Calculation of Electron Impact Ionization Cross Sections - Advances in

Jul 22, 2009 - FRED E. STAFFORD. Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Ill. Mass Spectrometry ...
0 downloads 0 Views 941KB Size
9 Calculation of Electron Impact Ionization Cross Sections

Downloaded by UNIV OF NORTH CAROLINA on July 14, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch009

FRED

E.

STAFFORD

Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Ill.

The

Gryzinski

theory

for

electron

sections for atoms is examined the total ionization of the contribution shells,

efficiency

agrees well with

the

differences

those of Otvos

with

and

molecular

experimental data.

data. The

of the predictions Stevenson

varies

variation

examined.

cross

theory the from

Calculations

The ratio of the cal­

to the

from 0.8 to 1.3.

electron

The

reasons for

are analyzed.

of

importance

of this theory

molecules.

cross section

cross sections are

curve, the relative

available

are made for some diatomic culated

ionization

to the total cross section of inner

and agreement

systematic

impact

with regard to the shape

sum The

of the

atomic

reasons for

this

J η this p a p e r t h e r e a c t i o n e~ + M = M

+

+ 2e~

(1)

w i l l b e c o n s i d e r e d . M m a y b e a n a t o m , or it m a y b e a m o l e c u l e , i n w h i c h case t h e p r o b l e m of f r a g m e n t i v e i o n i z a t i o n w i l l h a v e to b e c o n s i d e r e d ; e~ represents a n e l e c t r o n w i t h k i n e t i c e n e r g y greater t h a n the i o n i z a t i o n p o t e n t i a l of M . T h e rate of this r e a c t i o n is g i v e n b y J ( M ) =i(e-)n(M)la(E) +

(2)

w h e r e I a n d i are the respective currents, n ( M ) is the n u m b e r d e n s i t y of M i n the v o l u m e of l e n g t h I t r a v e r s e d b y the e l e c t r o n b e a m ; σ is a constant c h a r a c t e r i s t i c of M , the energy Ε of the i m p a c t i n g electrons, a n d the p a r t i c u l a r process b e i n g considered—i.e., i o n i z a t i o n to a p a r t i c u l a r state or t o t a l i o n i z a t i o n . T h e q u a n t i t y σ has the u n i t s of area a n d is c a l l e d a cross section. 115

Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

116

MASS

S P E C T R O M E T R Y

I N

INORGANIC

C H E M I S T R Y

*T"

3h

ο*

1A

Downloaded by UNIV OF NORTH CAROLINA on July 14, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch009

ÔO

OS/Exp

Dr

1

π

1—

Π—ΓΓ

IB 5#

· •

·



• •



Ζ

· • •

, 1„ . ,_

OS/Gry

R e a c t i o n 1 is of interest i n studies of stellar atmospheres, the solar c o r o n a , r a d i a t i o n d a m a g e , plasmas a n d n u c l e a r f u s i o n , a n d i n mass spec­ t r o m e t r y . T h e s p e c i a l interest of this p a p e r is the s t u d y of h i g h t e m p e r a ­ t u r e systems w h e r e the p a r t i a l pressure F of species M is g i v e n b y P=

I(M )T/S +

ay

w h e r e Τ is the absolute t e m p e r a t u r e of the c r u c i b l e or reactor, S is a constant of the mass spectrometer w h i c h is a s s u m e d constant w i t h change of mass, a n d γ is the r e l a t i v e g a i n of a s e c o n d a r y e l e c t r o n m u l t i p l i e r , i f used. M a n y species of interest h a v e b e e n o b s e r v e d o n l y b y o p t i c a l a n d / o r mass s p e c t r o m e t r y ; it is not possible to o b t a i n a n i n d e p e n d e n t measure of t h e i r cross sections. E s t i m a t e s of the cross section, or of r e l a t i v e cross sections therefore f o r m a n i m p o r t a n t p a r t of the c a l c u l a t i o n of t h e r m o ­ d y n a m i c properties u s i n g the absolute e n t r o p y ( T h i r d L a w ) m e t h o d . I n c e r t a i n cases, it m a y b e possible to c o m p a r e S e c o n d a n d T h i r d L a w results to o b t a i n cross sections. I n a d d i t i o n , p a r t i c u l a r l y w h e r e t h e

Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

9.

