34 Biotechnology in Crop Improvement JOHN T. MARVEL
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
Monsanto Agricultural Products Company, St. Louis, MO 63167
Biotechnology promises to play a significant role in crop improvement and productivity in the 1990's and beyond. Early advances will probably be in the development of selective and safe microbial pesticides and the transfer of one to three gene traits to agronomic crops. While microbial pesti cides are technically fairly straightforward, genetically improving crop plants, using recombi nant techniques, will require the solution of numer ous technical problems. Of initial importance is the development of transformation vectors and re generation technology in key crop plants, particu larly legumes and cereals. Once these hurdles have been overcome, the key emphasis will shift to the discovery of genes to be transferred. This paper reviews the status of regeneration and transformation technology in the major crop plants and highlights recent progress in plant biochem istry which may serve as a source of important traits for genetic engineering.
A g r i c u l t u r a l b i o t e c h n o l o g y h a s been i n t h e p u b l i c eye a good d e a l r e c e n t l y . However, t h e b a s i c t h r u s t o f b i o t e c h n o l o g y i n a g r i c u l t u r e i s a c t u a l l y mundane. I n f a c t , g e n e t i c e n g i n e e r i n g o f p l a n t s w i l l be j u s t a n o t h e r t o o l f o r p l a n t b r e e d e r s t o u s e i n t h e i r c o n t i n u i n g e f f o r t s t o improve p l a n t p r o d u c t i v i t y . C l a s s i c a l b r e e d i n g h a s been t h e m a i n s t a y o f c r o p improvement s i n c e the r e d i s c o v e r y o f Mendelian g e n e t i c s at the beginning o f t h i s century. The improvements have been s i g n i f i c a n t , e.g., t h e d e v e l o p ment o f h y b r i d c o r n r e s u l t e d i n a s t e a d y 1-2% i n c r e a s e i n y i e l d p e r year. Other c r o p b r e e d i n g programs l e d t o t h e development o f s t r a i n s t h a t would s u s t a i n f o o d p r o d u c t i o n i n p r e v i o u s l y s t e r i l e e n v i r o n ments. C e l l b i o l o g y , i n c o n j u n c t i o n w i t h g e n e t i c e n g i n e e r i n g , prom i s e s new ways t o improve t h i s r e c o r d by enhancing y i e l d p o t e n t i a l , i m p r o v i n g p e s t t o l e r a n c e , d e c r e a s i n g s t r e s s e s due t o t h e environment and t o a g r i c u l t u r a l c h e m i c a l s , and i m p r o v i n g o v e r a l l agronomic
0097-6156/85/0276-0477$09.50/0 © 1985 American Chemical Society
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
478
BIOREGULATORS FOR PEST CONTROL
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
acceptability. In o r d e r t o comprehend how t h e s e new improvements w i l l o c c u r , an u n d e r s t a n d i n g o f c l a s s i c a l b r e e d i n g methods i s essential. C l a s s i c a l breeding c o n s i s t s of four d i s t i n c t a c t i v i t i e s : (1) s c r e e n i n g f o r d e s i r a b l e t r a i t s and t r a n s f e r r i n g t h o s e t r a i t s t o adapted l i n e s by s e x u a l c r o s s e s (2-4 y e a r s ) ; (2) s e l e c t i n g progeny w i t h the d e s i r e d c o m b i n a t i o n s o f t r a i t s (3-4 y e a r s ) ; (3) f i e l d e v a l u a t i o n of the s e l e c t e d v a r i e t i e s f o r y i e l d and performance under s e v e r a l e n v i r o n m e n t s (3-4 y e a r s ) ; and f i n a l l y (4) seed i n c r e a s e f o r s a l e (2-3 y e a r s ) . In a l l , the p r o c e s s r e q u i r e s 10-15 y e a r s t o p r o duce a new v a r i e t y which w i l l t y p i c a l l y have a l i f e t i m e o f o n l y 6-8 years. In a d d i t i o n , t h i s p r o c e s s i s l i m i t e d by the s e x u a l c o