Subscriber access provided by CMU Libraries - http://library.cmich.edu
Review
Can coffee chemical compounds and insecticidal plants be harnessed for control of major coffee pests? Paul Walter Charles Green, Aaron P. Davis, Allard A. Cossé, and Fernando E. Vega J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.5b03914 • Publication Date (Web): 12 Oct 2015 Downloaded from http://pubs.acs.org on October 19, 2015
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 27
Journal of Agricultural and Food Chemistry
1
Can coffee chemical compounds and insecticidal plants be harnessed
2
for control of major coffee pests?
3 4
PAUL W. C. GREEN *,†, A. P. DAVIS †, ALLARD A. COSSÉ ‡ AND FERNANDO E. VEGA §
5 6
†
7
Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, U.S.A., §Sustainable Perennial Crops
8
Laboratory, USDA, ARS, Beltsville, MD 20705, U.S.A.
Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, U.K., ‡Crop Bioprotection Research Unit, USDA, ARS, National
9 10
* Author to whom correspondence should be addressed (telephone +44 20 8332 5375; fax +44 20 8332 5310; e-mail
11
[email protected]).
12
___________________________________________________________________
13 14 15 16 17 18 19 20 21 22 23 24 25
Pests and pathogens threaten coffee production worldwide and are difficult to control using conventional methods, such as insecticides. We review the literature on the chemistry of coffee, concentrating on compounds most commonly reported from Coffea arabica and C. canephora. Differences in chemistry can distinguish coffee species and varieties and plants grown under different biogeographic conditions exhibit different chemotypes. A number of chemical groups, such as alkaloids and caffeoyl quinic acids are known to be insecticidal, but most studies have investigated their effects on coffee quality and flavour. More research is required to bridge this gap in knowledge, so that coffee can be bred to be more resistant to pests. Furthermore, we report on some pesticidal plants that have been used for control of coffee pests. Locally sourced pesticidal plants have been under-utilized and offer a sustainable alternative to conventional insecticides and could be used to augment breeding for resilience of coffee plants.
26
___________________________________________________________________
27
KEYWORDS: Hypothenemus hampei; Coffea arabica; Coffea canephora; coffee chemistry;
28
coffee pests; pest control; pesticidal plants.
29 30
INTRODUCTION
31
Of the 124 coffee (Coffea L.) species1 only two are used for commercial
32
production of the beverage coffee: Arabica (Coffea arabica L.) and robusta coffee (C.
33
canephora Pierre ex. A. Froehner). Production of both species worldwide is
1 ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
Page 2 of 27
34
negatively impacted by a number of factors, including unfavourable market forces,2
35
climate change3-5 and a wide range of pests and diseases, such as bacteria,6 fungi,7
36
mites,8,9 insects10,11 and nematodes.12,13 Among the insects, Hypothenemus hampei
37
(Ferrari) (Coleoptera: Curculionidae: Scolytinae), a bark beetle commonly known as
38
the coffee berry borer (CBB), is the most important global threat to coffee
39
production,14-16 although there are more localised pests, such as Antestiopsis Leston
40
(Hemiptera: Pentatomidae), which both damages the plants and contaminates the
41
beans with a fungus that makes the finished beverage unpalatable.17-19
42
The CBB (Figure 1) spends its life cycle protected in the developing coffee
43
berry and is therefore difficult to control using insecticides.16
44
management strategies include natural enemies - in particular parasitoid wasps20-22 -
45
or entomopathogenic fungi,23-25 which provide some degree of protection, although
46
their establishment in the field is difficult.16 Trapping of insects has been attempted,
47
based upon an alcohol mixture and is useful for monitoring insect numbers26
48
although the numbers caught barely impact upon the populations of CBB16,27 when
49
heavy infestations are estimated at millions of CBBs per hectare.16,28 No single
50
method is effective on its own, so an integrated approach is required, together with a
51
better understanding of coffee chemistry and the biology of CBB.16 Climate change is
52
likely to alter the population dynamics of pest insects, such as CBB, increasing their
53
rate of reproduction,29-31 while widening their geographic range.32,33
Alternative pest
54
The study of chemicals in coffee (e.g., alkaloids, caffeoyl quinic acids, fatty
55
acids, sterols and sugars) has been focussed on their utility for distinguishing groups
56
within the genus Coffea,34-36 varieties and cultivars37,38 or to pinpoint the geographic
57
origins of particular plants.39 Ample research has also been dedicated to assessing
58
the chemical composition of green coffee,40 roasted and ground coffee,41-44 and to
2 ACS Paragon Plus Environment
Page 3 of 27
Journal of Agricultural and Food Chemistry
59
relate this to the quality of the finished beverage.45,46 Aside from some of the work
60
on volatile attractants for H. hampei16 there have been few studies of the chemical
61
resistance of C. arabica to this insect.
