückel theory (EHT)
being the
most widely used to date. The agreement between E H T -predicted conformations
of biological molecules and experi-
mental evidence has been quite significant.
A number of
hypotheses of drug mechanisms have been proposed, based on these calculations.
The utility of this approach and the
potential it affords for new insight into biological and mechanism research
warrant its incorporation
structure
into the
drug
armamentarium.
' T ' h e c o n f o r m a t i o n of a b i o l o g i c a l l y active m o l e c u l e v e r y l i k e l y p l a y s a n A
i m p o r t a n t p a r t i n the t o t a l s t r u c t u r a l characteristics c o n t r i b u t i n g to
a c t i v i t y . P r o n o u n c e d differences i n b i o l o g i c a l p o t e n c y i n a closely r e l a t e d c h e m i c a l series m a y w e l l be the result of m i n o r changes i n the p r e f e r r e d c o n f o r m a t i o n of these molecules. T h e result of these changes m a y be a n i n c o m p l e t e or a n i n a p p r o p r i a t e i n t e r a c t i o n w i t h a b i o l o g i c a l r e c e p t o r or e n z y m e . T h u s , some o p t i m u m p o s i t i o n i n g of essential features i n a n active m o l e c u l e m u s t b e necessary for b i o l o g i c a l efficacy. A k n o w l e d g e of c o n f o r m a t i o n a l preference is thus of v i t a l c o n c e r n . Evaluation
of
Conformation
T h e p r e d i c t i o n of the c o n f o r m a t i o n of m o l e c u l e s has b e e n of c o n s i d e r a b l e interest to b i o l o g i c a l scientists for m a n y years. E a r l y approaches 278
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
KIER
Biological
Molecule
279
Conformations
centered o n a n i n t u i t i o n b a s e d o n the p r e s u m e d r e p u l s i v e i n t e r a c t i o n of b u l k y groups across space.
T h i s gave rise to g e n e r a l rules of c o n f o r m a -
t i o n a l preference w h i c h h a d s o m e u t i l i t y w i t h h y d r o c a r b o n s .
Unfortu-
n a t e l y , this i n t u i t i o n w a s u n a b l e to p e r c e i v e the a t t r a c t i v e forces w h i c h are also a p a r t of the t o t a l influence o n c o n f o r m a t i o n . A t t r a c t i v e forces are p a r t i c u l a r l y p r o m i n e n t i n h e t e r o a t o m molecules, a n d these are p r e d o m i n a n t l y w h a t the b i o l o g i c a l scientist encounters. Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
T h e a d v e n t of x - r a y c r y s t a l l o g r a p h y has p e r m i t t e d the m a p p i n g of the atoms of molecules i n the s o l i d state. T h e r e l e v a n c e of these conformations to s o l u t i o n p h e n o m e n a is, h o w e v e r , obscure. I n the c r y s t a l , t h e m o l e c u l e s are closely p a c k e d , i n t e r a c t i n g w i t h e a c h other a n d w i t h gegenions i f present. T h i s is p r o b a b l y not the situation n o r m a l l y e n c o u n t e r e d i n the d i l u t e solutions of the b i o l o g i c a l m i l i e u x . T h u s , b i o l o g i c a l conclusions d e rived from x-ray-derived conformations must always be considered i n this l i g h t . A m o r e u s e f u l e x p e r i m e n t a l a p p r o a c h to p r e d i c t i n g c o n f o r m a t i o n i n a b i o l o g i c a l e n v i r o n m e n t is t h r o u g h the use of N M R analysis i n w a t e r . T h e s e d a t a , i f p r o p e r l y a n a l y z e d , g i v e a t i m e average c o n f o r m a t i o n w h i c h c a n be of c o n s i d e r a b l e v a l u e i n subsequent b i o l o g i c a l i n t e r p r e t a t i o n s . It is necessary, h o w e v e r , a c t u a l l y to have the c o m p o u n d u n d e r study, a n d f r e q u e n t l y the analysis of the N M R d a t a is e x t r e m e l y c o m p l e x . O t h e r s o l u t i o n t e c h n i q u e s for p r e d i c t i n g p r e f e r r e d c o n f o r m a t i o n i n c l u d e O R D , d i p o l e m o m e n t a n d spectroscopic m e t h o d s . E a c h is c a p a b l e of g i v i n g u s e f u l p a r t i a l i n f o r m a t i o n o n m o l e c u l a r c o n f o r m a t i o n . E a c h , of course, requires that the c o m p o u n d be a c t u a l l y a v a i l a b l e for study. Molecular
Orbital Prediction
of
Conformation >
A n o t h e r a p p r o a c h w h i c h has b e c o m e a v a i l a b l e i n the past d e c a d e is the use of a l l - v a l e n c e e l e c t r o n , s e m i e m p i r i c a l m o l e c u l a r o r b i t a l t h e o r y . T h i s a p p r o x i m a t i o n of q u a n t u m m e c h a n i c s makes it possible to c a l c u l a t e for f a i r l y large m o l e c u l e s , a t o t a l energy b e h a v i n g i n a n a p p r o x i m a t e l y p a r a l l e l f a s h i o n to the t r u e m o l e c u l a r energy.
T h e c o n s i d e r a t i o n of a l l
v a l e n c e electrons makes this c a l c u l a t e d t o t a l energy sensitive to the c o n f o r m a t i o n of the m o l e c u l e . T h u s , energy m i n i m i z a t i o n as a f u n c t i o n of b o n d angle v a r i a t i o n is possible, a n d the p r e d i c t i o n of a p r e f e r r e d c o n f o r m a t i o n is a consequence. T h e first of these m e t h o d s was d e v e l o p e d b y H o f f m a n n i n 1963 ( 1 ) a n d is k n o w n as extended H i i c k e l t h e o r y ( E H T ) .
B r i e f l y , the m e t h o d
uses H i i c k e l f o r m a l i s m ; h o w e v e r , e x p l i c i t c o n s i d e r a t i o n of
non-bonded
interactions a n d a l l o v e r l a p integrals are a refinement. Slater o r b i t a l s are u s e d , a n d the c o m p u t a t i o n s r e q u i r e o n l y one p a r a m e t e r , the v a l e n c e state i o n i z a t i o n p o t e n t i a l for the C o u l o m b i n t e g r a l a n d i n d i r e c t l y f o r the reso-
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
280
BIOLOGICAL CORRELATIONS
T H E HANSCH
APPROACH
Figure 1. Predicted conformation of acetylcholine in "muscarinic" variant n a n c e i n t e g r a l . T h e t h e o r y , merits, a n d evaluations of E H T h a v e reported
been
(2-4).