STAFFORD

Ionization

Cross

117

Sections -ι

'

1

π

1—'—Γ

50

Xe

75 Hg Gry/Exp

ic

Downloaded by UNIV OF NORTH CAROLINA on July 14, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch009

ÔO

He

0 Δ o

Ne

Ar

30

Kr

40

Ζ

Journal of Chemical

Physics

Figure 1. a. Logarithm [(Otvos-Stevenson cross section)/(experimental cross section for single ionization X 3)] vs. atomic number Z.; fr. Logarithm [(OS cross section)/classical cross section Table I)] vs. Z.; and c. Logarithm [(classical cross section)/(experimental cross section)] vs. Z. Uncertainties in the measured cross sections are not indicated on the figure, but often are hrge; see especially Kieffer and Dunn ( 14 )

r a t i o of intensities varies g r e a t l y w i t h t e m p e r a t u r e , it is possible to c o m ­ b i n e mass s p e c t r o m e t r i c measurements w i t h mass flow measurements 2, 3, 4, 6, 7, 8, 20, 24)

(I,

to d e d u c e r e l a t i v e cross sections. T h e s e m e a s u r e ­

ments h a v e p r o v e d v a l u a b l e , b u t often are l i m i t e d i n that t h e y i n v o l v e t a k i n g s m a l l differences b e t w e e n large, u n c e r t a i n q u a n t i t i e s . T h e w o r k of O t v o s a n d Stevenson (22)

has p r o v e d u s e f u l i n p r o ­

v i d i n g cross sections for atoms. T h e s e authors suggest also that m o l e c u l a r cross sections b e t a k e n e q u a l to the cross sections of the constituent atoms ( a d d i t i v i t y r u l e ) . A s o u r s o p h i s t i c a t i o n i n mass s p e c t r o m e t r y has g r o w n , a n d as w e d e m a n d m o r e accurate answers of the t e c h n i q u e , the O t v o s - S t e v e n s o n c a l c u l a t i o n s h a v e b e e n subjected to i n c r e a s i n g l y m o r e c a r e f u l e x p e r i m e n t a l v e r i f i c a t i o n as is c r i t i c a l l y r e v i e w e d elsewhere 27).

(14,

D e v i a t i o n s f r o m e x p e r i m e n t h a v e b e e n f o u n d . T h e results are s h o w n

i n F i g u r e 1 A (27),

w h e r e the l o g a r i t h m of O S to e x p e r i m e n t a l cross

section ( 60 e. v. ) is p l o t t e d for the atoms as a f u n c t i o n of a t o m i c n u m b e r , Z.

F o r the most r e l i a b l e d a t a a v a i l a b l e — h y d r o g e n , the rare gases, the

a l k a l i metals, a n d the a l k a l i n e earth a t o m s — t h e r e is a significant scatter.

Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

118

MASS

S P E C T R O M E T R Y

O f some interest is the p o i n t for S n ( Z =

I N

INORGANIC

C H E M I S T R Y

5 0 ) , for w h i c h the c a l c u l a t e d

cross section is s m a l l . T h e same is t r u e w h e n the c a l c u l a t e d cross section for G e ( Ζ =

32 ) is c o m p a r e d w i t h m o r e recent results. I n b o t h of these

cases a n a s s u m e d secondary electron m u l t i p l i e r g a i n has b e e n u s e d ; this m a y b e a significant source of error. Recently, a theory developed b y G r y z i n s k i (10)

on classical p r i n ­

c i p l e s has b e e n u s e d to g i v e d e t a i l e d p r e d i c t i o n s of cross sections as a f u n c t i o n of i m p a c t i n g e l e c t r o n energy.

A s u m m a r y of the l i t e r a t u r e as

w e l l as n e w c a l c u l a t i o n s for m a n y of the atoms are g i v e n i n the p r e c e d i n g Downloaded by UNIV OF NORTH CAROLINA on July 14, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch009

p a p e r of this series ( 2 7 ) .

T h e theory states that the cross section