m p a t i b i l i t y between the l i n e s used f o r a c r o s s . T y p i c a l l y , only l i n e s from the same s p e c i e s o r v e r y c l o s e l y r e l a t e d ones can be used as a s o u r c e o f new t r a i t s . B i o t e c h n o l o g y can a d d r e s s t h e s e b o t t l e n e c k s of time and gene s o u r c e s by g e n e t i c a l l y e n g i n e e r i n g p l a n t c e l l s and t h e n r e g e n e r a t i n g them i n t o whole p l a n t s w i t h the new t r a i t s . This i s p o s s i b l e because p l a n t s , a l o n e among h i g h e r o r g a n i s m s , can be r e g e n e r a t e d i n t o whole p l a n t s from s o m a t i c c e l l s . This i s a phenomenon c a l l e d " t o t i p o t e n c y " . The r e g e n e r a t i o n c y c l e i s i l l u s t r a t e d f o r a l f a l f a i n F i g u r e 1. A c u t t i n g , o r e x p i a n t , t a k e n from the p a r e n t p l a n t , i s put onto a medium c o n t a i n i n g p l a n t hormones and n u t r i e n t s . Soon the t i s s u e b e g i n s t o p r o l i f e r a t e c e l l s i n a r a t h e r d i s o r g a n i z e d mass t o form a callus. Upon t r e a t m e n t w i t h a p p r o p r i a t e p l a n t n u t r i e n t s and h o r mones, the c a l l u s w i l l form s t r u c t u r e s w h i c h d e v e l o p i n t o s h o o t s , a p r o c e s s r e f e r r e d t o as " o r g a n o g e n e s i s " . These s h o o t s may be r e moved from the c a l l u s , r o o t e d , and grown i n t o normal f e r t i l e plants (1). T h i s p r o c e s s , o u t l i n e d i n F i g u r e 2, c o u l d be u s e f u l i n a b r e e d i n g program. As i n c l a s s i c a l b r e e d i n g , f i r s t a q u a l i t y c u l t i v a r i s chosen. E s t a b l i s h e d t i s s u e c u l t u r e techniques are then utilized. The m a t e r i a l i s p l a c e d i n t o c u l t u r e which a l l o w s s e l e c t i o n by c l a s s i c a l methods o r the i n s e r t i o n o f new genes. A f t e r the t i s s u e w i t h a new t r a i t has been p r o d u c e d , i t can be r e g e n e r a t e d i n t o a q u a l i t y c u l t i v a r c o n t a i n i n g the new d e s i r e d t r a i t . The p o t e n t i a l b e n e f i t s o f t h i s scheme a r e t w o - f o l d . First, the t i m e - l i n e s t o d e v e l o p new c u l t i v a r s may be d r a m a t i c a l l y s h o r t ened. In c e l l b i o l o g y - f a c i l i t a t e d b r e e d i n g , the i d e n t i f i c a t i o n , i s o l a t i o n and c l o n i n g o f a gene r e q u i r e s 1-3 y e a r s . To c u l t u r e a p l a n t t i s s u e , t r a n s f o r m i t and r e g e n e r a t e i t t a k e s a p p r o x i m a t e l y 6 months. F i e l d e v a l u a t i o n and seed i n c r e a s e a r e unchanged by t h i s t e c h n o l o g y , so the t o t a l time i s 6-10 y e a r s , a c o n s i d e r a b l e s a v i n g s i n time o v e r c o n v e n t i o n a l b r e e d i n g . G e n e t i c e n g i n e e r i n g a l l o w s the i n t r o d u c t i o n o f genes from any s o u r c e i n t o p l a n t s ; hence, a c r o p ' s germplasm base becomes a l l l i v i n g organisms r a t h e r t h a n j u s t c l o s e l y r e l a t e d , s e x u a l l y c o m p a t i b l e plants. T h i s means t h a t genes ( F i g u r e 3A) become a v a i l a b l e from b a c t e r i a which p r o d u c e i n s e c t i c i d a l p r o t e i n s , from b a c t e r i a o r f u n g i which p r o d u c e a n t i b i o t i c s a c t i v e a g a i n s t p l a n t pathogens, o r from s t r e s s - t o l e r a n t w i l d p l a n t s which would n o r m a l l y be s e x u a l l y incompatible. The p r o m i s e o f t h i s t e c h n o l o g y i s i n i t s a b i l i t y t o " t e a c h " p l a n t s t o produce t h e i r own i n s e c t i c i d e s , f u n g i c i d e s and growth r e g u l a t o r s .
