174
A. I, VOGEL, W. T. CRESSWELL AND J. LEICESTER
voi. 58
BOND REFRACTIONS FOR TIN, SILICON, LEAD, GERMANIUM AND MERCURY COMPOUNDS BY A. I. VOGEL,W. T. CRESSWELL AND J. LEICESTER Department of Chemistry, WooEwich Polytechnic, London, S.E. 18, England Received July 1 , 196s
Analysis of the refraction data in the literature for liquid tin, silicon, lead, germanium and mercury compounds, using the fundamental bond refractions of Vogel (1948) has yielded a system of bond refractions for these five elements. These replace and extend inter alia the bond refractions for tin compounds of West and Rochow (1952) and for silicon compounds of Warrick (1946), which were based upon the older constants computed by Denbigh (1940).
Denbigh‘ deduced the fundamental bond refractions (u-line) for (C-H) and (C-C) as 1.69 and 1.25, respectively, from the literature data upon liquid hydrocarbons: these values were used as the basis for calculating the refractions of other bonds from data given in “International Critical Tables” and Landolt-Bornstein “Tabellen.” More trustworthy figures for these fundamental bond refractions (1.676 and 1.296, respectively) were first given by the senior author in 19482: these were computed from the mean CH2 differences derived from new measurements upon a series of highly purified alkyl chlorides, bromides and iodides3 and n-aliphatic hydrocarbon^.^ (An independent confirmation of our constants was provided by Vickery and Denbigh6 who deduced (C-H) 1.674 and (C-C) 1.296 from the molar refractions of 196 alkanes as the result of an exhaustive mathematical analysis.) By utilizing our own experimental data, a new series of bond refractions was proposed. To facilitate the calculations of the molecular refractions of compounds containing alkyl groups, a table of constants for alkyl groups has been p r ~ v i d e d . ~ West and Rochow‘O have recently published a series of tin bond refractions based upon Denbigh’s 1940 values.’ It seems rather surprising that our tables of bond constants, published in 1948 and 1950, were overlooked by the American authors. In view of the importance of the subject, we have recalculated the bond refractions for tin compounds from the molecular refractions given by West and Rochow with the aid of our own values for (C-H) and (C-C) and for alkyl groups. Our results are collected in Table I; the American authors’ values are given in parentheses. West and Rochow (ref. 10) give two values for the refraction of the (Sn-C) bond; the so-called “primary” 4.09 deduced from 19 compounds and the so-called “secondary” 4.24 deduced from 12 compounds. We find that only one value 4.16 for (Sn-C) is necessary and have used the molecular refractions for all the 40 tin tetraalkyls in arriving a t this constant; the slightly higher standard devi(1) K. G. Denbigh, T r a n s . Faraday Soc., 36, 936 (1940). (2) Vogel, J . Chem. Soc., 607 (1948). (3) Vogel, ibid., 636 (1943). (4) Vogel, ibid., 133 (1946). (5) Vickery and Denbigh, Trans. Faraday Soc.. 45, 61 (1949). (6) Cresswell, Jeffery, Leicester and Vogel, Research, 1, 719 (1948). (7) Vogel, Cresswell, Jeffery and Leicester, Chemistry and I n d u e t r y , 358 (1950). (8) Vogel, Cresswell, Jeffery and Leicester, J . Chem. Soc., 531
(1952).
(9) Vogel, Cresswell, Jeffery and Leioester, ibid., 518 (1952). (IO) R. West and E. G. Rochow, J . Am. Chem. Soc., 74, 2490 ( l Y 52).
ation (0.091) can be appreciably reduced by omitting the data for certain compounds (as, indeed, was done by West and Rochow), but we do not consider that this apparently artificial rejection of literature data is scientifically sound. The present authors find it difficult to agree that it is possible to derive true values for “Sn-C (secondary)” from the 12 compounds used by the American authors; the only compounds containing secondary carbon directly attached to tin are triethyl-i-propyltin ( M R D 59.98; qf. triethyl-n-propyltin 59.79) and dl-amyltin (MRD 110.6G; cJ. tetra-n-amyltin 110.64). Compounds with i-butyl and i-amyl groups, which were employed in their calculations, do not contain secondary carbon directly attached to the metal. The tin bond refractions given in Table I permit the calculation of MRD for the 90 compounds (collected by West and Rochow) with an average percentage error of 0.41%.
