Bovine Plasma Protein Adsorption onto Radiation-Grafted Hydrogels

Jul 22, 2009 - T. A. HORBETT and A. S. HOFFMAN. Department of Chemical Engineering and Center for Bioengineering, University of Washington, Seattle, ...
0 downloads 0 Views 2MB Size
11 Bovine Plasma Protein Adsorption onto

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch011

Radiation-Grafted Hydrogels Based on Hydroxyethyl Methacrylate and N-Vinylpyrrolidone T. A. HORBETT and A. S. HOFFMAN Department of Chemical Engineering and Center for Bioengineering, University of Washington, Seattle, Wash. 98195

Fibrinogen, γ-globulin, and albumin adsorption onto water­ -swollen synthetic polymers (hydrogels) were studied. These hydrogels were based on hydroxyethyl methacrylate (HEMA) and N-vinylpyrrolidone (NVP) and were radiation grafted onto silicone rubber. Adsorption from water, physiologic buffered saline, and blood plasma were studied. The intrin­ sically low protein adsorption onto poly(HEMA) can be overshadowed by adsorption due to low levels of ionic impurities. Fibrinogen adsorption isotherms at concentra­ tions up to physiologic levels show maximum adsorptions between ca. 0.2 and 0.8 μg/cm for the surfaces examined with adsorption onto poly(HEMA) being the least. These levels are five- to tenfold higher than those observed for fibrinogen adsorption from plasma. Albumin—fibrinogen and γ-globulin-fibrinogen competition experiments only partially explain the depression of plasmafibrinogenadsorption. 2

Τ T y d r o g e l s are a class of s y n t h e t i c p o l y m e r s of d i v e r s e c h e m i c a l n a t u r e A

A

d i s t i n g u i s h e d f r o m other p o l y m e r s b y the c a p a c i t y to i m b i b e r e l a ­

t i v e l y l a r g e amounts of w a t e r i n t h e i r s t r u c t u r e . T h e w a t e r content

of

these m a t e r i a l s varies f r o m a b o u t 30 to 90 w t % d e p e n d i n g o n b o t h the c h e m i c a l n a t u r e a n d p h y s i c a l structure of the p o l y m e r .

M a n y natural

or b i o c o m p a t i b l e p o l y m e r s are also h i g h l y h y d r a t e d , e.g. 3 0 - 5 0 w t

%

w a t e r is b o u n d b y g l o b u l a r proteins ( 1 ). P a r t l y for this reason, h y d r o g e l s 230 Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

11. have

HORBETT AND H O F F M A N p o t e n t i a l usefulness

Adsorption

onto

231

Hydrogels

as b i o m a t e r i a l s c a p a b l e

of m i n i m i z i n g t h e

u n f a v o r a b l e reactions often i n d u c e d b y f o r e i g n m a t e r i a l s i n contact w i t h b l o o d o r tissue (2).

H o w e v e r , p r o t e i n a d s o r p t i o n onto materials i n c o n -

tact w i t h b l o o d q u i c k l y modifies t h e i r i n t e r f a c i a l p r o p e r t i e s , a n d i t is b e l i e v e d to b e one of t h e p r i m a r y events l e a d i n g to t h r o m b u s f o r m a t i o n at the b l o o d / m a t e r i a l interface (3, 4). hydrogels under development

T h u s , p r o t e i n a d s o r p t i o n onto t h e

i n this l a b o r a t o r y has b e e n one of t h e

p r i m a r y areas of s t u d y i n t h e assessment of this n e w class of p o t e n t i a l Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch011

biomaterials. H y d r o g e l s i n aqueous m e d i a are m e c h a n i c a l l y w e a k a n d , f o r b i o m e d i c a l a p p l i c a t i o n s , t h e y f r e q u e n t l y r e q u i r e b o n d i n g to stronger s u b strate m a t e r i a l s . A v a r i e t y of t e c h n i q u e s h a v e b e e n d e v e l o p e d

f o r this

p u r p o s e i n c l u d i n g e l e c t r o n b e a m r a d i a t i o n - i n i t i a t e d graft p o l y m e r i z a t i o n ( 5 ) , d i p c o a t i n g o n sutures (6), a c t i v e v a p o r o r p l a s m a i n i t i a t e d g r a f t i n g onto a r t e r i a l prostheses (7,8,9),