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
MARVEL
Biotechnology in Crop Improvement
479
Figure 1. Alfalfa regeneration (clockwise). A cutting i s t a k e n from a p e t i o l e ( e x p i a n t ) , p l a c e d on medium t o induce t h e f o r m a t i o n o f a c a l l u s , t h e n t r a n s f e r r e d t o an a l t e r e d medium c a u s i n g shoots t o form.
QUALITY CULTIVAR
\ TISSUE EXPLANT
CALLUS INITIATION
SELECTION
/
* \
SUSPENSION CULTURE
SX
CALLUS I
PROTOPLASTS s
TISSUE WITH NEW TRAIT
GENETIC ENGINEER
I REGENERATION •
QUALITY CULTIVAR WITH NEW TRAIT
F i g u r e 2. T i s s u e c u l t u r e crop improvement. Sequence shows t h e i n t e g r a t i o n o f c e l l b i o l o g y t e c h n i q u e s i n t o crop improvement. H u r d l e s t o u s i n g t h e scheme i n c l u d e c a l l u s i n i t i a t i o n , p r o t o plast preparation, selection in culture, and plant regeneration.
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
480
BIOREGULATORS FOR PEST C O N T R O L
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
A
Insecticidal Bacterium
Fungicidal Streptomyces
Stress Tolerant Wild Plant
Novel Soybean Cultivar
Β
Plant Cell
F i g u r e 3. Examples o f d e s i r a b l e genes t o be i n s e r t e d i n t o crop plants. A. U n r e l a t e d organisms may have genes b e n e f i c i a l t o crop p l a n t s . B. Suggested e x t e n s i o n o f a b i o c h e m i c a l pathway in plants. B a c t e r i a produces d e s i r e d m o l e c u l e Ε b y enzymatic s t e p s E i t o E ; p l a n t pathway s t o p s a t i n t e r m e d i a t e C. I n t r o d u c t i o n o f b a c t e r i a l genes f o r s t e p s E3 and E causes p l a n t c e l l t o produce E . 4
4
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
34.
MARVEL
Biotechnology in Crop improvement
481
Even more s o p h i s t i c a t e d improvements may be p o s s i b l e ( F i g u r e 3 B ) . F o r example, i f a m i c r o b e produces a m o l e c u l e Ε w h i c h i s n e m a t o c i d a l , and t h e p l a n t has t h e b i o s y n t h e t i c machinery to make a key i n t e r m e d i a t e o f t h i s m o l e c u l e , C then perhaps genes, c o d i n g f o r t h e enzymes n e c e s s a r y t o complete t h e b i o s y n t h e t i c p a t h way, c o u l d be moved i n t o t h e p l a n t , c a u s i n g t h e p l a n t t o produce i t s own nematocide. The r e s u l t i s l i t e r a l l y c h e m i c a l s y n t h e s i s i n living tissues. P l a n t g e n e t i c e n g i n e e r i n g c o u l d be c o m p e t i t i v e with the chemical p e s t i c i d e business.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
9
However, enough must be u n d e r s t o o d about p l a n t metabolism t o support the u s e f u l m a n i p u l a t i o n o f t h e p l a n t s ' b i o s y n t h e t i c appara tus t o respond b e t t e r t o s t r e s s e s o r d i s e a s e . G e n e t i c m a n i p u l a t i o n of complex pathways, such as t h e s h i k i m a t e pathway ( F i g u r e 4 ) , w i l l be a l a r g e t a s k r e q u i r i n g c o n s i d e r a b l y more b i o c h e m i c a l knowledge about p l a n t s t h a n i s c u r r e n t l y a v a i l a b l e . Having c o n s i d e r e d t h e k i n d s o f advances t h a t t i s s u e c u l t u r e and g e n e t i c e n g i n e e r i n g c a n make i n c r o p improvements, i t i s n e c e s s a r y t o e x p l o r e t h e t e c h n i c a l l i m i t a t i o n s t o making t h o s e k i n d s o f changes ( F i g u r e 2 ) . F o r t h e major c r o p s one must f i