. .
TABLE I TIN BONDREFRACTIONS Bond
(Sn-C) (Sn-Car) (Sn-C1) (Sn-Br) (Sn-I) (Sn-Sn) (Sn-0)
Refraction
4.16 (4,09, primary; 4.24, secondary) 3.78 (3 54) 8.91 (8.81) 12.00 (12.02) 17.92 (17.95) 10.77 (10.96) 3.84 (3.84)
No. of cpd. used
Standard dev.
40
0.091
3 11 14 15 3 4
.12 .37 .51 .54 .52 -27
Recently West,, Webster and Wilkinsonll have examined three tertiary alkyl tin compounds and find values of 4.87, 4.52 and 4.89, respectively, for the “Sn-C tert.” bond. We prefer, in agreement with Vickery and Denbigh,b to retain only one value for the Sn-C bond since it is of greater general utility and also in order to keep the number of constants required for the calculation of molecular refractions to a minimum. The slight exaltation may be characteristic of the &alkyl grouping. All our detailed results for tin compounds are collected in Table 11. I n our calculations of the tertiary compounds, we have deduced the contributions of the tertiary alkyl groups from our own data for t-butyl and t-amyl chloride, respectively. Bond refractions for silicon compounds have been determined by Warrick12 on the basis of Denbigh’s (11) R. West, M. H. Webater and G. Wilkinson, ibid., 74, 5794
(1952).
(12) Warrick, ibid., 68, 2455 (1946); (1946).
coiiipare Sauer, ibid., 954
.
Feb., 1954 BONDREFRACTIONS FOR TIN,SILICON, LEAD,GERMANIUM A N D MERCURY COMPOUNDS 175 constants (1940). We have recalculated the literature data on orzanosilicon comDounds. using our own constants i n d the results are collectgd in Tables I11 and VII. TABLE I1 MOLECULAR REFRACTIONS OF TINCO~WPOUNDS Temp., MRD OC. Found Calcd.
Error
% ' Ref,
Tin tetraalkyls 25 20 21.5 21 20.1 23.1 20 20 15 25 20.6 12 20.3 20 20.1 20.4 19.9 19.0 21.8 20 21.0 21.9 20.2 20 24.1 20 20 23.0 20 26.8 17 20 19.6 20 20 20 20 20 20 20.7 25 25 25
36.43 50.76 50.72 55.53 64.85 48.39 50.27 78.85 92.08 54.94 59.77 59.98 64.77 69.16 69.36 74.10 57.87 83.42 69.32 83.05 83.15 87.57 73.99 78.55 78.86 101.56 92.11 92.60 97.07 97.61 102.73 110.64 111.32 110.66 119.88 128.83 147.48 165.75 113.00 136.20 65.97 74.54 93.82
36.64 +0.6 50.57 - .4 50.60 .2 55.26 - . 5 64.57 .4 48.42 .I 50.57 .6 78.44 .5 92.51 .5 55.22 .5 59.89 .2 59.90 .1 64.54 .4 69.17 .o 69.20 .2 73.86 - . 3 57.71 .3 83.18 - . 3 69.23 - . 1 83.09 .o 83.18 .o 87.85 .3 73.90 .1 78.52 .o 78.55 - . 4 101.74 .2 92.38 .3 92.50 .1 97.07 .o 97.16 - . 5 101.65 -1.0 111.02 +0.3 111.14 .2 110.02 .6 120.41 .4 129.46 .5 148.22 .5 166.58 .5 113.08 .1 136.30 .I 65.01 - 1 . 5 74.07 - 0 . 6 92.88 - 1 . 0