62
This review will concentrate on the potential use of commonly reported
63
compounds for protecting coffee (C. arabica and C. robusta) against pests and
64
pathogens.
65
developing resistant varieties of Coffea and prior and future use of other species of
66
plant as so-called “pesticidal plants” will also be discussed.
The possibilities for investigating other classes of chemicals in
67 68
1. Chemical compounds of coffee
69 70
(i)
Caffeine and trigonelline
71
Caffeine (1, 3, 7-trimethylxanthine) is present in the flowers,47 leaves,48 seeds,49
72
and in green-34 and roasted coffee.42 The proportion of caffeine in the green beans of
73
C. canephora (1.5 to 4%) is greater than in C. arabica (0.7 to 1.6%).50 Caffeine is
74
responsible for the stimulatory effect of coffee in mammals51 and together with
75
another alkaloid, trigonelline as well as other compounds (see below) contributes to
76
the antioxidant and antimicrobial properties.52-55 In a broader context, insects that
77
would not normally encounter caffeine in their host plants can be repelled when it is
78
introduced into a plant.56
79
improves their memory of good sources of nectar.57 Caffeine is produced in
80
response to coffee berry disease (Colletotrichum kahawae Waller & Bridge;
81
Ascomycota: Sordariomycetes) and this up-regulation can be a marker for
82
resistance.58 The CBB is adapted to tolerate caffeine in the seeds59,60 even though
83
direct application of caffeine oleate formulations is toxic.61 Caffeine is not toxic to
Some pollinators are also affected by caffeine as it
3 ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
Page 4 of 27
84
leafcutter ants [Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae)], but does
85
inhibit the growth of the mutualistic fungi on which the ants feed, leading to the
86
possibility that these pests of coffee may select low caffeine coffee varieties.62
87
Application of caffeine to coffee leaves increases movement of the crawler stage of
88
the soft scale Coccus viridis (Green) (Hemiptera: Coccidae) and therefore reduces
89
feeding damage.63
90 91
(ii)
Caffeoyl quinic acids (CQAs) and related compounds
92
CQAs and other quinic acids are present in the leaves,64 seedlings,58 green-
93
and roasted coffee42 and contribute to the antimicrobial and antioxidant properties of
94
coffee.52,55,65,66 The concentrations of hydroxycinnamic acids and their esters, such
95
as the mono- and di-caffeoylquinic acids can be used to differentiate between
96
genotypes and plants from different locations.34,40,67-69 Conflicting studies using
97
different cultivars have shown that CQAs are at their highest levels in shade for C.
98
arabica L. cv. Catimor70 or at full sun for a dwarf variety C. arabica L. cv. Costa Rica
99
95.71 As CBB population levels can increase when plants are shaded,16,72 it is not yet
100
clear whether this is due to raised or lowered levels of CQAs or other biotic or abiotic
101
constraints.
102
varieties,45 while the prevalence of CBB decreases.72 As part of the response to
103
pathogens the concentration of 3-caffeoylquinic acid (3-CQA) in leaves increases
104
when plants are challenged with the rust Hemileia vastatrix Berk. & Broome (coffee
105
leaf rust; Basidiomycota: Pucciniomycetes)64 and seedlings respond to C. kahawae
106
by producing more 3-CQA in a mixture of structurally similar compounds.58 A side-
107
effect of coffee leaf miner infestation [Leucoptera coffeella (Guérin-Méneville &
34,40
Levels of CQAs also increase with altitude, especially in traditional
4 ACS Paragon Plus Environment
Page 5 of 27
Journal of Agricultural and Food Chemistry
108
Perrottet); Lepidoptera: Lyonetiidae], with 6-8 eggs per leaf, is that coffee leaves
109
produce less chlorogenic acid and become more susceptible to C. viridis.73
110
(iii)
Volatiles
111
The volatile profile of coffee berries varies as the drupe ripens, and it has been
112
suggested that these mixtures could be used as the basis for developing attractive or
113
repellent blends for CBB.74,75 Ortiz et al.74 used dynamic headspace collection,
114
coupled to a gas chromatography/mass spectrometry (GC-MS) system to analyse
115
compounds from coffee berries and found 27, 34, 41, and 68 chemicals in green,
116
half-ripe, ripe and over-ripe berries, respectively.