M o r e r e c e n t l y , a n a l l v a l e n c e electron, s e m i e m p i r i c a l m o l e c u l a r o r b i t a l t h e o r y k n o w n as the C o m p l e t e N e g l e c t of D i f f e r e n t i a l O v e r l a p ( C N D O ) has b e e n p r o p o s e d b y P o p l e b a s e d o n self-consistent field ( S C F ) f o r m a l ism (5).
A l t h o u g h this m e t h o d uses a m o r e s o p h i s t i c a t e d a p p r o x i m a t i o n
of the w a v e f u n c t i o n , i t neglects differential o v e r l a p . C o m p a r i s o n s of these t w o methods r e v e a l t h e i r r e l a t i v e strengths a n d shortcomings (4).
I n g e n e r a l , the C N D O m e t h o d is s u p e r i o r f o r charges,
E H T p r e d i c t i n g greatly exaggerated values.
T h e m a j o r v a l u e of E H T
lies i n its a b i l i t y to p r e d i c t c o r r e c t l y t h e p r e f e r r e d c o n f o r m a t i o n . T h i s has b e e n d e m o n s t r a t e d for n u m e r o u s h y d r o c a r b o n s for a v a r i e t y of h e t e r o a t o m molecules
(1)
and more
recently
(6,7).
A l a r g e n u m b e r of m o l e c u l a r o r b i t a l p r e d i c t i o n s of b i o l o g i c a l m o l e c u l e conformations h a v e b e e n a c c o m p l i s h e d u s i n g E H T . T h e r e c o r d of agreement b e t w e e n c a l c u l a t e d a n d e x p e r i m e n t a l values has b e e n excellent. A significant a m o u n t of u s e f u l i n f o r m a t i o n has e m e r g e d f r o m these p r e d i c t i o n s p e r t i n e n t to the s t r u c t u r e - a c t i v i t y r e l a t i o n s h i p s , the c o n s i d e r a t i o n of m o l e c u l a r m e c h a n i s m s , a n d the r a t i o n a l e for n e w d r u g d e s i g n
(7).
W e a t t e m p t to s u m m a r i z e M O c o n f o r m a t i o n studies t h r o u g h A p r i l 1972
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
KiER
Biological
Molecule
281
Conformations
a n d at the same t i m e to assess the v a l i d i t y of
these p r e d i c t i o n s i n
the l i g h t of e x p e r i m e n t a l e v i d e n c e a n d b i o l o g i c a l k n o w l e d g e . Muscarinic
Agents
T h e first a p p l i c a t i o n of a l l - v a l e n c e electron M O theory to p r e d i c t the c o n f o r m a t i o n of a n e u r o t r a n s m i t t e r was r e p o r t e d i n 1967 o n a c e t y l -
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
c h o l i n e ( 8 ). U s i n g E H T , the c o n f o r m a t i o n of a c e t y l c h o l i n e was p r e d i c t e d to assume a n a p p r o x i m a t e l y g a u c h e r e l a t i o n s h i p b e t w e e n the n i t r o g e n a n d ether o x y g e n atoms. T h i s is i n agreement w i t h e x p e r i m e n t a l e v i d e n c e d e r i v e d f r o m aqueous s o l u t i o n N M R studies ( 9 ) .
Some
flexibility
was
p r e d i c t e d for the C O - O b o n d so that the d i m e n s i o n s b e t w e e n the heteroatoms w e r e p r e d i c t e d as s h o w n i n F i g u r e 1. I n the same s t u d y E H T p r e d i c t i o n s w e r e r e p o r t e d for the potent m u s c a r i n i c agents m u s c a r i n e , F i g u r e 2, a n d m u s c a r o n e , F i g u r e 3 ( 8 ) .
The
e x p e r i m e n t a l evidence a v a i l a b l e for c o m p a r i s o n are x-ray analyses of t h e m u s c a r i n e (10)
a n d m u s c a r o n e (80)
crystals, w i t h w h i c h the p r e d i c t e d
conformations agree. S u p e r p o s i t i o n i n g these three potent m u s c a r i n i c agents, i n their p r e f e r r e d conformations r e s u l t e d i n the o b s e r v a t i o n of a c o m m o n p a t t e r n of s i m i l a r l y c h a r g e d s t r u c t u r a l features. T h e p a t t e r n , F i g u r e 4, was p r o p o s e d as the m u s c a r i n i c p h a r m a c o p h o r e (8).
T h i s p a t t e r n , p r e d i c t e d f r o m theo-
r e t i c a l considerations, bears a s t r i k i n g s i m i l a r i t y to the m u s c a r i n i c p h a r m a c o p h o r e p r o p o s e d b y B e c k e t t b a s e d o n extensive s t r u c t u r e - a c t i v i t y studies
Figure 2.
Predicted conformation muscarine
of
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
282
BIOLOGICAL CORRELATIONS
Figure
(11).
Predicted conformation muscarone
of
R e c e n t M O c a l c u l a t i o n s o n these molecules u s i n g a m o d i f i e d C N D O
method
(12)
and
an
( I N D O ) m e t h o d (13) and
3.
T H E HANSCH APPROACH
intermediate
Neglect
of
Differential Overlap
are i n g e n e r a l agreement w i t h E H T p r e d i c t i o n s
e x p e r i m e n t a l evidence.
A s t u d y of the potent m u s c a r i n i c
agent,
S ( + ) - a c e t y l - / ^ m e t h y l c h o l i n e u s i n g b o t h N M R a n d m o l e c u l a r r o t a t i o n to p r e d i c t the s o l u t i o n c o n f o r m a t i o n , r e v e a l e d that this m o l e c u l e the p a t t e r n p r e d i c t e d i n F i g u r e 4 (14), of these p r e d i c t i o n s .
Figure 4.
assumes
thus l e n d i n g s u p p o r t to the v a l i d i t y
Proposed muscarinic cophore
pharma-
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
Biological
KIER
Molecule
283
Conformations
C a l c u l a t i o n s o n o x o t r e m o r i n e (15),
p r e s u m e d to be a C N S m u s c a r i n i c
agent, r e v e a l e d that this m o l e c u l e , i n its p r e d i c t e d c o n f o r m a t i o n ( F i g u r e 5) m i m i c k s this p r e d i c t e d m u s c a r i n i c p h a r m a c o p h o r e .
T h e assumption
is m a d e that the e l e c t r o n i c c h a r a c t e r of the t r i p l e b o n d is the receptor e q u i v a l e n t of the ether o x y g e n a t o m i n a c e t y l c h o l i n e as p r o p o s e d B e b b i n g t o n (16).
by
T h e s e c a l c u l a t i o n s s u p p o r t his p r o p o s a l a n d r e v e a l
h o w oxotremorine m a y m e e t the s t r u c t u r a l r e q u i r e m e n t s of a m u s c a r i n i c
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
agent.