-
+ +++-
+-
+ +-
+ + + + + +
a
a a a a
a a a
a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a
a
b b
b
25.0 23.3 15.7 19.9 28.0 25 24.8 34.2 20 20 20
35.22 50.14 54.77 63.94 64.75 78.41 78.97 92.55 62.59 53.93 43.61
35.62 50.33 55.00 64.31 64.34 78.20 78.29 92.27 63.48 54.19 44.91
+1.1 $0.4 .4 .7 .6 - .3 .9 .3 +1.5 +0.5 +3.0
+ +-
-
a
a a
a a a a a a
a a
Section C. Tin-bromine compounds SnBrr (CzHs)sSnBr (CzHs)z(n-CaH7)SnBr (CzHs)Z(i-C4Ho)SnBr (CzHs)z(n-CaHii)SnBr (CzHs)e(i-CsHii)SnRr (CzHs)z(Br(CHz)a)SnBr (CZH6) (i-C4 HdrSnBr (CzHa)(i-CsHii)zSnB~ (n-CaHi)aSnBr (n-CcHe)aSnBr (i-CrH9)sSnBr (n-CaHii)aSnBr (i-Cb&daSnBr
35.0 20 21 20.4 22.3 17.0 20.3 19.5 20.0 25.2
PO 20 20 20.7
48.73 53.22 57.46 62.74 08.12 06.61 75.39 72.41 80.56 68.35 81.41 81.09 44.99 92.72
48.00 -1.5 53.42 f 0 . 4 58.09 +1.1 62.74 0.0 67.37 - 1 . 1 137.40 f l . 2 75.08 - 0 . 4 72.06 - 0 . 5 81.38 +1.0 67.43 - 1 . 3 81.29 - 0 . 1 81.38 .4 95.27 .3 98.36 .4
++
a a a
a a a a a
a a a
a a iL
39.3 28 20 20 18 21 17.5 20 20 30.4 20 22.2 20 18 26.5 20
53.88 54.12 45.11 45.40 59.31 59.34 59.33 59.37 63.69 64.00 64.01 64.03 59.37 59.34 63.09 64.01 69.31 68.63 73.32 73.35 77.13 77.97 88.47 87.30 92.36 91.90 97.14 96.48 100.92 101.28 134.32 142.86
$0.5 .6
a
.O
a
.1 .5
a a a a
+ + +
.O
- .1 +1.5 -1.0 0.0 +1.1 -0.2 - .5 .7 .4 +6.4
-
+
a
a a a a a
a a a
a
Section E. Distannanes [(CzHs)asn]z I(CzHs)z(n-CaHdSn 1 2 [(CzHs)z(i-C~Hd Snlz [(n-CaH;)sSn]z [(i-CdHdtSn]z
17.8 15.3 19.8 19.5 59
93.28 102.56 118.17 122.36 150.91
93.62 102.95 122.25 121.63 149.53
4-0.4 +0.4 -5.0 -0.6 -0.9
R,
4-0.2 - .3
a
.O
a
a a
a 8
Section F. Aryltin compounds (CzHs)aSn(o-HOCaHd (CaHs)SnCla (CsHdSnBra
25 23 23
71.10 55.15 64.28
71.23 55.00 64.29
a
Section G. Tin-oxygen compounds 56.02 56.45 (CzHs)aSn(OCzHs) 23.3 74.96 75.25 (n-C4Hs)aSn(0H) 25 76.50 76.19 (n-C1He)zSn(00CCHa)z 25 ( ~ - C I H ~ ) Z S ~ ( O O C C ~ ~ H Z25~ ) Z 168.29 168.33
.4
a a a
.O
a
4-0.8
- .4
-
(a) R. West and E. G. Rochow, J. Am. Chem. SOC., 74, 2490 (1952). (b) R. West, M. H. Webster and G. Wilkinson, ibid., 74, 5794 (1952). TABLE 111 MOLECULAR REFRACTIONS OF SILICON COMPOUNDS Temp., MRD OC. Calcd. Found
Error
% ' Ref.