a n d g a m m a - r a y r a d i a t i o n - i n i t i a t e d graft

p o l y m e r i z a t i o n onto several types of surfaces ( J O , 11, 12, 13). T h e h y d r o g e l s s t u d i e d here w e r e m a d e b y r a d i a t i o n g r a f t i n g H E M A or N V P onto silicone r u b b e r ( S i l a s t i c ) . T h e s i l i c o n e r u b b e r b a c k b o n e of these g r a f t e d h y d r o g e l s overcomes t h e i n t r i n s i c m e c h a n i c a l weakness of the h y d r a t e d p o l y ( H E M A ) a n d p o l y ( N V P ) h y d r o g e l s (11, 12, 13). T h e resultant p o l y ( H E M A ) / S i l a s t i c about 30-60 w t %

and poly ( N V P ) / S i l a s t i c

grafts r e t a i n

w a t e r , r e s p e c t i v e l y , i n contrast to t h e u n d e r l y i n g

s i l i c o n e r u b b e r w h i c h adsorbs less t h a n 1 % w a t e r (13).

These materials

h a v e s h o w n c o n s i d e r a b l e b l o o d c o m p a t i b i l i t y i n tests w i t h the in vivo v e n a c a v a r i n g test

(14).

P r o t e i n a d s o r p t i o n onto p o t e n t i a l b i o m a t e r i a l s has b e e n s t u d i e d i n t h e past u s i n g t w o b a s i c approaches, each w i t h its l i m i t a t i o n s . A d s o r p t i o n f r o m w h o l e , f l o w i n g b l o o d c l e a r l y represents t h e most r e l e v a n t s i t u a t i o n since g o o d b l o o d - c o m p a t i b i l i t y is a n i m p o r t a n t c h a r a c t e r i s t i c f o r b i o materials. Studies of this t y p e h a v e b e e n r e p o r t e d (15).

I t is e x t r e m e l y

difficult to assess s u c h studies, h o w e v e r , b e c a u s e t h e effects of

blood

flow rate, b l o o d c e l l a d h e s i o n , degree of a c t i v a t i o n of t h e c o a g u l a t i o n system, a n d specific p r o t e i n a d s o r b e d are n o t r e a d i l y e v a l u a t e d .

Thus

the studies h a v e l a r g e l y b e e n l i m i t e d to s h o w i n g t h a t a n y m a t e r i a l i n contact w i t h b l o o d becomes c o a t e d w i t h p r o t e i n i n a v e r y short t i m e . V r o m a n ' s g r o u p has d e v e l o p e d u s i n g specific

some p o t e n t i a l l y u s e f u l t e c h n i q u e s

antisera to i d e n t i f y i n d i v i d u a l proteins

p l a s m a onto o x i d i z e d m e t a l surfaces (16, 17, 18, 19, 20).

adsorbed

by

from

Another basic

a p p r o a c h i n v o l v e s m e a s u r i n g t h e a d s o r p t i o n of a single p u r i f i e d p r o t e i n onto t h e m a t e r i a l f r o m w a t e r o r buffer (21, 22). I n o u r studies, a p a r t i a l synthesis o f these approaches

has b e e n

a t t e m p t e d , o n t h e p r e m i s e t h a t o n l y a clear u n d e r s t a n d i n g of p r o t e i n a d s o r p t i o n onto h y d r o g e l s f r o m s i m p l e b u f f e r e d saline c o u l d l e a d to a n

Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

232

APPLIED CHEMISTRY AT PROTEIN

INTERFACES

i n t e r p r e t a t i o n of a p a r t i c u l a r protein's a d s o r p t i o n b e h a v i o r f r o m b l o o d or p l a s m a . T h u s , p r o t e i n a d s o r p t i o n o n t o h y d r o g e l s f r o m w a t e r , f r o m buff­ e r e d saline, f r o m p r o t e i n m i x t u r e s , a n d f r o m p l a s m a h a v e b e e n s t u d i e d . T h e l a r g e n u m b e r of experiments necessary i n s u c h a m u l t i - f a c e t e d a p ­ p r o a c h cannot b e p r e s e n t e d here i n t h e i r entirety. I n s t e a d , s e v e r a l k e y e x p e r i m e n t s representative of e a c h f a c t of this r e s e a r c h are p r e s e n t e d to p r o v i d e a n o v e r v i e w of these studies a n d to p o i n t out some c r i t i c a l aspects of m e a s u r i n g p r o t e i n a d s o r p t i o n onto h y d r o g e l s . Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch011