Figure 5. Nicotinic
Predicted conformation
of
oxotremonne
Agents
T h e p r e d i c t i o n of the p r e f e r r e d c o n f o r m a t i o n of the n i c o t i n i c m o n o c a t i o n was r e p o r t e d i n 1968 (17).
T w o c o n f o r m a t i o n s w e r e p r e d i c t e d to
coexist ( F i g u r e 6 ) i n agreement w i t h N M R studies (18). m o d i f i e d C N D O calculations are i n agreement (12).
Subsequent
O n e of these n i c o t i n e
conformers, F i g u r e 6 ( t o p ) , presented a n i n t e r n i t r o g e n distance close to the o n i u m g r o u p - c a r b o n y l o x y g e n distance p r e v i o u s l y p r e d i c t e d for acet y l c h o l i n e . It is necessary, i n this c o m p a r i s o n , to i n v o k e a p r e d i c t e d c o n f o r m a t i o n of a c e t y l c h o l i n e i n w h i c h the flexible c a r b o n y l g r o u p is r o t a t e d 60° as s h o w n i n F i g u r e 7. It w a s p r e d i c t e d that F i g u r e 6 ( t o p ) is the act i v e c o n f o r m e r of n i c o t i n e a n d that F i g u r e 7 is the n i c o t i n i c c o n f o r m a t i o n of a c e t y l c h o l i n e .
T h e n i c o t i n i c p h a r m a c o p h o r e w a s p r o p o s e d to b e as
s h o w n i n F i g u r e 8. A s a result of these t w o studies (8, 17),
it was p r o p o s e d that a c e t y l -
c h o l i n e exhibits t w o different p h a r m a c o l o g i c a l actions b y v i r t u e of its b e i n g c a p a b l e of p r e s e n t i n g to the receptors, t w o different groups of atoms i n the a c e t y l c h o l i n e m o l e c u l e i n t w o different c o n f o r m a t i o n s of the c a r bonyl group. A n E H T c a l c u l a t i o n o n the potent n i c o t i n i c agent p h e n y l c h o l i n e ether s h o w e d t h a t this m o l e c u l e prefers a g a u c h e c o n f o r m a t i o n of the hetero-
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
284
BIOLOGICAL
Figure 6.
CORRELATIONS
Predicted nicotine
T H E HANSCH
APPROACH
conformations
Figure 7. Predicted conformation of acetylcholine in "nicotinic" variant
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
Biological
KIER
Molecule
0 8 4.85
X
285
Conformations
± 0.1
I Θ Ν—
A
Figure 8. Proposed nicotinic pharmacophore
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
atoms, F i g u r e 9 ( 1 9 ) .
T h e p h e n y l r i n g w a s f o u n d to p r e f e r a c o n f o r m a t i o n
r e l a t i v e to the side c h a i n so t h a t a n ortho p o s i t i o n is a b o u t 4.7 A f r o m the o n i u m n i t r o g e n . T h i s p r e d i c t i o n of a g a u c h e side c h a i n c o n f o r m a t i o n i n p h e n y l c h o l i n e ether is i n agreement f o u n d for x y l o c h o l i n e (20).
w i t h the c r y s t a l c o n f o r m a t i o n
P r e v i o u s studies h a v e s h o w n a c o r r e l a t i o n
b e t w e e n the f r o n t i e r electron d e n s i t y (21) (22)
a n d the e l e c t r o p h i l i c r e a c t i v i t y
of this p o s i t i o n a n d n i c o t i n i c a c t i v i t y . T h e c o n f o r m a t i o n a l p r e d i c
t i o n of the m o l e c u l e thus reveals that the ortho p o s i t i o n is b o t h s p a t i a l l y a n d e l e c t r o n i c a l l y c a p a b l e of f u l f i l l i n g the s t r u c t u r a l r e q u i r e m e n t s
for
n i c o t i n i c a c t i v i t y as p r e v i o u s l y p r o p o s e d ( F i g u r e 8 ) . R e c e n t E H T c a l c u l a t i o n s o n the neostigmine m o l e c u l e h a v e l e d to a c o n f o r m a t i o n p r e d i c t i o n l o c a t i n g the o n i u m g r o u p a b o u t 4.5 A f r o m the carbonyl oxygen cophore
(81)
i n s u p p o r t of the p o s t u l a t e d n i c o t i n i c p h a r m a
(17).
Cholinesterase
Inhibitor
T h e first a p p l i c a t i o n of a l l - v a l e n c e M O theory to a p h a r m a c o l o g i c a l l y active agent was the E H T s t u d y of the cholinesterase i n h i b i t o r 2 - f o r m y l N - m e t h y l p y r i d i n i u m oxime
(2-PAM ) +
(23).
T h e aldoxime group
f o u n d to prefer a c o n f o r m a t i o n p e r p e n d i c u l a r to the r i n g p l a n e .
was Crys-
t a l l o g r a p h i c d a t a i n d i c a t e that the a l d o x i m e g r o u p is c o p l a n e r w i t h t h e r i n g i n the s o l i d state (24).
T h e c r y s t a l is y e l l o w w h i l e a n a c i d s o l u t i o n
is colorless, l e n d i n g s u p p o r t to the b e l i e f that the M O c a l c u l a t i o n s cor rectly predict a non-conjugated
f o r m a n d that calculations of this k i n d
are r e l e v a n t to d i l u t e s o l u t i o n p h e n o m e n a b u t not necessarily to c r y s t a l structure
(20).
Histamine M o l e c u l a r o r b i t a l calculations l e d to the p r e d i c t i o n that t w o d i s t i n c t l y different conformations of e q u a l preference p r e v a i l e d for h i s t a m i n e ( F i g ure 10) (25).
T h e c o n f o r m a t i o n of F i g u r e 10 ( b o t t o m ) w a s p r e d i c t e d to
exist w i t h o u t a n y h y d r o g e n b o n d i n g b e t w e e n a n o n i u m h y d r o g e n a n d the r i n g n i t r o g e n a t o m . R e c e n t N M R analysis of a n aqueous s o l u t i o n of h i s t a m i n e r e v e a l e d that the t w o conformers p r e d i c t e d f r o m E H T - M O d o i n fact
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
286
CORRELATIONS
T H E HANSCH
APPROACH
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
BIOLOGICAL
Figure 10.
Predicted histamine
conformations
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
KiER
Biological
Molecule
exist i n e q u a l p r o p o r t i o n s {26).
287
Conformations
F u r t h e r m o r e , the p r e d i c t i o n of no i n t r a
m o l e c u l a r h y d r o g e n b o n d i n g i n aqueous s o l u t i o n has also b e e n c o n f i r m e d e x p e r i m e n t a l l y (27).
A recent m o d i f i e d C N D O c a l c u l a t i o n o n h i s t a m i n e
p r e d i c t s o n l y a single m o d i f i e d g a u c h e c o n f o r m a t i o n to p r e d o m i n a t e
(28).