Section A. Silicon Tetraalkyls
c
( Ht) 4Si
(CzHs)rSi (CHI)aSi(CzH6)
a
Section B. Tin-chlorine compounds SnCh (CzHdaSnC1 (CzHs)z(n-CsHdSnCl (CzHs)z(i-CsHii)SnCI (n-CaHdaSnC1 (n-C4Ho)aSnCI (i-CaHo)aSnCl (i-CsHii)aSnCl (cia-ClCH=CH) sSnC1 (cis-ClCH=CH) zSnClz (trans-ClCH=C H) SnCla
Section D. Tin-iodine compounds (CHa)zSnIz (CHdaSnI (CHa)z(n-C4Ho)SnI (CHs):(i-CdHo)SnI (cHa)z(n-CsH~~) SnI (CHa)z(i-CbHII)SnI (CzHdsSnI (CzHr)p(n-CaH7)SnI (CzHs)z(n-C4Ho)SnI (n-CsHi) aSnI (n-CaHi)z(n-C4Ho)SnI (r-CdHe)aSnI (~-C~H~)Z(~'-CSHII)S~I (n-C4Hs)z(n-CaHir)SnI (i-CsHii)aSnI (n-CeHirbSnI
(CHa)zSi(CzHs)z (CHa)aSi(CioHzi)
18.7 25.1 20.2 20 24.8 20 25.2 20.1 20 20 20 24.8 25.2 24.9 25.4 25.8 25.2 25.4 25.5 25.7
30.02 48.38 34.90 34.73 39.40 .72.04 39.49 42.04 39.82 35.17 43.02 44.26 44.10 48.92 48.76 48.84 53.11 57.77 57.78 62.45
30.11 +0.3 48.69 .6 34.75 - . 4 34.75 .1 39.40 .O 71.92 - . 2 39.42 .2 .o 42.02 .6 39.59 34.96 .B 43.06 .1 .5 44.04 .1 44.07 48.73 - .4 ,1 48.72 .2 48.74 .5 53.36 .5 58.08 58.01 .? 62.67 .4
+ + -
+ -
+ + ++
c c
c c
o C
c c c c
c d
d d d d
d d d d
Aryl-silic on compounds 24.7 20.2 20 20 20.0 20.0 20.0 20.0 20.0 20.0 20.0 25.3 25.1
50.10 48.94 65.46 80.30 90.54 52.30 66.53 80.43 80.68 94.27 94.48 54.67 G3.79
50.02 48.78 65.59 80.86 90.58 52.47 66.41 80.42 80. 45 94.28 94.37 54.66 G3.95
-0.2 - .3 .2 .5
+ + +
.o
c 0 0
c c
.3 .2
e
.O
e
- .3
e e e
-
-
+
.O .1
.O .2
e
e e
176
A. I. VOGEL,W. T. CRESSWELL AND J. LEICESTER TABLEI11 (Conlinued)
Section G. Silicon-fluorine compounds
Temp., MRD ‘C. Calcd. Found
Error
% ’Ref.
Section C. Silicon-hydrogen compounds HSiCln(CHa) (CHaSiHOId cyclic tetramer (CHaSiHOIs cyclic pentamer (CHaSiH0)acyclic hexamer HSi(CHa) [(CHslaSiO]z [(CHa)aSiOSiH(CHa) 1 2 0 [(CHa)aSiOSi(CHa)H O j r BiH(CH8) HSi(OC HzCHzC1)a HSiClz(CzHs) HSiCln(n-C4Ha)
20 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20 20
24.82 57.10 71,54 85.82 63.14 77.42 91.77 56.63 29.56 38.54
24.92 57.21 71.50 85.79 63.07 77.37 91.68
+0.4 .2 .1
c
+
-
+ +
56.72 29.57 38.86
c
.O
c c
.1 .1 ,1
c a c
.2
c
f .8 f .O
Section D. Silicon-oxygen compounds Si(0CHa)d Si(OCzHd4 Si(O-n-CaH7)‘ (CHa) aSi (OCnHa) (CHa)zSi(OCzHs)n (C Ha) Si (OCnHa)i (CIIa)zSi(O-n-C4Hs)n (CHJ)SI(O-~-CIHO)I [Si(O-n-CaHi)a!aO [(n-C4HoO)(CHa)aSi]nO [(CHahSiOIr cyalic tetramer [(CHa)aSiOls cyclic pentamer [(CHa)nSiO]scyclic hexamer I(CHa)nSiO]r cyclic heptamer [(CHdaSilnO dimer [(CHdsSiO IrSi(CHs)x trimer I(CHa)aSiOSi(CHa)n]nO tetramer [(CHa)aSiOSi(CH1)r0]nSi(CHa)n pentamer Hexamer Heptamer Octamer CICHzSi(C Ha)nOSi(CHa)z