r s t have t h e a b i l i t y t o c u l t u r e and r e g e n e r a t e p l a n t s from v a r i o u s e x p l a n t s . U n f o r t u n a t e l y , n o t a l l c r o p s respond t o c u r r e n t t i s s u e c u l t u r e t e c h n i q u e s and r e g e n e r a t e i n v i t r o . I t i s a l s o n e c e s s a r y t o have t h e t e c h n o l o g y t o e i t h e r s e l e c t new c e l l l i n e s i n c u l t u r e o r t o g e n e t i c a l l y e n g i n e e r new t r a i t s i n t o t h o s e t i s s u e s t h a t a r e i n c u l t u r e , and then r e g e n e r a t e p l a n t s t h a t w i l l e x p r e s s t h e new t r a i t . F i n a l l y , t h e s e new c u l t i v a r s must be e x t e n s i v e l y e v a l u a t e d i n t h e f i e l d t o a s s u r e t h a t t h e d e s i r e d t r a i t has been i n s e r t e d and i s e x p r e s s e d a t t h e p r o p e r time and i n t h e p r o p e r p l a n t t i s s u e . Much p r o g r e s s has been made i n t h e r e g e n e r a t i o n o f p l a n t s and i n u n d e r s t a n d i n g t h e r e g e n e r a t i o n p r o c e s s . T h i s i n c l u d e s t h e de velopment o f s e l e c t i o n t e c h n o l o g y w i t h p a r t i c u l a r emphasis on r e s i s t a n c e and t h e development o f g e n e t i c e n g i n e e r i n g t e c h n o l o g y u s i n g t h e A g r o b a c t e r i u m t u m e f a c i e n s v e c t o r system. The p r o c e s s o f p l a n t r e g e n e r a t i o n b e g i n s w i t h t h e s e l e c t i o n of t h e p r o p e r e x p i a n t w h i c h , when p l a c e d i n t h e a p p r o p r i a t e c u l t u r e media, w i l l form a c a l l u s . I n t h e case o f a l f a l f a , s o m a t i c embryos w i l l form on t h e c a l l u s s u r f a c e ( F i g u r e 5A) a f t e r t h e c a l l i have been exposed t o t h e a p p r o p r i a t e r a t i o o f c y t o k i n i n s and a u x i n s . E v e n t u a l l y t h e s e embryos w i l l p r e c o c i o u s l y germinate and form shoots. The d e v e l o p i n g embryos c a n be e x c i s e d and p l a c e d onto a r o o t i n g media t o d e v e l o p a r o o t system ( F i g u r e 5B). A f i n a l trans f e r o f t h e r o o t e d p l a n t s t o g r a v e l t u b s and g r a d u a l exposure t o greenhouse c o n d i t i o n s r e s u l t i n t h e development o f normal p l a n t s ( F i g u r e 5C). I n time t h e y f l o w e r and p r o d u c e s e e d s . When t h e s e seeds a r e p l a n t e d , they p r o d u c e normal f e r t i l e p l a n t s . Some v a r i a b i l i t y i n phenotype has been o b s e r v e d i n p l a n t s a r i s i n g from t h e t i s s u e c u l t u r e p r o c e s s . These s o m a c l o n a l v a r i a t i o n s may be p r e s e n t i n 2-20% o f t h e o p o u l a t i o n , and may depend upon t h e s t r e s s e s e n countered during the t i s s u e c u l t u r e process. T h i s k i n d o f media m a n i p u l a t i o n i s i n d i s p e n s a b l e i n t i s s u e c u l t u r e f o r m a x i m i z i n g t h e f r e q u e n c y o f r e g e n e r a t i o n . When t h e r e g e n e r a t i o n system f o r a new s p e c i e s i s i n t h e e a r l y s t a g e s o f development, e x p e r i m e n t a l m o d i f i c a t i o n s a r e n e c e s s a r y i n o r d e r t o
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
482
BIOREGULATORS FOR PEST CONTROL
F i g u r e 4. Shikimate-derived metabolism i n p l a n t s . A compli c a t e d b i o s y n t h e t i c pathway i s a p o s s i b l e g e n e t i c engineering target.