117
different stages, although esters were prominent in over-ripe berries together with an
118
overall paucity of monoterpenes.74 Using a different collection technique, Mathieu et
119
al.76 analysed samples eluted from a Super Q absorbent using GC-MS and detected
120
45 different compounds in volatiles from fresh coffee berries of C. arabica and C.
121
canephora at different stages of ripeness and divided these into alcohols,
122
ketones/aldehydes, acetates, terpenes and sesquiterpenes. Similarly Cruz Roblero
123
et al.77 collected volatiles onto Super Q absorbent and analysed eluted aliquots.
124
Although they found fewer compounds, 37 compounds in C. arabica and 41 in C.
125
canephora, they linked their chemical analyses to the responses of the insect.77
126
Sesquiterpenes, such as α-copaene, together with other volatiles (methyl salicylate,
127
2-heptanone, 2-heptanol and phenyl ethyl alcohol) were components that individually
128
elicited significant electroantennographic responses from CBB adults.77 As part of an
129
integrated pest management (IPM) strategy it is also useful to consider the effects of
130
compounds on natural enemies: methyl salicylate, limonene and longifolene can
131
attract the natural enemies of CBB.78,79 In contrast, verbenone and limonene, can be
Alcohols predominated in all
5 ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
132
used to repel other coffee pests, such as the black twig borer, Xylosandrus
133
compactus (Eichhoff) (Coleoptera: Curculionidae: Scolytinae).80
134 135
(iv)
Fats, carbohydrates and lipids
136
The availability of nutrients in plant material can be affected by the presence of
137
toxins and metabolic inhibitors, so measuring the levels of fats carbohydrates and
138
lipids does not always indicate the nutriment that is available to an herbivore.81 In
139
general, plants that are more nutritive for insects are likely to support a larger
140
population of pests that reproduce more rapidly and cause more damage.81
141
Much of the work on nutritional content of coffee has concentrated on the
142
harvested or roasted bean and while some degree of caution is advisable in
143
extrapolating these results, these data are useful as they can indicate differences in
144
the nutrients available to insect pests of coffee. The fat content of harvested beans
145
cannot on its own differentiate between varieties or plants grown at different
146
elevations.45,82 However, the ratio of fatty acids in blended coffees can be used to
147
discriminate between C. arabica and C. canephora.83 At higher elevations the leaf to
148
fruit ratio increases as leaves survive longer, resulting in an increase in carbohydrate
149
and bean fat synthesis.71 Environmental conditions can affect levels of fructose,
150
glucose and sucrose in beans as plants grown under 60% shading accumulate
151
greater levels than those that are either more or less shaded.70 While sucrose
152
content of green coffee beans is greater for C. arabica than C. canephora33 sugars
153
per se are thought to be most informative as chemical characters when considered
154
with other chemical constituents as part of the metabolome.39
155 156
6 ACS Paragon Plus Environment
Page 6 of 27
Page 7 of 27
Journal of Agricultural and Food Chemistry
157 158 159 160
(2).
Pesticidal plants
161
As part of an IPM strategy, there is considerable potential for the use of pesticidal
162
plants to be expanded for the control of crop pests, especially in Africa84 where
163
economic constraints favour low-cost and local approaches to crop management.92
164
A few plant species have been tested for their effects on CBB (Table 1) and
165
fungal entomopathogens.86-90 Essential oils can be toxic to CBB,88-90 but their
166
extraction requires costly specialist equipment.91 Most of the extracts of four different
167
plant species in either water or ethanol, were toxic to CBB, but there was variability
168
among different plant parts and between solvents.86 In summary, ethanol extracts
169
were generally more repellent to CBB, with Moringa oleifera Lam. (Moringaceae)
170
(roots) and Tephrosia purpurea (L.) Pers. (Leguminosae) (seeds) showing the
171
greatest effect against CBB when applied to leaves, while water extracts of M.