O n t h e basis of the p r e d i c t i o n of t w o coexisting conformers of h i s t a m i n e , the hypothesis w a s p r o p o s e d that one c o n f o r m e r w a s responsible for the H i - r e c e p t o r a c t i v i t y a n d the other for H - r e c e p t o r a c t i v i t y (25).
The
2
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
top c o n f o r m e r i n F i g u r e 10 w a s p r o p o s e d as the H i - r e c e p t o r agonist o n the basis of a n i n t e r n i t r o g e n distance c o m p a r a b l e w i t h the p r e s u m e d i n t e r n i t r o g e n distance i n the a n t i h i s t a m i n i c t r i p r o l i d i n e . T h e b o t t o m c o n f o r m e r i n F i g u r e 10 was thus p r o p o s e d as b e i n g the agonist for H - r e 2
ceptor a c t i v i t y . T h i s latter p r e d i c t i o n thus p r o v i d e s a r a t i o n a l e for the synthesis of p o t e n t i a l a c i d antisecretory agents.
Figure 11.
Predicted serotonin
conformation
Serotonin T h e p r e f e r r e d c o n f o r m a t i o n of serotonin ( 5 - h y d r o x y t r y p t a m i n e ) was p r e d i c t e d u s i n g E H T - M O ( F i g u r e 11) ( 2 9 ) .
A modified C N D O calcu
l a t i o n p r e d i c t s a p r e f e r r e d c o n f o r m a t i o n i n w h i c h the C—Ν b o n d n e a r l y eclipses the r i n g - C b o n d w i t h the o n i u m g r o u p l y i n g over the b e n z e n e r i n g (30).
A n I N D O c a l c u l a t i o n p r e d i c t s a strong preference for a c o n
f o r m a t i o n i n w h i c h the C - N b o n d eclipses the r i n g - C b o n d a n d the o n i u m
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
288
BIOLOGICAL CORRELATIONS
g r o u p lies over the i n d o l e 2 p o s i t i o n ( 3 1 ) . m o l e c u l e (82) (29)
T H E HANSCH APPROACH
A recent N M R analysis of the
reports a trans preference, i n s u p p o r t of the E H T s t u d y
a n d i n contrast to the p r e d i c t i o n s b y other methods. T h e E H T p r e -
d i c t e d distance b e t w e e n the t w o n i t r o g e n atoms is v e r y close to the i n t e r n i t r o g e n distance f o u n d i n the c o m p e t i t i v e i n h i b i t o r l y s e r g i c a c i d d i e t h y l a m i d e ( L S D ) . It is reasonable to p r e s u m e that a c o m p e t i t i v e i n h i b i t o r m u s t p a r t i a l l y m i m i c the p h a r m a c o p h o r e
of the agonist; h e n c e
these
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
s i m i l a r distances are consistent w i t h the p r e d i c t e d c o n f o r m a t i o n .
Figure 12.
Predicted side chain conformations steroids
of 17-keto
It is i n t e r e s t i n g to c o n t e m p l a t e the s t r u c t u r a l s i m i l a r i t y p r e d i c t e d f o r L S D a n d serotonin a n d the k n o w n C N S a c t i v i t y of the f o r m e r a n d to c o m p a r e this w i t h the C N S a c t i v i t y a n d structure of the c a n n i b i n o l m e t a b o l i t e , l l - h y d r o x y - A - t e t r a h y d r o c a n n a b i n o l . It is c o n c e i v a b l e 9
that
s i m i l a r m e c h a n i s m s m a y p r e v a i l i n the C N S as a result of s i m i l a r stereoc h e m i c a l presentations of c o m p a r a b l e c h a r g e d atoms to the serotonin receptor.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
KiER
Pregnane
Biological
Molecule
289
Conformations
Steroids
T h e side c h a i n conformations of progesterone,
corticosterone,
Cortisol w e r e p r e d i c t e d u s i n g E H T - M O ( F i g u r e 12) (32).
and
A l l three side
chains w e r e p r e d i c t e d to f o r m a p l a n e w i t h the 17«-substituent. T h e p r e d i c t i o n of the progesterone side c h a i n c o n f o r m a t i o n is w i t h i n 30° of a s o l u t i o n d i p o l e m o m e n t s t u d y (33).
T h e p r e d i c t i o n s of the corticosterone
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
a n d Cortisol conformations are i n close a g r e e m e n t w i t h e x p e r i m e n t a l r e sults f r o m i n f r a r e d a n d N M R studies (34, 35).
A reflection of t h e β - f a c e
of Cortisol, i n its p r e d i c t e d c o n f o r m a t i o n , is s h o w n i n F i g u r e 13.
ΘΝ
C
Figure
13.
Predicted β-face Cortisol
3
pattern
of
P o r t i o n s of the p r e d i c t e d Cortisol p a t t e r n of c h a r g e d atoms ( F i g u r e 13) w e r e o b s e r v e d to be c o m p a r a b l e w i t h c h a r g e d patterns for either h i s t a m i n e (25)
or serotonin (29).
Since these t w o amines h a v e b e e n i m
p l i c a t e d as b e i n g i n f l a m m a g e n i c (36) m a t o r y agent (37),
a n d Cortisol is a potent a n t i - i n f l a m
i t was p o s t u l a t e d that Cortisol m i g h t evoke this a c t i o n
b y a n i n t e r a c t i o n w i t h either or b o t h h i s t a m i n e a n d serotonin receptors b y v i r t u r e of these c o m m o n s t r u c t u r a l features. T h e hypothesis has r e c e i v e d some e x p e r i m e n t a l s u p p o r t f r o m the recent o b s e r v a t i o n that Cortisol is effective i n c o m p e t i n g for h i s t a m i n e b i n d i n g sites o n b i o p o l y m e r s (38).
A subsequent E H T - M O s t u d y i n v o l v -
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
290
BIOLOGICAL CORRELATIONS
T H E HANSCH
APPROACH
i n g n o n - s t e r o i d a l a n t i - i n f l a m m a t o r y agents i n c l u d i n g i n d o m e t h a c i n c o n firmed
that the c o m m o n s t r u c t u r a l patterns p r e d i c t e d p r e v a i l e d i n these
drugs ( 3 9 ) .
T h e p r e d i c t e d c o n f o r m a t i o n of i n d o m e t h a c i n is i n agreement
w i t h the r e p o r t e d c r y s t a l structure of this m o l e c u l e (83).
It is i n t e r e s t i n g
to c o n t e m p l a t e the roles of serotonin as a platelet aggregation p r o m o t e r a n d the c o m m o n a n t i - i n f l a m m a t o r y agents as platelet a g g r e g a t i o n i n h i b i
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
tors as a possible p a r a l l e l to this hypothesis of a n t i - i n f l a m m a t o r y a c t i v i t y . Adrenergic
Agents
E H T - M O p r e d i c t i o n s of e p h e d r i n e a n d p s e u d o - e p h e d r i n e h a v e b e e n r e p o r t e d ( F i g u r e 14) (2)
(35).