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Biotechnology in Crop Improvement
483
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
MARVEL
Figure 5. Alfalfa embryogenesis. A. An a l f a l f a somatic embryo, E , about t o g e r m i n a t e , which i s surrounded by c a l l u s C. B. Plantlets rooting. C. Regenerated p l a n t s i n g r a v e l i n t h e greenhouse.
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
484
BIOREGULATORS FOR PEST C O N T R O L
achieve optimal r e s u l t s . F i g u r e 6 shows t h e e f f e c t o f m a n i p u l a t i n g t h e amino a c i d c o m p o s i t i o n o f t h e media on t h e f r e q u e n c y o f r e g e n e r a t i o n ( 2 ) . I t i s e v i d e n t t h a t when e i t h e r Shenk and H i l d e b r a n d t s o r B l a y d e s b a s a l media a r e u s e d , the f r e q u e n c y o f embryo f o r m a t i o n i s low. However, i f e i t h e r media i s supplemented w i t h a l a n i n e o r p r o l i n e , t h e f r e q u e n c y o f embryogenesis i s g r e a t l y enhanced.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
1
R e s e a r c h o f a more fundamental n a t u r e i s a l s o n e c e s s a r y i n o r d e r t o u n d e r s t a n d and e f f e c t i v e l y m a n i p u l a t e t h e r e g e n e r a t i o n process. T h i s i s p a r t i c u l a r l y t r u e i n c r o p s such as soybean and c e r e a l s w h i c h a r e r e c a l c i t r a n t t o r e g e n e r a t i o n . F o r example, h i s t o l o g i c a l and h i s t o c h e m i c a l s t u d i e s can be conducted d u r i n g r e g e n e r a t i o n i n o r d e r t o u n d e r s t a n d t h e growth and development p r o c e s s . The f o r m a t i o n o f a l f a l f a s o m a t i c embryos ( F i g u r e 5A) i s w e l l s u i t e d f o r such a b a s i c i n v e s t i g a t i o n . Very e a r l y i n r e g e n e r a t i o n , a l f a l f a c a l l u s (as v i s u a l i z e d i n a c r o s s - s e c t i o n s t a i n e d w i t h s a f r a n i n and f a s t g r e e n i n F i g u r e 7A) has a l r e a d y d i f f e r e n t i a t e d i n t o d i s t i n c t tissues. The d a r k l y s t a i n i n g p u r p l e t i s s u e h i g h l i g h t s t h e embryo i n an e a r l y s t a g e o f f o r m a t i o n . The l i g h t e r b l u e s t a i n i n g c e l l s below t h e embryo have been named the " p r o r e g e n e r a t i v e mass and appear t o f u n c t i o n as c e l l u l a r p r o g e n i t o r s t o t h e embryo ( 3 ) . From t h i s p r o r e g e n e r a t i v e mass, t h e i n c i p i e n t embryo d e v e l o p s from a single c e l l . T h i s i s an i n t e r e s t i n g and s i g n i f i c a n t f i n d i n g b e c a u s e i t c l a r i f i e s an e a r l y o r g a n i z a t i o n a l event w h i c h o c c u r s i n r e g e n e r a tion. I n F i g u r e 7B t h e p r o r e g e n e r a t i v e mass remains as the embryo grows l a r g e r ; i n f a c t , when t h e embryo i s a p p r o x i m a t e l y a t t h e s t a g e o f t h e whole embryo shown i n F i g u r e 5A, t h e p r o r e g e n e r a t i v e mass remains a t t a c h e d t o t h e embryo ( F i g u r e 7C). 11