M o n o m e r p u r i t y has a l a r g e effect o n p r o t e i n a d s o r p t i o n onto h y d r o gels. T h e i n t r i n s i c a l l y l o w p r o t e i n a d s o r p t i o n onto p o l y ( H E M A )

hydro-

gels c a n b e o v e r s h a d o w e d b y a d s o r p t i o n caused b y these i m p u r i t i e s . H o w ­ ever, r a d i a t i o n g r a f t i n g of p o l y ( H E M A ) onto a h y d r o p h o b i c s u p p o r t does not affect

the a d s o r p t i o n of

poly(HEMA).

fibrinogen

i n comparison w i t h

P r o t e i n a d s o r p t i o n isotherms for

fibrinogen

ungrafted onto p o l y -

( H E M A ) / S i l a s t i c , p o l y ( N V P ) / S i l a s t i c , a n d S i l a s t i c alone at c o n c e n t r a ­ tions u p to p h y s i o l o g i c a l levels s h o w a b a s i c s i m i l a r i t y i n shape, b u t t h e m a x i m u m a d s o r p t i o n levels v a r y b y a factor of four, w i t h

fibrinogen

a d s o r p t i o n onto p o l y ( H E M A ) / S i l a s t i c b e i n g the least. T h e s e m a x i m u m levels differ f r o m those o b s e r v e d f o r

fibrinogen

adsorption from plasma

onto these same m a t e r i a l s . T h e different a d s o r p t i o n b e h a v i o r o b s e r v e d i n buffer a n d p l a s m a are not e n t i r e l y e x p l a i n e d b y c o m p e t i t i o n curves p e r ­ f o r m e d w i t h a l b u m i n - f i b r i n o g e n or γ-globulin-fibrinogen m i x t u r e s . T h e s e results e m p h a s i z e the i m p o r t a n c e of as yet u n k n o w n p l a s m a factors i n modifying Materials

fibrinogen

a d s o r p t i o n onto some of these surfaces.

and Methods

M a t e r i a l s . M e d i c a l g r a d e n o n - r e i n f o r c e d s i l i c o n e r u b b e r sheeting, S i l a s t i c b r a n d , w a s o b t a i n e d f r o m D o w C o r n i n g . H E M A m o n o m e r was obtained from Borden C h e m i c a l C o . commercial quality, and from H y d r o n L a b o r a t o r i e s , Inc., h i g h l y p u r i f i e d . M e t h a c r y l i c a c i d ( M A A c ) , N V P , and ethyleneglycol dimethacrylate ( E G D M A ) were purchased from B o r d e n C h e m i c a l C o . F i b r i n o g e n ( 9 0 % clottable, b o v i n e ) , Pentex b r a n d , was p u r c h a s e d f r o m M i l e s L a b o r a t o r i e s , K a n k a k e e , 111. A l b u m i n ( c r y s t a l l i n e , b o v i n e ) a n d γ-globulin ( f r a c t i o n I I , b o v i n e ) w e r e o b t a i n e d from Nutritional Biochemicals C o r p . N-2-hydroxyethyl piperazine-IV'-2e t h a n e s u l f o n i c a c i d ( H E P E S ) , A grade, a n d l a c t o p e r o x i d a s e , l y o p h i l i z e d Β grade, were purchased from C a l b i o c h e m , San Diego. Plasma, citrated, platelet poor, was prepared from freshly d r a w n bovine blood. Reagent grade n i n h y d r i n a n d m e t h y l Cellosolve (peroxide free) were obtained f r o m P i e r c e C h e m i c a l s C o . R e a g e n t g r a d e S n C l · 2 H 0 , acetic a c i d , a n d H 0 w e r e p r o d u c t s of M a l l i n c k r o d t C h e m i c a l W o r k s , St. L o u i s . R e a g e n t c i t r i c a n d b o r i c acids w e r e p u r c h a s e d f r o m M e r c k & C o . , R a h w a y , N . J . N a I was obtained from I C N C h e m i c a l and Radioisotope D i v i s i o n , Irvine, Calif, and from N e w E n g l a n d Nuclear, Boston, Mass. G-25 Sephadex was purchased from P h a r m a c i a C h e m i c a l Co., Piscataway, N . J . 2

2

2

2

1 2 5

Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

11.