T h e c o n f o r m a t i o n p r e d i c t e d for e p h e d r i n e
is i n agreement w i t h N M R analysis (41, 42);
h o w e v e r , the p r e d i c t i o n
of the p s e u d o - e p h e d r i n e c o n f o r m a t i o n agrees o n l y w i t h a m i n o r c o n t r i b u t o r to the s o l u t i o n e q u i l i b r i u m (42).
T h e p r e d i c t e d c o n f o r m a t i o n for
the α-adrenergic agonist, n o r e p i n e p h r i n e , prese^ s the same p h a r m a c o p h o r e (43). (44).
T h i s p r e d i c t i o n is i n agreement w i t h the c r y s t a l c o n f o r m a t i o n
O t h e r studies u s i n g the I N D O
(45)
and C N D O
(84)
methods
p r e d i c t a trans a n d a g a u c h e c o n f o r m a t i o n to coexist.
Figure
14.
Predicted conformations and pseudoephedrine
of
ephedrine
It is w e l l k n o w n that a n u n s u b s t i t u t e d c a t e c h o l a m i n e s u c h as n o r e p i n e p h r i n e or a m o n o m e t h y l d e r i v a t i v e l i k e e p i n e p h r i n e or e p h e d r i n e is p r e d o m i n a n t l y α-adrenergic. I n c r e a s i n g the b u l k of the m o n o a l k y l s u b -
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
KiER
Biological
Molecule
291
Conformations
stituent i n this series increases ^ - a d r e n e r g i c a c t i v i t y w h i l e at the same t i m e α-adrenergic a c t i v i t y is o b l i t e r a t e d . T h u s , i s o p r o p y l n o r e p i n e p h r i n e ( i s o p r o t e r a n o l ) is a s t a n d a r d for almost p u r e ^ - a d r e n e r g i c a c t i v i t y . T w o theories h a v e b e e n p r o p o s e d to e x p l a i n this r e v e r s i n g p a i r of trends i n the c a t e c h o l a m i n e series. O n e t h e o r y proposes that the i n c r e a s i n g b u l k of the N - s u b s t i t u e n t increases the b a r r i e r to r o t a t i o n b e t w e e n the m e t h y l e n e groups so that the ease of a s s u m i n g a gauche Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
w i l l b e a f u n c t i o n of the N - s u b s t i t u e n t b u l k (46).
conformation
T h e theory t h e n p r o
poses t h a t the different conformers, gauche a n d trans, cause t w o different reactions to occur, e a c h c h a r a c t e r i s t i c of the a- or β-adrenergic receptor. T h e second t h e o r y proposes that the N - s u b s t i t u e n t influences the c h a r g e o n the o n i u m g r o u p w h i c h influences the r e a c t i v i t y to one or the other a d r e n e r g i c receptor
(47).
A recent s t u d y u s i n g E H T for c o n f o r m a t i o n a n d C N D O a n d ab
initio
calculations for c h a r g e densities has b e e n r e p o r t e d o n the c a t e c h o l a m i n e series n o r e p i n e p h r i n e , e p i n e p h r i n e , N - e t h y l n o r e p i n e p h r i n e , a n d i s o p r o t e r a n o l (48).
T h e s e studies r e v e a l e d no p r e d i c t e d c h a n g e i n the trans
preference for a n y of the series. F u r t h e r , t h e y s h o w e d a n almost i d e n t i c a l energy of the b a r r i e r f r o m a trans to a gauche c o n f o r m a t i o n for a l l m e m bers of the series. T h e s e results argue against the t h e o r y of v a r i a b l e flexi b i l i t y of the m e t h y l e n e - m e t h y l e n e b o n d
(46).
C h a r g e densities w e r e
c a l c u l a t e d o n s i m u l a t e d o n i u m systems u s i n g b o t h C N D O a n d ab m e t h o d s (48).
initio
T h e s e results r e v e a l e d no a p p r e c i a b l e c h a n g e i n o n i u m
charge i n the series, w h i c h is at v a r i a n c e w i t h the charge t h e o r y
(47).
A n alternate t h e o r y was p r o p o s e d , b a s e d o n these c a l c u l a t i o n s .
It
was p o s t u l a t e d that α-adrenergic a c t i v i t y r e q u i r e s a n o n i u m h y d r o g e n a t o m , p r o b a b l y as a h y d r o g e n b o n d donor.
T h e ^ - a d r e n e r g i c receptor,
h o w e v e r , w a s p o s t u l a t e d to r e q u i r e a n a l k y l g r o u p at the N - s u b s t i t u e n t p o s i t i o n . It was p r o p o s e d that this N - s u b s t i t u e n t was i n v o l v e d i n a d i s p e r s i o n i n t e r a c t i o n w i t h the r e c e p t o r a n d was o p t i m a l w h e n there w a s a b r a n c h e d h y d r o c a r b o n s u c h as a n i s o p r o p y l g r o u p . T h e s e authors r a i s e d the i n t r i g u i n g suggestion that the o n i u m g r o u p w a s p e r h a p s not essential for ^ - a d r e n e r g i c a c t i v i t y a n d that a m e t h y l e n e g r o u p c o u l d r e p l a c e i t . It was n o t e d that s u c h a c o m p o u n d h a d r e c e n t l y b e e n m a d e a n d r e p o r t e d (49).
T h i s c o m p o u n d , the m e t h y l e n e a n a l o g of i s o p r o t e r a n o l was f o u n d
to h a v e modest ^ - a d r e n e r g i c a c t i v i t y (49).
A p a r a l l e l was also d r a w n
b e t w e e n this hypothesis a n d the structure a n d ^ - a d r e n e r g i c a c t i v i t y of prostaglandin E i
(48).
Dopamine A n E H T c a l c u l a t i o n o n d o p a m i n e , c o n s i d e r i n g the p h e n y l - m e t h y l e n e a n d m e t h y l e n e - m e t h y l e n e b o n d s a n d h o l d i n g the h y d r o x y l s out of the
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
292
BIOLOGICAL CORRELATIONS
T H E HANSCH
APPROACH
Θ H N 3
i
θ
I
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
θ
>
Ν
0 Π Figure 15. Predicted conforma tion of gamma-aminobutyric acid r i n g p l a n e l e d to a gauche p r e d i c t i o n for the side c h a i n ( 5 0 ) . E H T c a l c u l a t i o n , a p p a r e n t l y c o n s i d e r i n g o n l y the b o n d , r e p o r t e d a trans p r e f e r e n c e (85).