I t i s s p e c u l a t e d t h a t t h i s mass s u b s t i t u t e s f o r t h e s u s p e n s o r , an o r g a n t h a t n o r m a l l y a i d s i n f e e d i n g d e v e l o p i n g embryos i n p l a n t a . R e c a l c i t r a n t soybean and c e r e a l t i s s u e c u l t u r e systems a r e c u r r e n t l y being i n v e s t i g a t e d f o r evidence that these kinds of proregenerative c e l l masses a r e formed ( 4 ) . Another approach to s t u d y i n g the developmental process i n r e g e n e r a t i o n i s t o o b s e r v e t h e h i s t o c h e m i c a l changes i n c e l l s . F i g u r e 8A i l l u s t r a t e s a l f a l f a c e l l s w h i c h have been s t a i n e d w i t h a n i l i n e b l u e - b l a c k f o r t o t a l p r o t e i n b e f o r e i n d u c t i o n o f the r e generation process. These normal c a l l u s c e l l s a r e e l o n g a t e d and not densely s t a i n i n g . F i g u r e 8B shows a c e l l mass w h i c h has been induced to regenerate. The c e l l s a r e v e r y compact and t i g h t l y a s s o c i a t e d , and t h e c y t o p l a s m i s d a r k l y s t a i n i n g w i t h a n i l i n e b l u e , i n d i c a t i n g a h i g h c o n c e n t r a t i o n o f p r o t e i n s w h i c h may be n e c e s s a r y f o r the r e g e n e r a t i o n process. Studies of t h i s type w i l l a i d i n the design of b i o c h e m i c a l experiments designed to b e t t e r understand the molecular basis f o r regeneration i n p l a n t s . The development o f s e l e c t i o n t e c h n o l o g y i s n e c e s s a r y i n o r d e r t o d e r i v e c e l l l i n e s w i t h s p e c i f i c t r a i t s , such as h e r b i c i d e r e s i s t a n c e , from t i s s u e c u l t u r e . F i g u r e 9 d e p i c t s the somatic c e l l s e l e c t i o n process using c e l l c u l t u r e techniques. A t t h e bottom l e f t i s a f l a s k c o n t a i n i n g a suspension of a l f a l f a c e l l s . These c e l l s have been c u l t u r e d f o r 4-8 weeks and t h e n s i e v e d t o y i e l d v e r y s m a l l c e l l clumps which w i l l be used f o r s e l e c t i o n i n v i t r o . I n t h e example shown h e r e , s e l e c t i o n was made f o r h e r b i c i d e r e sistance. In the upper l e f t - h a n d c o r n e r , g l y p h o s a t e , t h e a c t i v e i n g r e d i e n t i n Roundup, i s added t o t h e growth media. A f t e r s e v e r a l
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
MARVEL
Biotechnology in Crop Improvement
F i g u r e 6. E f f e c t on a l f a l f a r e g e n e r a t i o n o f amino a c i d a d d i t i o n t o media. The t o p row shows p e t r i p l a t e s o f Shenk and H i l d e b r a n d t medium w i t h no amino a c i d a d d i t i o n , SHO; w i t h t h e a d d i t i o n o f L - a l a n i n e , SHA; o r w i t h L - p r o l i n e , SHP. The bottom row shows B l a d y e s medium, w i t h no amino a c i d a d d i t i o n , BI2Y; w i t h the a d d i t i o n o f L - a l a n i n e , BIA; o r w i t h L - p r o l i n e , BIP. These amino acid additions enhance the frequency of embryogenesis.
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
BIOREGULATORS FOR PEST CONTROL
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
486
Figure 7. Histology of alfalfa somatic embryogenesis. A. C r o s s - s e c t i o n o f c a l l u s a f t e r i n d u c t i o n o f embryogenesis. Lightly staining cells are the p r o r e g e n e r a t i v e mass (PRM) which g i v e s r i s e t o t h e d a r k l y s t a i n i n g c e l l s , t h e embryo ( Ε ) , surrounded by v e r y l i g h t l y s t a i n i n g n o n - r e g e n e r a t i n g c a l l u s (C) B. A s o m a t i c embryo a t a l a t e r s t a g e o f development. C. Somatic embryo b e g i n n i n g t o g e r m i n a t e , comparable t o the whole embryo shown i n F i g u r e 5A.