172
oleifera (leaves and seeds) and Nerium oleander L. (Apocynaceae) (leaves) were
173
the most repellent.86 When extracts were applied to coffee berries, Azadirachta
174
indica A. Juss. (Meliaceae) (leaves) was the most repellent.86
175
chemical constituents of these extracts was not established, it is possible to use the
176
available literature to approximate a picture of the compounds that could cause the
177
activity. The essential oils of M. oleifera have been used as fumigants against stored
178
product pests,92 but the activity of this plant is derived primarily from lectins93,94 which
179
inhibit the enzyme trypsin, and therefore reduce the digestion of protein from foods.95
180
Lectins may also have affected the germination of the CBB fungal entomopathogen
7 ACS Paragon Plus Environment
Even though the
Journal of Agricultural and Food Chemistry
Page 8 of 27
181
Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) observed by
182
Zorzetti et al.86
183
Much is known about the chemistry of Tephrosia sp.,96 but there is limited
184
information on the insect-activity of T. purpurea (Table 1). Tephrosia vogelii Hook f.
185
is insecticidal97 and contains insecticidal rotenoids, although these compounds do
186
not occur in all chemotypes of T. vogelii.98
187
biological activities against insects, for example, toxicity, developmental inhibition
188
and feeding deterrence.99,100 The component tetranotriterpenoids in extracts of A.
189
indica can deter feeding at nanomolar concentrations.100-102 It is more common for
190
the seed kernels of A. indica to be tested for insecticidal effects as these contain
191
insecticidal limonoids,99 and may have been more toxic if they had been assessed
192
instead of leaves.
Azadirachta indica, has a range of
193
Although N. oleander can repel insects that are not adapted to feed on the
194
plant,103 it is poisonous for vertebrates104 as it contains cytotoxic cardiac glycosides
195
(cardenolides)105-107 and triterpenoids,108,109 among other compounds.110
196
terebinthifolia Raddi (Anacardiaceae) is an invasive weed111 and is unusual as the
197
research effort is focussed on finding insects that will feed on the plant and therefore
198
act as biological control agents.112 Santos et al.88 found that the essential oils from
199
leaves could cause significant mortality of CBB, especially when diluted oils were
200
topically applied. Similarly, essential oils from fruit and seeds of S. terebinthifolia are
201
toxic to Anopheles, Culex and Stegomyia larvae,113,114 but the composition of
202
essential oils varies seasonally,115 so insecticidal effects are also likely to also vary.
203
Some of the phenolic components of extracts from S. terebinthifolia have been
204
characterised,116-118 but their effect on pest insects, has not been determined.
8 ACS Paragon Plus Environment
Schinus
Page 9 of 27
Journal of Agricultural and Food Chemistry
205
By the late 1990s nearly 600 chemical constituents had been identified from the
206
genus Piper (Piperaceae), even though only 84 from 700 extant species had been
207
studied to that point.119,120 Piper alatabaccum Trel. & Yunck. would share some of
208
the same chemical components while also containing novel compounds.121 Acetone
209
extracts of the roots were tested for their effects on CBB by Santos et al.87 and
210
showed promise as 0.5mg mL-1 crude extracts were toxic, although they did not
211
observe repellence even at 100 mg mL-1.
212
The data from trials of pesticidal plants shows that they have considerable
213
potential as a sustainable method of controlling CBB and other insect pests of
214
coffee. Even a small sample of eight plants contains a wide range of biologically
215
active compounds, with the caveat that many are toxic to humans.
216
consider that between 1971 to the end of 2013, 168 different chemicals have been
217
identified from Tephrosia species96, pesticidal plants are an un-tapped resource full
218
of potential insecticidal compounds. Due consideration needs to be given to the
219
interaction of pesticidal plants with natural enemies, pathogens of coffee pests and
220
other beneficial insects, such as pollinators.
When we
221 222
(3).
Implications for IPM in coffee
223
A sustainable and holistic approach to coffee pest management would include
224
breeding for chemical resistance to pests, with appropriate use of natural enemies
225
(e.g., Jaramillo et al.122) and pesticidal plants. It is possible that hybridization of wild
226
and cultivated species may breed plants that are resistant to pathogens and pests10
227
while also producing a palatable beverage.123 There is very little genetic variation in
228
the self-pollinated C. arabica based on the fact that many of the plantations in the
229
New World tropics are derived from a single tree from Amsterdam Botanic
9 ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
230
Garden.124,125 Generally, worldwide plantations of both C. arabica and C. canephora
231
have been derived from limited genetic stock.126,127 Despite this relatively small gene
232
pool it is possible to differentiate species and varieties of Coffea using their chemical
233
profiles.