CICHzSi(CIII)nOSi(CHa)aCHzCl Si(OCH2CHnCl)r
22.0 33.32 33.38 + 0 . 2 20.0 33.49 33.38 .3 15.0 52.05 51.96 .2 22.7 70.25 70.64 .6 20 35.67 35.57 .3 20 41.05 41.04 .o 20 . 46.97 46.49 -1.0 25 59.45 59.62 + 0 . 3 20 74.19 74.36 + 0 . 2 22.6 107.68 109.56 4-1.8 20 78.17 78.27 + O . l 25 74.60 74.63 .o 25 93.40 93.29 .1 25 112.08 111.94 .1 28 130.48 130.61 .1 25 48.89 48.76 .3 25 67.48 67.42 .1 25 86.15 86.09 .1
c c
25
104.70
c
25 25 25 20.0 20 20.0 20 20.0 20.0 20.0 20.0 20.0
123.56 123.41 142.98 142.05 160.88 160.71 53.62 53.62 53.90 53.62 58.18 58.47 58.58 58.47 71.07 71.40 60.92 61.07 86.23 86.09 44.85 44.86 96.82 96.93
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
33.15 33.38 52.00 51.96 70.56 70.64 89.05 89.12 70.81 70.68 53.34 53.67 81.65 81.56 109.46 109.57 109.82 109.63 137.26 137.29 73.50 73.96 50.97 51.18 65.10 65.12 79.10 79.13 79.24 79.16 92.80 92,99
+ -
105.06
+ - .3 - .1 - .6 - .1 .o - .5 + .5 - .2
+ + -
.5 .2 .2
+
.1
.O
+- .7
+ + + +
-1 .1 .1 .2 .6 .1 .1 .2
+ +
.O
-
.6
.4 .O
c c
c c
c c c c c c c
c c c c c
a c
c c c
c c 0
c
d d d e e e e e e e e e e e e e
.o
e
.1 .2
e e
-0.9. -0.9 -1.0 $1.0 -0.6 .9
a c a a
-
+
Section E. Silicon-chlorine compounds Sic14 (CaHsC Hr)SiCh (CnHs)SiCla (CHz)s=SiClr (n-CIH7)SiCl; (n-CdHo)SiCla (n-CsH7)(CaHs)SiCh (GC~HB) (CzHa)SiCIz (C Ha)aXiCI (CnHs)aSiCl
22.9 20.1 19,s 20.2 20.3 20.2 19.9 20.0 20 20
28.71 53.76 33.85 40.83 38.42 43.18 42.89 47.71 29.90 43.36
28.45 53.28 33.51 41.22 38.18 42.80 43.25 47.90 29.69 43.63
-
+
.8
+
.4 .7 .6
+ -
d d d d g g
Section F. Silicon-bromine compounds SiBr4 (CzHs)aSiBr (CICHICIIS)(CaHdzSiBr
23.5 20 20
40.74 46.55 51.37
Vol. 58
40.32 46.60 51.46
-1.0 $0.1 +0.2
c g
g
(CtHdiSiF (n-CaH7)BSiF (n-C4Hs)aSiF (n-CaHii)aBiF
25 25 25 25
38.09 51.58 66.70 80.28
38.23 52.24 66.10 80.08
+0.4 +1.3 -0.9 -0.2
c c h
$1.4 -0.6
c c
c
Section H. Silicon-sulfur compounds Si(SCHd4 Si(SCnHsh Si (S-n-CsH7) 4 Si(S-n-CdHs)c
35 25 25 25
62.12 82.10 100.25 119.13
63.02 81.60 100.28 118.76
.O
c
.3
a
-0.7 .3 .1 .7 .1 .2
c
-
Section I. Silicon-silicon compounds (CHa)iSiSi(CHa)r SinCls SirCls(0CzHs) SirCl4(OC~Hs)n SinCIi(0CzHs)r 8in(OCrH8)6 SiaCL
24.4 14.5 14.5 14.5 14.5 14.5 14.5
51.39 48.71 54.41 59.94 66.28 83.65 68.81
51.05 48.57 54.45 60.33 66.20 b3.85 68.69
-
+ + + -
.2
c c
c c
a c