Another
methylene-methylene
A C N D O - t y p e c a l c u l a t i o n has
r e p o r t e d a trans a n d g a u c h e preference (84).
R e c a l c u l a t i o n of t h e m o l e
c u l e h o l d i n g the h y d r o x y l s i n the r i n g p l a n e leads to a trans side c h a i n conformation
(77).
C r y s t a l analysis p r e d i c t s
p r e d i c t s b o t h trans a n d g a u c h e γ-Aminobutyric
(86)
while
NMR
Acid
T h e p r e f e r r e d conformations aminobutyric acid c a l c u l a t e d (51).
trans
(85).
(GABA)
of the i n h i b i t o r y transmitter
gamma-
a n d a G A B A - l i k e agent, m u s c i m o l ,
T h e p r e d i c t e d conformations
were
( F i g u r e 15) r e v e a l a close
c o r r e s p o n d e n c e b e t w e e n the o n i u m g r o u p a n d c h a r g e d o x y g e n distance i n the t w o molecules.
It has r e c e n t l y b e e n r e p o r t e d that b i c u c u l l i n e is a
specific i n h i b i t o r of G A B A
(52).
E x a m i n a t i o n of D r e i d i n g m o d e l s
b i c u c u l l i n e or the free a c i d r e v e a l that this m o l e c u l e , as a
of
protonated
salt, c a n assume a reasonable c o n f o r m a t i o n i n w h i c h the o n i u m to o x y g e n distance is c o m p a r a b l e
w i t h the p r e d i c t i o n for G A B A
R e c e n t c a l c u l a t i o n s c o n f i r m this i n t e r a t o m i c distance
and
muscimol.
(77).
Τ hyrontimetics T r i s u b s t i t u t e d t h y r o n i n e analogs h a v e b e e n s t u d i e d u s i n g E H T to p r e d i c t the p h e n o x y p h e n y l c o n f o r m a t i o n stituents ( F i g u r e 16) ( 5 3 ) .
as i n f l u e n c e d b y the 3,5-sub-
E H T p r e d i c t i o n s i n d i c a t e d that 3,5-iodo a n d
3,5-bromo g r o u p s i n f l u e n c e d a p r e f e r e n c e as s h o w n i n F i g u r e 16, i n agree-
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
KIER
Biological
Molecule
m e n t w i t h c r y s t a l studies (54, 87).
293
Conformations
R e c e n t reports that a n iodine-free b r o -
m o t h y r o n i n e is t h y r o m i m e t i c suggest that the roles of these t w o halogens m i g h t b e to c o n t a i n the t w o rings as s h o w n i n F i g u r e 16 ( 5 5 ) .
The M O
c a l c u l a t i o n s f u r t h e r p r e d i c t e d t h a t 3,5-chloro o r h y d r o g e n analogs p r e f e r r e d alternate conformations to that s h o w n i n F i g u r e 16, i n w h i c h the t w o r i n g planes intersect l i k e pages i n a book. T h e k n o w l e d g e t h a t the c h l o r i n e or h y d r o g e n analogs are i n a c t i v e suggests a p r e d o m i n a n t l y steric Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
role f o r these atoms. Amino Acids and Peptides A l l valence electron M O calculations have been extended p r e d i c t i o n of a m i n o a c i d r e s i d u e conformations.
to
the
T h e a p p r o a c h has g e n
e r a l l y b e e n to consider a m o d e l c o m p o u n d , s u c h as a n N - a c y l a m i n o a c i d a m i d e to s i m u l a t e the m i d - c h a i n residue. B e g i n n i n g w i t h three i n d e p e n d ent studies r e p o r t e d i n 1969 ( 56—58) a. n u m b e r of a m i n o a c i d r e s i d u e c o n f o r m a t i o n s have b e e n p r e d i c t e d to date f r o m a l l v a l e n c e M O m e t h o d s . Specific examples of a m i n o a c i d residues s t u d i e d , w i t h references i n o r d e r of a p p e a r a n c e i n the l i t e r a t u r e are g l y c i n e (56-^59), a l a n i n e (56, 57,
59),
p h e n y l a l a n i n e (57),
(61,
p r o l i n e (57,
62), i s o l e u c i n e (61, 88),
60),
v a l i n e (61,88),
a r g i n i n e ( N - t e r m i n a l ) (63),
h y d r o x y p r o l i n e (60), t h r e o n i n e (62),
serine
leucine
a r g i n i n e ( C - t e r m i n a l ) (63),
(61,88),
a r g i n i n e side
θ
α.
HO,
Figure 16. Predicted conformation of 3,5,3 -triiodo or tribromothyronine f
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
294
BIOLOGICAL CORRELATIONS
Figure 17. c h a i n (63, 64),
Predicted conformation
of insect juvenile
APPROACH
hormone
a r g i n i n e a n d lysine residues ( 6 5 ) , N - t e r m i n a l g l y c i n e , a l a
n i n e , a n d p r o l i n e (66, 89), o n i n e (90),
T H E HANSCH
aspartic a c i d (88),
and tryptophan
g l u t a m i c a c i d (88),
methi
(90).
I n g e n e r a l t h e p r e d i c t e d conformations h a v e a g r e e d w i t h some ex p e r i m e n t a l results o b t a i n e d f r o m v a r i o u s p o l y p e p t i d e s
u s i n g different
e x p e r i m e n t a l techniques. T h e existence of m o r e t h a n one f o r m of a p o l y p e p t i d e r e s u l t i n g f r o m different conformations possible for some a m i n o a c i d residues, d e p e n d i n g o n p h y s i c a l a n d c h e m i c a l m a n i p u l a t i o n s , makes v a l i d a t i o n of these p r e d i c t i o n s complex. T w o attempts h a v e b e e n r e p o r t e d to p r e d i c t t h e c o n f o r m a t i o n of a polypeptide hormone
b y a s s e m b l i n g the a p p r o p r i a t e residues i n t h e i r
p r e d i c t e d c o n f o r m a t i o n (63,90).
I n this m a n n e r , t h e a m i n o a c i d sequence
of b r a d y k i n i n w a s p r e d i c t e d to exist i n a r a n d o m c o i l c o n f o r m a t i o n , w i t h v a r i a t i o n a r o u n d the g l y c i n e φ b o n d , a n d w i t h no i n t e r a c t i o n p r e d i c t e d b e t w e e n p h e n y l groups. prediction; however,
A s yet no e x p e r i m e n t a l e v i d e n c e confirms this
existing e x p e r i m e n t a l e v i d e n c e
p r e d i c t i o n is reasonable (67-69).
of g a s t r i n t e t r a p e p t i d e w a s p r e d i c t e d Other Biologically
suggests
t h a t the
I n the second s t u d y the c o n f o r m a t i o n (90).