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Biotechnology in Crop Improvement
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
MARVEL
Figure 8. Histochemical studies of a l f a l f a callus cells. A. Normal c a l l u s c e l l s s t a i n e d w i t h a n i l i n e b l u e b l a c k f o r t o t a l p r o t e i n before induction of regeneration. B. Callus cells stained with a n i l i n e blue black after induction of regeneration; very darkly s t a i n i n g material i s p r o t e i n .
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
488
BIOREGULATORS FOR PEST CONTROL
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
1
days exposure t o g l y p h o s a t e , t h e c e l l s a r e p l a t e d onto s o l i d media as shown i n t h e c e n t e r p i c t u r e . From t h e s e p l a t e d c e l l s o n l y a few w i l l develop i n t o c a l l i . Once t h e s e c a l l i a r e formed, t h e hormone l e v e l s c a n be ma n i p u l a t e d t o i n d u c e shoot f o r m a t i o n . T h i s i s f o l l o w e d by t h e r o o t i n g , h a r d e n i n g and t r a n s f e r - t o - g r e e n h o u s e p r o c e s s e s . D u r i n g t h i s sequence t h e s e l e c t e d l i n e s c a n be s c r e e n e d a t t h e c e l l u l a r l e v e l , at t h e r e g e n e r a t e d p l a n t l e t l e v e l , a t t h e whole p l a n t l e v e l i n t h e greenhouse, and f i n a l l y i n t h e f i e l d w h i c h i s t h e " a c i d t e s t " . F i g u r e 10 shows, i n c o n s i d e r a b l y more d e t a i l , t h e sequence o f m u t a g e n e s i s and s e l e c t i o n w h i c h has been a c t u a l l y used t o d e v e l o p herbicide resistant lines. C a l l i were i n i t i a t e d from a h e a l t h y a l falfa plant. A f t e r 4-8 weeks, t h e s e c a l l i were b r o k e n up i n t o s u s p e n s i o n s , and e i t h e r t r e a t e d w i t h a m u t a g e n i z i n g agent o r s c r e e n e d s i m p l y by s e l e c t i o n f o r spontaneous m u t a t i o n s . After either pro c e d u r e , t h e s e l e c t e d l i n e s , i . e . , t h e l i n e s which s u r v i v e d exposure to t h e h e r b i c i d e , were t h e n r e g e n e r a t e d , and t h e p l a n t s were e v a l u a t e d i n a number o f schemes. I n a d d i t i o n , p l a n t s s e l e c t e d a t t h e c e l l u l a r l e v e l f o r r e s i s t a n c e were r e c y c l e d t h r o u g h t h e e n t i r e s y s tem o f mutagenesis and s e l e c t i o n t o enhance t h e d e s i r e d r e s i s t a n c e trait. A number o f c e l l l i n e s i d e n t i f i e d i n c e l l c u l t u r e were r e s i s t a n t t o 10 m i l l i m o l a r g l y p h o s a t e . These l i n e s were r e g e n e r a t e d and t h e p l a n t l e t s were p l a c e d on media c o n t a i n i n g 10 o r 100 m i l l i molar g l y p h o s a t e . F o r comparison, r e g e n e r a t e d b u t n o t s e l e c t e d c o n t r o l p l a n t l e t s were p l a c e d on s i m i l a r media. Some o f t h e s e l e c t e d l i n e s grew and d e v e l o p e d on t h e g l y p h o s a t e - c o n t a i n i n g media. In c o n t r a s t , u n s e l e c t e d c o n t r o l p l a n t l e t s f a i l e d t o s u r v i v e . Sur v i v o r s were r o o t e d and t r a n s f e r r e d t o t h e greenhouse