Section J. Silicon-nitrogen compounds [(CHa)rSi]zNH (CHa)aSiNHCHI (CnHs)rClSiN(CaHs)r (CzHdrSi [N(CZHI);]S Si(NCO)( Si(OCH1) (NCO) I Si(OCHdr(NC0)r Si(OCHaMNC0) ClISi(NC0) ClrSi(NC0)r ClSi (NCO) I [(CHs)rSiNH]i cyclic trimer [(CnHa)rSiNH]rcyclic trimer [(CxHs)xSiNH]rcyclictetramer (CxHr)(CHdrSiNH [(CHa)aSiNHlrSi(CH:)r (CHa)BSi(NCO) (CHa)&(NCO)z (CHa)Si(NCO)a (n-CdHs)Si(NCO)a
(CzHr)rSi(NH~)(CH:CHnCI)
20 51.38 51.24 20 33.12 33.08 20 56.79 56.06 20 72.38 71.40 20.0 37.29 36.96 20.0 36.33 36.06 20.0 35.07 35.17 20.0 33.95 34.27 25 31.11 30.58 25 33.34 32.71 25 35.31 34.83 20 63.36 63.40 20 90.52 91.29 20 119.87 121.72 20 59.48 60.54 20 72.13 72.40 20.0 31.92 31.82 20.0 33.60 33.54 20.0 35.39 ,35.24 20.0 48.53 49.18 20 47.02 47.06
-0.2 c -0.1 o -1.3 c -1.4 c -0.9 c .7 c .3 c .9 c -1.7 a -1.9 o -1.4 c $0.1 i +0.9 i f1.5 i +1.8 i +0.4 i .3 j .2 j .4 j +1.3 j +O. 1 g
-
+ +
-
-
(c) E. L. Warrick, J . Am. C h e m Soc., 68,2455 (1946). (d) W.0.Sauer, ibid., 68,954 (1946). (e) Smith, Svensk. Kern. Tidskr., 61, 213 (61) (1949). (f) C.A. MacKenzie, A. P. Mills and J. M. Scott, J . Am. Chem. SOC.,72, 2032 (1950). (g) D. L. Bailey, L. H. Somrner and F. C. Whitmore, ibid. 70,435 (1948). (h) J. A. Gierut, F. J. Sowa and J. A. Nieuwland, ibid., 58.897 (1936). i) S. DI Brewer and C. P. Haber, ibid., 70, 3888 (1948). j) G. S. Forbes and H. H. Anderson, ibid., 70, 1222 (1948).
The subsequent tables incorporate the results of our calculations for lead, germanium and mercury compounds. It may be pointed out that we regard the experimental data of Fajans and Cook and of Johnson and Fritz upon the tetraalkylgermanes TABLEI V MOLECULAR REFRACTIONS OF LEADCOMPOUNDS (CHa)dPb (CzHs)rPb (n-C8H7)4Pb “-CaH7)rPb (n-C‘Ho)rPb (n-C1H11)4Pb (d”-CsH11)4Pb (i-CsHISrPb (CHa’sPb(C2Hs) (CHt)rPb(n-CaHi) (CHa)P”(CzHs)n (CHa)aPb(n-CaHo) (CHa)zPb(CzHs) (n-CaHi) (CHa)nPb(n-CaHi)t (CHa)Pb(CzHs)n(n-CaH7) (CaHs)aPb(n-CaH~)
Temp., OC. 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
MRD
Calcd. 40.18 59.45 78.60 79.87 97.11 115.39 116.25 116.13 45.07 49.95 54.70 54.63 54.66 59.28 59.34 64.19
Error, Found % Ref. 41.04 + 2 . 0 k 59.62 + 0 . 3 k 78.30 - 0 . 4 k 78.34 - 1 . 9 k 96.78 - 0 . 4 k 115.42 0.0 k 114.42 - 1 . 6 k 115.54 - 0 . 5 k 45.68 $ 1 . 3 k 50.35 +0.8 k 54.98 .5 k 54.97 .6 k 55.00 .6 k 89.67 .6 k 89.66 .5 k 64.29 .2 k
+ + + + + +
,