HORBETT A N D H O F F M A N

Adsorption

onto

233

Hydrogels

I C I w a s a gift of D . L a g u n o f f . S o d i u m a z i d e w a s a p r o d u c t of J . T . B a k e r C h e m i c a l C o . A l l other c o m p o u n d s w e r e reagent g r a d e or the p u r e s t available commercially. Film Preparation. H e m a a n d N V P w e r e r a d i a t i o n - g r a f t e d onto Silastic to m a k e p o l y ( H E M A ) / S i l a s t i c a n d p o l y ( N V P ) / S i l a s t i c h y d r o g e l s as p r e v i o u s l y d e s c r i b e d (13). I Fibrogen. T w o m e t h o d s w e r e u s e d to p r e p a r e I-labeled fibrinogen. In both methods, unincorporated iodide was removed i m m e ­ d i a t e l y after the r e a c t i o n b y g e l filtration o n a G - 2 5 S e p h a d e x c o l u m n p r e e q u i l i b r a t e d i n 0 . 0 1 M H E P E S , 0 . 1 4 7 M N a C l , 0 . 0 2 % a z i d e , p H 7.4. T h e first m e t h o d uses catalysis b y l a c t o p e r o x i d a s e a n d is b a s e d o n studies b y M a r c h a l o n i s ( 2 3 ) , a n d the s e c o n d m e t h o d uses i o d i n e m o n o c h l o r i d e ( I C I ) a n d is b a s e d o n w o r k b y H e l m k a m p et al. (24).

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch011

1 2 5

1 2 5

Protein Adsorption. F i l m s w e r e k e p t s u b m e r g e d i n buffer i n i n d i ­ v i d u a l bottles. C o n c e n t r a t e d p r o t e i n s o l u t i o n i n the same buffer ( a n d at the same t e m p e r a t u r e a n d p H ) was a d d e d w i t h a p i p e t t e to a v o i d expos­ i n g the films to the a i r / w a t e r interface. T h e solutions w e r e m i x e d b y s w i r l i n g the films. I n studies at 37 ° C , the solutions w e r e k e p t i n a w a t e r b a t h r e g u l a t e d to ± 1 ° C . A f t e r e q u i l i b r a t i o n , the films w e r e first r i n s e d q u i c k l y b y a d i l u t i o n a n d d i s p l a c e m e n t t e c h n i q u e w h i c h insures that the films are not exposed to the p r o t e i n s o l u t i o n / a i r i n t e r f a c e . T h e d i l u t i o n - d i s p l a c e m e n t r i n s e was d o n e b y r u n n i n g solvent t h r o u g h the e q u i l i b r a t i o n b o t t l e at a b o u t 400 m l / m i n for a p p r o x i m a t e l y 1 m i n u s i n g a t w o - h o l e r u b b e r stopper fitted w i t h t w o glass tubes, one for entrance a n d one for exit of buffer. Fibrinogen Adsorption from Plasma. F i l m s w e r e s u b m e r g e d i n 2 m l of 0 . 0 1 M H E P E S , 0 . 1 4 7 M N a C l , 0 . 0 2 % a z i d e , p H 7.4. E i g h t m l of c i t r a t e d p l a s m a ( p H 7.6) c o n t a i n i n g I - f i b r i n o g e n was a d d e d , a n d the solutions w e r e m i x e d b y s w i r l i n g the films. 125

Fibrinogen—Albumin and Fibrinogen—γ-Globulin Competition E x ­ periments. F i b r i n o g e n solutions c o n t a i n i n g I-fibrinogen were mixed w i t h a l b u m i n or γ-globulin solutions a n d buffer to g i v e a final fibrinogen c o n c e n t r a t i o n of 0.02 m g / m l a n d final a l b u m i n or γ-globulin c o n c e n t r a ­ tions of b e t w e e n 0 a n d 20 m g / m l . F i l m s w e r e s u b m e r g e d i n 5 m l of buffer, a n d 5 m l of the d e s i r e d p r o t e i n s o l u t i o n w a s a d d e d . 125