Important Molecules
A n u m b e r of other studies have b e e n r e p o r t e d , u s i n g a l l - v a l e n c e M O m e t h o d s to p r e d i c t the c o n f o r m a t i o n of b i o l o g i c a l l y i m p o r t a n t m o l e c u l e s . These include calculations on glucopyranose (71),
several nucleosides (72-75),
(70),
several d i s a c c h a r i d e s
a n d a c e t a n i l i d e (76).
The prediction
of the c o n f o r m a t i o n of the insect j u v e n i l e h o r m o n e has also b e e n f r o m E H T - M O c a l c u l a t i o n s ( F i g u r e 17)
(77).
made
U s i n g a c o m b i n a t i o n of
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
KIER
Biological
Molecule
Conformations
295
E H T , iterative E H T , a n d dispersion b o n d i n g calculations, the conforma tions o f p r o s t a g l a n d i n E - l w e r e p r e d i c t e d
(78).
T h e prominent con-
formers w e r e a l l p r e d i c t e d t o h a v e i n t i m a t e i n t e r a c t i o n b e t w e e n t h e side chains, i n agreement w i t h c r y s t a l studies ( 7 9 ) . F i n a l l y , p r e d i c t i o n s o f c o n f o r m a t i o n h a v e l e d to t h e p r e d i c t i o n of a sweet-taste
pharmacophore
(91).
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
Perspectives T h e relevance o f t h e p r e f e r r e d c o n f o r m a t i o n o f a n active m o l e c u l e to events a t its b i o l o g i c a l r e c e p t o r is u n c e r t a i n . T h e finding i n several studies, t h a t s t r u c t u r a l l y different molecules w i t h e q u a l potencies
prefer
conformations i n w h i c h v e r y s i m i l a r patterns o f c h a r g e d atoms are m a d e a v a i l a b l e , lends s u p p o r t to t h e relevance.
I t has b e e n suggested that t h e
d r u g m o l e c u l e forms a p r e l i m i n a r y w e a k b o n d w i t h t h e receptor w h i l e i n t h e p r e f e r r e d c o n f o r m a t i o n , f o l l o w e d b y a m o r e i n t i m a t e a n d stronger association i n w h i c h b o t h d r u g a n d receptor conformations (50).
are altered
T h e stereoselective " r e c o g n i t i o n " o f the d r u g , h o w e v e r , occurs d u r
i n g the p r e l i m i n a r y event, p r i o r to a n y m u t u a l p e r t u r b a t i o n . M u c h r e m a i n s to b e e x p l o r e d c o n c e r n i n g these events; h o w e v e r , results t o date suggest that t h e p r e s u m p t i o n o f t h e i m p o r t a n c e o f p r e f e r r e d c o n f o r m a t i o n is a u s e f u l o p e r a t i o n a l hypothesis. F i n a l l y , M O p r e d i c t i o n s s h o u l d b e c o n s i d e r e d as a n a d j u n c t t o t h e d r u g d e s i g n a n d m e c h a n i s m i n t e r p r e t a t i o n process.
T h e calculations
s h o u l d a l w a y s b e b a s e d o n reasonable c h e m i c a l structures a n d processes, a n d t h e results a n d i n t e r p r e t a t i o n s s h o u l d a l w a y s b e v i e w e d i n t h e l i g h t of b i o l o g i c a l r e a l i t y o r reasonable m e c h a n i s m s . T h e M O t h e o r y c a n thus be a p o w e r f u l servant to t h e m e d i c i n a l c h e m i s t o r c h e m i c a l p h a r m a cologist i n his search f o r b i o l o g i c a l explanations a n d n e w drugs.
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
Hoffmann, R., J. Chem. Phys. (1963) 39, 1397. Allen, L.C.,Russell, J. D., J. Chem. Phys. (1967) 46, 1029. Blyholder, G., Coulson, C. Α., Theoret. Chim. Acta (1968) 40, 316. Hoyland, J. R., in "Molecular Orbital Studies in Chemical Pharmacology," L. Kier, Ed., Springer-Verlag, New York, 1970. Pople, J. Α., Santry, D. P., Segal, G. Α., J. Chem. Phys. (1965) 43, 5129. Kier, L. B., in "Fundamental Concepts in Drug-Receptor Interactions," J. F. Danielli, J. F. Moran, D. J. Triggle, Eds., Academic Press, New York, 1970. Kier, L. B., "Molecular Orbital Theory in Drug Research," Academic Press, New York, 1971. Kier, L. B., Mol. Pharmacol. (1967) 3, 487. Culvenor,C.,Ham, N., Chem. Commun. (1966) 537. Jellinek, F., Acta Cryst. (1957) 10, 277.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
296
BIOLOGICAL
CORRELATIONS
THE HANSCH
APPROACH
11. Beckett, A. H., Harper, N. J., Clitherow, J. W., J. Pharm. Pharmacol. (1963) 15, 362. 12. Pullman, B., Courriere, P., Coubeils, J. L., Mol. Pharmacol. (1971) 7, 397. 13. Beveridge, D. L., Radna, R. J., J. Am. Chem. Soc. (1971) 93, 3759. 14. Inch, T. D., Chittenden, R. Α., Dean,C.,J. Pharm. Pharmacol. (1970) 22, 954. 15. Kier, L. B., J. Pharm. Sci. (1970) 59, 112. 16. Bebbington, Α., Brimblecomb, R. W., Shakeshaft, D., Advan. Drug Res. (1965) 2, 143. 17. Kier, L. B., Mol. Pharmacol. (1968) 4, 70. 18. Simpson, T. R., Craig, J.C.,Kumler, W. D., J. Pharm. Sci. (1967) 56, 708. 19. Kier, L. B., J. Med. Chem. (1971) 14, 80. 20. Coggon, P., McPhail, A. T., Roe, A. M., Nature (1969) 224, 1200. 21. Fukui, K., Nagata,C.,Imamura, Α., Science (1960) 132, 87. 22. Crow, J., Wasserman, O., Holand, W. C., J. Med. Chem. (1969) 12, 764. 23. Giordano, W., Hamann, J., Harkins, J., Kaufman, J., Mol. Pharmacol. (1967) 3, 307. 24. Carlstrom, D., Acta Chem. Scand. (1966) 20, 1240. 25. Kier, L. B., J. Med. Chem. (1968) 11, 441. 