Feb., 1954 BONDREFRACTIONS FOR TIN,SILICON, LEAD,GERMANIUM AND MERCURY COMPOUNDS177 TABLE I V (Continued) (CH~)P~(~-CIH~~ (CHdrPb(n-C~Ho)r (C%HdzPb(n-CaHi)r (C:H,)Pb(n-CaHd a (CHa)zPb(n-CsHii)r (CtHs)zPb(n-C4Ha)r (CtHa)zPb(n-CsHlr)t (n-CIHl)rPb(n-C4Ha)z (n-C4He)rPb (i-CdHo)a (n-CaHi)rPb(n-CsHii)r (r-C~Ho)zPb(n-CsH~r)t (n-C4H s)rPb(n-CsHIi)z (n-C~Ha)zPb(i-CsHu)r (n-C4Ha)rPb(d,Z-CsHrh (n-CsHll)zPb(d.Z-CaH~~; (n-CrHii)nPb(i-CsH11)2
Temp., MRD Error, OC. Calod. Found % Ref. 20.0 68.93 68.98 .1 k 20.0 68.52 68.91 .6 k 20.0 69.04 68.96 - .1 k 20.0 73.77 73.63 - .2 k 2d.O 77.63 78.23 .8 k 20.0 77.75 78.20 .6 k .5 k 20.0 87.05 87.52 .1 k 20.0 87.49 87.54 .1 k 20.0 96.96 96.84 20.0 97.07 96.86 - .2 k 20.0 105.91 106.16 .2 k 20.0 106.01 106.10 .1 k .O k 20.0 106.20 106.16 20.0 106.56 105.60. - .9 k .O k 20.0 114.88 114.92 20.0 115.43 115.48 .O k
+ +
+ + + + + + +
(k) Jones, Evans, Gulwell and Griffiths, J. Chem. Soc., 39 (1935). TABLE V MOLECULAR REFRACTIONS OF GERMANIUM COMPOUNDS Temp., OC. 25 Ge (CHI)4 25 Ge(CxHdr 24.5 Ge(CzHd4 25 Ge(n-C~Hdr 20 Gecn-CaHi)4 25 Ge(n-c~Hs)~ 25 Ge(n-CsHdc 20 Ge(#-CsHu)4 25 Ge(n-CsHia14 25 Ge(0CH.h Ge(OCxHd4 25 25 Ge(O-n-CaH7)4 -. Ge(O-n-C4Hdt 25 25 Ge(O-n-CsHld4 25 Ge(O-n-CaHia)r 20 [(CzHdaGeleO 20 [(CzHs)nGeO14 20 [(n-CaHi)aGe]zO 20 [(n-C4Ho):Ge]nO 20 (HCOO) Ge(CzHs)a 20 (HCOO)ZG~(CIH~), 20 (HCOO)Ge(+CaHi)a 20 (HCOO)Ge(n-CiHda 20 (CHaCOO)Ge(CzHda 20 (CHaCOO)Ge(n-CaH?)r ( C H I C O O ) G ~ ( ~ - C I H B ) ~ 20 20 (CHaCOOhGe(CaHsh 20 (CzHsCOO)Ge(n-CaHi)s 20 (n-CaHu)Ge(n-C4Ho) I GeCh 20 29 (CHdrGeClz 20 (n-CiHi)aGeCl 20 (n-CaHd aGeCl 25 GeBrr 18 (CHdaGeBr 20 (n-CaHr)iGeBr 20 (n-C4H~)aGeBr (n-C:HT):GeI 20 20 (n-GHs)aGeI (n-CaHT)aGeF 20 20 (n-C4Ho)aGeF 25 (CzHshGe(NC0) 25 (CYH~)~G~(NCO)Z (CtKs) Ge (NCO) a 25 25 Ge(NC0)r 20 (n-C4Ho)aGe(NCO) 25 Ge(SC Hdr 26 Ge(SCnH6)r 25 Ge(S-n-CaFIr)r 25 Ge(S-i-CuH7) L Ge(S-n-CdHo)4 25 25 G~(S-%-CIHO)~ 25 Ge(S-s-CrHo)r
MRD Error % ’ Ref. Found Calod. 32.30 32.22 -0.2 1 50.43 50.80 .7 1 50.41 50.80 .8 m 69.43 69.48 .I 1 09.00 69.48 .7 m 87.89 87.96 .1 1 106.75 106.60 - .1 1 106.32 100.74 .4 m 125.13 125.04 - .1 1 35.74 36.06 +0.9 n 54.91 54.64 - .5 n 73.45 73.32 - .~ .2 n 91.86 91.80 - .2 n 110.35 110.44 ,1 n 129.21 128.88 - .3 n 80.31 81.15 +1.0 o 120.44 121.40 f0.8 o 108.1 109.1 .9 p 135.7 136.8 .8 D 46.6 47.0 .9 o 43.0 43.3 .7 o 60.7 61.0 .5 q 74.4 74.9 .7 r 51.2 51.6 .8 o 65.0 65.5 .8 q 79.3 79.5 .3 r 52.0 52.2 .4 o 69.7 70.3 .9 q 102.2 102.7 .5 r 31.54 30.4 -3.4 B 31.70 31.3 -1.2 t 59.5 59.7 +0.3 p 73.3 73.5 +0.3 r 44.53 44.4 -0.2 u 35.73 35.2 -1.4 t 62.7 63.2 +0.8 p 77.1 77.1 r 68.7 68.7 p 82.6 82.6 ... r 53.6 53.4 -n.4 P 67.0 67.2 $0.3 r 47.25 47.51 +O.6 v 44.39 44.22 -0.4 v 41.70 40.93 -1.8 v 38.77 37.64 -2.9 v 75.0 75.4 +0.5 r 6.5.29 66.54 +1.9 t 84.91 85.12 +n.z t 103.64 103.80 .2 t 104.13 103.84 - .3 t 122.38 122.28 - .1 t 122.28 122.40 .I t 122.94 121.60 -1 1 t