N i n h y d r i n Assay for Adsorbed Proteins. M e a s u r e m e n t s w e r e m a d e b y a c o l o r i m e t r i c p r o c e d u r e b a s e d o n the r e a c t i o n of n i n h y d r i n w i t h a m i n o acids ( 2 5 ) . T h e films w e r e h y d r o l y z e d i n 5 m l of 2.5N N a O H for 2 hrs i n c a p p e d p l a s t i c tubes i n a b o i l i n g w a t e r b a t h . T h e n 1.5 m l of g l a c i a l acetic a c i d w a s a d d e d a n d m i x e d ; next 1 m l of n i n h y d r i n reagent was a d d e d a n d m i x e d . [ T h e reagent w a s t h r e e times m o r e concentrated i n n i n h y d r i n , S n C l , a n d citrate t h a n p r e s c r i b e d b y M o o r e a n d S t e i n ( 2 5 ) ] . T h e tubes w e r e c a p p e d a n d b o i l e d 20 m i n s m o r e . T h e s o l u t i o n w a s c l a r i f i e d b y c e n t r i f u g a t i o n , a n d the absorbance r e a d i m m e d i a t e l y at 570 n m o n a B e c k m a n D B spectrophotometer. I f necessary, t h e s a m p l e w a s d i l u t e d w i t h 5 0 - 5 0 2 - p r o p a n o l - w a t e r . C a l i b r a t i o n curves ( a b s o r b a n c e vs. /Ag of p r o t e i n ) w e r e c o n s t r u c t e d i n t h e 0 - 3 0 a n d 0 - 1 0 0 μg r a n g e w i t h k n o w n amounts of e a c h t y p e of p r o t e i n s u b j e c t e d to this same analysis procedure. 2

Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

234

APPLIED

CHEMISTRY

A T PROTEIN

INTERFACES

F i l m a n d reagent b l a n k determinations w e r e always made a n d used to c o r r e c t t h e d a t a a p p r o p r i a t e l y . T h e assay w a s l i n e a r t h r o u g h o u t t h e r a n g e e n c o u n t e r e d here. Other Methods. P r o t e i n c o n c e n t r a t i o n s w e r e c a l c u l a t e d f r o m t h e 280 n m a b s o r b a n c e m e a s u r e d w i t h a B e c k m a n D B s p e c t r o p h o t o m e t e r . T h e p H of t h e p r o t e i n s o l u t i o n w a s a d j u s t e d as necessary w i t h a R a d i o m e ­ ter G K 2 3 0 3 c p H e l e c t r o d e a n d a n O r i o n m o d e l 401 I o n a l y z e r . I was m e a s u r e d w i t h a p u l s e - h e i g h t , a n a l y z e r - c o u n t e r m o d u l a r system consist­ i n g o f m o d e l s 4 0 - 1 2 B , 49-25, 33-10, 30-19, 29-1, a n d 10-8 m a n u f a c t u r e d b y R a d i a t i o n I n s t r u m e n t D e v e l o p m e n t L a b . , D e s P l a i n e s , 111.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch011

1 2 5

Results and Discussion The Effect of Monomer P u r i t y on Protein Adsorption onto Poly(HEMA).

T h e importance

of relatively minor contamination of the

monomers used i n formulating hydrogels to be used i n b i o m e d i c a l a p p l i ­ cations has n o t b e e n r e c o g n i z e d w i d e l y as y e t , a l t h o u g h B r u c k h a s r e ­ f e r r e d to this p r o b l e m i n c o n n e c t i o n

w i t h t h e soft c o n t a c t lens

P r o t e i n a d s o r p t i o n studies p e r f o r m e d w i t h h y d r o g e l s m a d e w i t h mers

of t y p i c a l commercial

Table I.

q u a l i t y i l l u s t r a t e this p o t e n t i a l

(26). mono­

problem.