26. Casy, A. F., Ison, R. R., Ham, N. S., Chem. Commun. (1970) 1343. 27. Paiva, T. B., Tominaga, M., Paiva, A. C. M., J. Med. Chem. (1970) 13, 689. 28. Coubeils, J. L., Courriere, P., Pullman, B., Compte Rend. Acad. Sci., Paris (1971) 272, 1813. 29. Kier, L. B., J. Pharm. Sci. (1968) 57, 1188. 30. Courriere, P., Coubeils, J. L., Pullman, B., Compte Rend. Sci., Paris (1971) 272, 1697. 31. Kang, S., Cho, M. H., Theoret. Chim. Acta (1971) 22, 176. 32. Kier, L. B., J. Med. Chem. (1968) 11, 915. 33. Allinger, N. L., DaRooge, Μ. Α., J. Am. Chem. Soc. (1961) 83, 4256. 34. Cole, W.G.,Williams, D. H., J. Chem. Soc. (1968) 1849. 35. Cole, W.G.,Williams, D. H., J. Chem. Soc. (1970) 748. 36. Spector, W. G., Willoughby, D. Α., Ann. Ν. Y. Acad. Sci. (1964) 116, 839. 37. Winter, C. Α., Progr. Drug Res. (1966) 10, 139. 38. Botre,C.,Marchetti, M., Del Vecchio,C.,Lionetti,G.,Memoli, Α., J. Med. Chem. (1969) 12, 832. 39. Kier, L. B., Whitehouse, M. W., J. Pharm. Pharmacol. (1968) 20, 793. 40. Kier, L. B., J. Pharmacol. Exptl. Therap. (1968) 164, 75. 41. Hyne, J. B., Can. J. Chem. (1961) 39, 2536. 42. Portoghese, P., J. Med. Chem. (1961) 39, 2536. 43. Kier, L. B., J. Pharm. Pharmacol. (1969) 21, 93. 44. Carlstrom, D., Bergin, R., Acta Cryst. (1967) 23, 313. 45. Pedersen, L., Hoskins, R. E., Cable, H., J. Pharm. Pharmacol. (1971) 23, 216. 46. Larsen, Α. Α., Nature (1969) 224, 25. 47. Pratesi, P., Grava, Ε., Adv. Drug Res. (1965) 2, 127. 48. George, J. M., Kier, L. B., Hoyland, J. R., Mol. Pharmacol. (1971) 7, 328. 49. Villa, L., Ferri, V., Grana, E., Mastelli, Ο., Il Farmaco, Ed. Sci. (1970) 25, 118. 50. Kier, L. B., Truitt, Ε. B., J. Pharmacol. Exptl. Therap. (1970) 174, 94. 51. Kier, L. B., Truitt, Ε. B., Experientia (1970) 26, 988. 52. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., Nature (1970) 226, 1222 53. Kier, L. B., Hoyland, J. R., J. Med. Chem. (1970) 13, 1182. 54. Cody, V., Duax, W. L., Norton, D. Α., Chem. Commun. (1971) 683. 55. Jorgensen, E. C., Nulu, J. R., J. Pharm. Sci. (1969) 58, 1139. 56. Hoffmann, R., Imamura, Α., Biopolymers (1969) 7, 207. 57. Kier, L. B., George, J. M., Theoret. Chim. Acta (1969) 14, 258.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
58. 59. 60. 61. 62. 63. 64.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91.
KIER
Biological
Molecule
Conformations
297
Rossi, Α., David, C. W., Schor, R., Theoret. Chim. Acta (1969) 14, 429. Maigret, Β., Pullman, Β., Dreyfus, M., J. Theor.Biol.(1970) 26, 321. Maigret, Β., Perahia, D., Pullman, B., J. Theor. Biol. (1970) 29, 275. George, J. M., Kier, L. B., Experientia (1970) 26, 952. Perahia, D., Maigret, Β., Pullman, Β., Theoret. Chim. Acta (1970) 19, 121. Kier, L. B., George, J. M., in "Molecular Orbital Studies in Chemical Phar macology," L. B. Kier, Ed., Springer-Verlag, New York, 1970. Ponnuswamy, P. K., Lakshminarayanan, Α. V., Sasisekharan, V., Biochim. Biophys. Acta (1971) 229, 596. Pullman, B., Coubeils, J. L., Courriere, P., Perahia, D., Theoret. Chim. Acta (1971) 22. Bossa, M., Damiani, Α., Fidenzi, R., Gigli, S., Leli, R., Ramunni, G., Theo ret. Chim. Acta (1971) 20, 299. Brady, A. H., Stewart, J. M., Ryan, J. W., in "Cardiovascular and Neuro actions of the Kinins," N. Back, F. Sicuteri, M. Rocha de Silva, Eds., Plenum Press, New York, 1970. Bodanszky, Α., Bedanszky, M., Torpes, E. J., Mutt, V., Ondette, Μ. Α., Experientia (1970) 26, 948. Brady, A. H., Ryan, J. W., Stewart, J. M., Biochem. J. (1971) 121, 179. Neely, W. B., J. Med. Chem. (1969) 12, 16. Giacomini, M., Pullman, B., Maigret, Β., Theoret. Chim. Acta (1970) 19, 347. Jordan, F., Pullman, B., Theoret. Chim. Acta (1968) 9, 242. Cameran, N., Nyburg, S. C., Theoret. Chim. Acta (1969) 13, 162. Berthod, H., Pullman, B., Biochim. Biophys. Acta (1971) 232, 595. Govil, G., Saran, Α., J. Theor. Biol. (1971) 30, 621. Olsen, J. F., Kang, S., Theoret. Chim. Acta (1970) 17, 329. Kier, L. B., unpublished data. Hoyland, J. R., Kier, L. B., J. Med. Chem. (January 1972). Rabinowitz, I., Ramwell, P., Davison, P., Nature New Biol. (1971) 223, 88. Pauling, P., Petcher, T. J., Nature New Biol. (1972) 236, 112. Crow, J. W., Holland, W. C., J. Med. Chem. (1972) 15, 429. Ison, R. R., Partington, P., Roberts, G. C. K., J. Pharm. Pharmacol. (1972) 24, 84. Kistenmacher, T. J., Marsh, R. E., J. Amer. Chem. Soc. (1972) 94, 1340. Pullman, B., Coubeils, J. L., Courriere, P., Gervois, J. P., J. Med. Chem. (1972) 15, 17. Bustard, T. M., Egan, R. S., Tetrahedron (1971) 27, 4457. Bergin, R., Carlstrom, D., Acta Cryst. (1968) B24, 1506. Camerman, N., Camerman, Α., Science (1972) 175, 764. Maigret, Β., Perahia, D., Pullman, B., Biopolymers (1971) 10, 491. Bossa, M., Damiani, Α., Fidenzi, R., Gigli, S., Leli, R., Ramunni, G., Theoret. Chim. Acta (1971) 20, 299. Kier L. B., George, J. M., J. Med. Chem. (1972) 15, 384. Kier, L. B., J. Pharm. Sci., in press.
RECEIVED May 10,
1971.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
BIOLOGICAL CORRELATIONS
T H E HANSCH A P P R O A C H
Downloaded by CALIFORNIA INST OF TECHNOLOGY on May 3, 2018 | https://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch015
298
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.