where they were s p r a y e d w i t h Roundup a t r a t e s e q u i v a l e n t t o 2 o r 4 pounds p e r a c r e . S u r v i v o r s o f t h i s t e s t were s u b s e q u e n t l y e v a l u a t e d f o r t h e i r r e s i s t a n c e t o Roundup i n t h e f i e l d . The d a t a f o r t h i s f i e l d experiment a r e summarized i n T a b l e 1. Data a r e p r e s e n t e d h e r e f o r 13 l i n e s w h i c h were d e r i v e d from c u l t u r e and f i e l d - e v a l u a t e d f o r r e s i s t a n c e t o Roundup h e r b i c i d e . Each o f t h e s e l i n e s was s i g n i f i c a n t l y more t o l e r a n t t o Roundup than t h e r e g e n e r a t e d n o n - s e l e c t e d c o n t r o l B74. However, t h e l e v e l o f r e s i s t a n c e i n t h e s e 13 c e l l l i n e s was n o t c o m m e r c i a l l y s i g n i f i c a n t . Neverthe l e s s , t h i s does i n d i c a t e t h a t r e s i s t a n t p l a n t s c a n be d e r i v e d by s e l e c t i o n s at the c e l l u l a r l e v e l . E l e v e n - t h o u s a n d c e l l l i n e s were mutagenized and s c r e e n e d t o i d e n t i f y t h e s e 13 l i n e s w h i c h were r e s i s t a n t a t t h e whole p l a n t l e v e l i n the f i e l d . T h i s i s a frequency o f approximately one-tenth of one p e r c e n t ; u n d o u b t e d l y t h i s f r e q u e n c y c a n be improved by genetic engineering.
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
MARVEL
Biotechnology in Crop improvement
Figure 9. Somatic c e l l s e l e c t i o n f o r h e r b i c i d e resistance. Bottom l e f t , a f l a s k o f a l f a l f a c e l l s i n s u s p e n s i o n . Top l e f t , addition of herbicide t o the c e l l s . Center, c e l l s plated onto s o l i d medium c o n t a i n i n g herbicide; a resistant callus growing on h e r b i c i d e - c o n t a i n i n g medium. Top r i g h t , r e s i s t a n t p l a n t l e t s regenerating. Bottom r i g h t , t o l e r a n t p l a n t s s e l e c t e d from t i s s u e c u l t u r e growing i n t h e f i e l d a f t e r b e i n g s p r a y e d with the h e r b i c i d e .
Mutagenesis
Initiate suspension cultures
Spontaneous mutations
Selection
Modified cell lines Morphogensis and embryogenesis Plant with new characteristics
F i g u r e 10. G e n e r a l i z e d scheme f o r c e l l u l a r spontaneous o r i n d u c e d m u t a g e n e s i s .
selection
involving
Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
490
BIOREGULATORS FOR PEST CONTROL
Table
1.
S u p e r i o r A l f a l f a C l o n e s from the G l y p h o s a t e F i e l d Based on S u r v i v a l 21 Days P o s t - A p p l i c a t i o n .
Test
P e r c e n t S u r v i v a l and One-Tailed Ρ V a l u e
6
Clone
M u t a g e n e s i s and Selection Conditions
ID
B74
Lbs/Acre
4
Lbs/Acre 0%
5%
None
tested)
30%
.0288
57%
.0012
30%
.0288
31%
.0386
57%
.0004
29%
.0586
70%
.0000
63%
.0001
27%
.0425
44%
.0014
38%
.0139
63%
.0001
B62-3-13
47%
.0031
B62-3-26
42%
.0076
B89-4
31%
.0490
64s-8 65S-1
EMS-AMP
(not
2
1
65s-2 65S-8
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch034
2
1
141s-3 141S-6
1
80s-3
PF-GLY
ls-1
3
5FU-GLY
4
NQO-GLY
5
ls-2 B62-3-10
1
^"Also s u p e r i o r t o t h e 20% 2 l b / a c r e treatment.
^Ethylmethanesulfonate
s u r v i v a l l e v e l of
RA3- 24
(p