γ - G l o b u l i n Adsorption onto Poly ( H E M A ) / S i l a s t i c " Amount Adsorbed ^g/cm )

Protein Solvent

Material E x p e r i m e n t A ( c o m m e r c i a l grade H E M A ) untreated Silastic p o l y ( H E M A ) / S i l a s t i c ( 6 % graft) p o l y ( H E M A ) / S i l a s t i c ( 2 8 % graft) E x p e r i m e n t Β ( c o m m e r c i a l grade H E M A ) untreated Silastic untreated Silastic p o l y ( H E M A ) / S i l a s t i c ( 1 8 % graft) p o l y ( H E M A ) / S i l a s t i c ( 1 8 % graft) E x p e r i m e n t C (purified H E M A ) p o l y ( H E M A ) / S i l a s t i c ( 3 3 % graft) p o l y ( H E M A ) / S i l a s t i c ( 3 3 % graft)

2

0.8 12.7 22.9

H 0 H 0 H 0 2

2

2

H 0 buffered saline H 0 buffered saline

0.8 0.8

2

6

2

c

12.6 1.9

d

H 0 buffered saline

1.54 0.11

2

6

A l l a d s o r p t i o n experiments were done i n 0.5 m g / m l 7 - g l o b u l i n solutions a t r o o m t e m p e r a t u r e for a t least 40 hrs, followed b y a t least 6 hrs of rinsing i n the e q u i l i b r a t i o n solvent. A d s o r b e d p r o t e i n was d e t e r m i n e d u s i n g the n i n h y d r i n assay. Buffered saline: 0.01M H E P E S , 0.147M N a C l , p H 7.4. Buffered saline: 0.05M I m i d a z o l e , 0.112M N a C l , p H 7.4. H y d r o n H E M A is the purified H E M A referred t o . a

b

c

d

Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

11.

HORBETT AND H O F F M A N

Adsorption

onto

235

Hydrogels

T a b l e I s u m m a r i z e s these early studies i n the f o r m of three k e y e x p e r i ­ ments. T h e v e r y first measurements of p r o t e i n a d s o r p t i o n onto these h y d r o gels r e v e a l e d m a r k e d l y greater a d s o r p t i o n onto these m a t e r i a l s t h a n onto the u n t r e a t e d S i l a s t i c a n d t h e y s h o w e d t h a t p r o t e i n a d s o r p t i o n i n c r e a s e d as t h e a m o u n t of p o l y ( H E M A ) g r a f t e d onto the Silastic i n c r e a s e d ( e x p e r i ­ ment A , Table I ) .

T h e s e results w e r e s u r p r i s i n g because the a p p a r e n t

s t r o n g i n t e r a c t i o n of

poly ( H E M A )

w i t h proteins e v i d e n c e d

by

such

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch011

g r e a t l y e n h a n c e d a d s o r p t i o n d i d not agree w i t h the e x p e c t e d l o w

free

e n e r g y at the h y d r o g e l - s o l u t i o n interface. T h e p r o t e i n h a d b e e n d i s s o l v e d i n d i s t i l l e d w a t e r i n these

initial

a d s o r p t i o n studies i n o r d e r to c o m p a r e the results w i t h the extensive d a t a of B r a s h a n d L y m a n (21 ) o n p r o t e i n a d s o r p t i o n f r o m w a t e r onto a v a r i e t y of m a t e r i a l s — i n c l u d i n g Silastic, the s t a n d a r d u s e d i n these studies.

The

r e l a t i v e l y close agreement of o u r d a t a w i t h those of B r a s h a n d L y m a n (21)

o n γ-globulin a n d

fibrinogen

a d s o r p t i o n f r o m w a t e r onto S i l a s t i c

s u p p o r t e d the v a l i d i t y of the a d s o r p t i o n a n d assay p r o c e d u r e s u s e d here. T h e m a x i m u m a d s o r p t i o n levels o b s e r v e d

i n b o t h studies for

plasma

p r o t e i n a d s o r p t i o n onto S i l a s t i c ( 0 . 8 - 1 . 8 / x g / c m ) are c o n s i d e r a b l y h i g h e r 2

t h a n the levels c o r r e s p o n d i n g to m o n o l a y e r f o r m a t i o n o n a flat, s m o o t h surface

( c a l c u l a t e d to b e a b o u t 0.2 / * g / c m

2

for these p r o t e i n s ) .

result suggested t h a t m u l t i l a y e r s of p r o t e i n w e r e b e i n g f o r m e d .