+ + + + + +
April 1948; Cook, thesis, Ann Arbor, University of Michigan, 1948; Fajans, Chenz. Eng. News, 27, 900 (1949). (m) Krause and Grosse, “Die Chemie der Metall-organischen Verbindungen,” Springer, Berlin, 1937. (n) 0. H. Johnson and H. E. Fritz, J. Am. Chem. Soc., 75, 718 (1953). (0)H. H. Anderson, ibid., 72, 2089 (1950). (p) H. H. Anderson, ibid., 73, 5440 (1951). ( ) H. H. Anderson, ibid., 73, 5798 (1951). H. H. A nderson, ibid., 73, 5800 (1951). (s) Laubengayer and Tabern, THISJOURNAL, 30, 1047 (1926). (t) 0. H. Johnson, Chem. Revs.,48, 259 (1951). (u) L. M. Dennis and F. E. Hance, J . Am. Chem. Soc., 44, 299 (1922). (v) H. H. Anderson, ibid., 71, 1799 (1949).
(8
and the tetraalkyloxygermanes, respectively, as the most trust’worthy and have utilized these in the computations of the (Ge-C) and (Ge-0) refractions. TARLR VI
MOLECULAR REFRACTIONS OF hfERCURY COnIPOUNDS (CHa)zHg (CzHdzHg (n-CaH1)eHg (i-CaHr)zHg (n-C4Ho)rHg (dhHs)zHg (s-CIH~ZH~ (n-CsHii)rHg (i-CsHdzHg (d,Z-CsHil)oHg (n-CsHid:Hg
Temp., “C. 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
MRD Calcd. Found 23.72 24.43 33.26 33.72 42.93 43.06 43.98 43.08 &2.57 52.30 52.06 52.36 53.48 51.96 61.57 61.62 61.37 61.68 60.51 (11.12 70.67 70.84
Error
% ’ Ref. k k k k -0.5 k $0.6 k -2.8 k +0.1 k +0.5 k +l.O k +0.2 k +3.0 $1.4 +0.3 -2.0
~
+
+ + + + + + + + + + + +
... ...
+
+
(1) K. ~~j~~~ and B. Cook, ~~~~~~i~~ on Organometalio Compounds, Chicago Meeting of the Am. Chem. SOC.,
The bond refractions for silicon, germanium, lead and mercury, deduced from the above results for ((IC~RD found” are given in Table VII. TABLE VI1 BONDREFRACTIONS Bond
(Si-C) (Si-Car) (Si-F) (Si-Cl) (Si-Br) (Si-Si) (Si-0) (Si-H) (Si-S) (Si-N)
Refraction
No. of cpd. used
Silicon 2.52 2.93 1.7 7.11 10.08 5.89 1.80 3.17 6.14 2.16 Germanium 3.05 7.6 11.1 16.7 1.3 2.47 7.02 2.33 Lead 5.26 Mercury 7.21
Standard dev.
19 13 4 10 3 7 46 10 4 21
0.043 .14 .46 .16 .08 .22 .056 .15 .14 .29
6 4 4 2 2
0.038 .22 .35
6
7 5
0.057 .18 .28
32
0.14
11
0.32
...
...
The authors thank Imperial Chemical Industries for a grant.