This Since

proteins are often less stable i n p u r e d i s t i l l e d w a t e r t h a n i n solutions of physiologic ionic strength and p H , multilayer adsorption could f r o m d e n a t u r a t i o n of the proteins.

Experiments were

begun

solvent m o r e closely r e l a t e d to the p h y s i o l o g i c a l s i t u a t i o n w i t h

occur

using a respect

to i o n i c strength a n d p H . E x p e r i m e n t B , T a b l e I shows that a d s o r p t i o n onto S i l a s t i c w a s l i t t l e affected b y b u f f e r e d saline, b u t a d r a m a t i c decrease i n a d s o r p t i o n onto poly ( H E M A ) / S i l a s t i c occurred.

T h i s l a r g e effect of i o n i c strength s u g ­

gested the presence of i o n i c i m p u r i t i e s i n the H E M A m o n o m e r u s e d to m a k e the p o l y ( H E M A ) a n d stressed the p o t e n t i a l b i o l o g i c a l i m p o r t a n c e of a n y t y p e of c o n t a m i n a t i o n of the

monomer.

Fortunately, highly purified H E M A became available (from H y d r o M e d S c i e n c e s ) a b o u t this t i m e , a n d other m o n o m e r s w e r e r e a d i l y p u r i f i e d b y v a c u u m d i s t i l l a t i o n . T h e p o l y ( H E M A ) h y d r o g e l s m a d e w i t h the p u r i ­ fied

HEMA

buffered HEMA

s h o w e d f a r l o w e r p r o t e i n a d s o r p t i o n f r o m either w a t e r or

saline t h a n h y d r o g e l s

m a d e w i t h the c o m m e r c i a l l y a v a i l a b l e

as e x p e r i m e n t C , T a b l e I shows.

biological importance

T h e s e results e m p h a s i z e

of h y d r o g e l c o m p o s i t i o n

in particular and

the bio-

m a t e r i a l c o m p o s i t i o n a n d p u r i t y i n general. A c o m m o n c o n t a m i n a n t i n c o m m e r c i a l H E M A is M A A c , e.g., i t w a s present at a b o u t the 2 % l e v e l i n the u n p u r i f i e d H E M A u s e d i n the i n i t i a l

Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

236

APPLIED CHEMISTRY A T PROTEIN

experiments HEMA

d i s c u s s e d above.

(0.02%

MAAc

level)

INTERFACES

T h e availability of the highly purified a l l o w e d us t o investigate t h e effect o f

M A A c levels i n the r a n g e u s u a l l y e n c o u n t e r e d i n the use o f u n p u r i f i e d H E M A b y s i m p l y a d d i n g k n o w n amounts o f M A A c t o the p u r e H E M A . T h e a m o u n t o f p r o t e i n a d s o r p t i o n onto t h e resultant

MAAo-HEMA/

Silastic h y d r o g e l s is s h o w n i n F i g u r e s 1 a n d 2 a n d T a b l e I I .

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch011

Adsorption (pg/cm ) 50

H

0

1

2

3

4

%MAAc in HEMA Figure 1. The effect of MAAc on protein adsorption onto poly(HEMA)/ Silastic at low ionic strength. The solvent was 0.005M HEPES, pH 7.4. Protein concentration was 0.5 mg/ml. See Table II for other details. T h e expected measurements

effect o f t h e M A A c

of protein

adsorption

is shown most clearly b y t h e

at l o w i o n i c

strength

(0.005M

H E P E S ) l i s t e d i n T a b l e I I a n d i l l u s t r a t e d i n F i g u r e 1 since i t is clear f r o m these that the p r o t e i n w i t h the most p o s i t i v e charge, i.e., γ-globulin, is a d s o r b e d most s t r o n g l y b y the n e g a t i v e l y c h a r g e d M A A c groups. T h e isoelectric p H ' s o f γ-globulin,

fibrinogen,

a n d a l b u m i n are ca. 6.8, 5.5,

Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

11.

HORBETT AND H O F F M A N

Adsorption

onto

Hydrogels

Adsorption (yg/cm ) 2

i.