234
character to distinguish between C. arabica and C. canephora.128,129 Furthermore,
235
increased introgression of genes from C. canephora to C. arabica can be detected in
236
the volatile profile as the level of kahweol and the ratio of kahweol to another
237
diterpene (cafestol) increase.128 The concentration of the alkaloid trigonelline and
238
sugars such as sucrose can also vary between different coffee species.33 The
239
knowledge gained from these studies of quality and varietal differences would be
240
useful to guide entomologists and ecologists in selecting plants that could be tested
241
experimentally for their resilience to CBB and other insects. Many of the coffee
242
compounds discussed above, such as caffeine and CQAs (e.g., Clifford et al.130)
243
would contribute to chemical resistance due to their proven effects on coffee pests
244
and pathogens.
For example, kahweol is a diterpene that can be used as a chemical
245
Effective pesticidal plants would be complimentary to naturally bred resistance,
246
but more research is required both to evaluate a wider range of plants and to
247
optimise the use of the material. Leaf extracts of T. vogelii and S. terebinthifolia are
248
toxic to CBB, but many of the other plants that have already been tested against
249
CBB show comparatively low toxicity (34-75% mortality), although it could be argued
250
that any intervention that reduces the population of CBB would be of benefit. To
251
convince farmers to persevere with pesticidal plants it is essential for treatment to
252
give noticeable improvements in crop health and yield at an affordable cost.85
253
CBB has a worldwide distribution10 but there are other equally devastating,
254
regional pests, such as Antestiopsis, which is not found worldwide, but is present in
10 ACS Paragon Plus Environment
Page 10 of 27
Page 11 of 27
Journal of Agricultural and Food Chemistry
255
22 countries1 in Sub-Saharan Africa,131-133 such as Burundi,17 Cameroon,134
256
Kenya,135 Rwanda19,136 and Uganda.18,137 This emphasis on CBB is reflected in the
257
literature as a bibliographic search138 using either Antestiopsis or Hypothenemus and
258
coff* gave 327 hits (CBB) and 10 hits (Antestiopsis). The focus on CBB does not
259
take into account the relative impact of different Antestiopsis species in Africa.
260
Farmers in Africa are already aware of pesticidal plants as locally harvested
261
materials are increasingly used for control of other crop pests.139 Antestiopsis adults
262
and nymphs are also a better target for pesticidal plants as they remain exposed on
263
the plant surface, whereas female CBBs spend most of their life cycle protected
264
inside the berry. Production, processing and distribution of coffee beans provides vital incomes to
265 266
farmers, especially in rural areas of Africa 140,141 and South America.142 Given the
267
importance of coffee it is surprising that there are so many questions that remain
268
unanswered, especially regarding the biology and control of Antestiopsis. We
269
conclude that studies of different coffee chemotypes, together with research into
270
pesticidal plants could be used to develop novel and cost-effective IPM strategies for
271
coffee pests.
272 273
ACKNOWLEDGEMENT
274 275
We would like to thank three anonymous reviewers for their comments on the manuscript.
276
1
Excludes Zanzibar as a separate country, as it is a semi-autonomous part of Tanzania.
11 ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
277
LITERATURE CITED
278 279 280
(1)
Davis, A. P; Tosh, J.; Ruch, N.; Fay, M.F. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea. Bot. J. Linn. Soc. 2011, 167, 357-377.
281 282
(2)
International Coffee Council (ICC), World coffee trade (1963 – 2013): A review of the markets, challenges and opportunities facing the sector, 2014, ICC 111-5 Rev. 1
283 284 285
(3)
Davis, A. P.; Gole, T. W.; Baena, S.; Moat, J. The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 2012, 7, e47981.
286 287
(4)
Bunn, C.; Laederach, P.; Ovalle Rivera, O.; Kirschke, D. A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change 2015, 129, 89-101.
288 289 290
(5)
Ovalle-Rivera, O.; Läderach, P.; Bunn, C.; Obersteiner, M.; Schroth, G. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE 2015, 10, e0124155.
291 292
(6)
Hopkins, D. L. Xylella fastidiosa: xylem limited bacterial pathogen of plants. Annu. Rev. Phytopathol. 1989, 27, 271-290.
293 294 295
(7)
Avelino, J.; Cabut, S.; Barboza, B.; Barquero, M.; Alfaro, R.; Esquivel, C.; Durand, J.-F.; Cilas, C. Topography and crop management are key factors for the development of American leaf spot epidemics on coffee in Costa Rica. Phytopathology 2007, 97, 1532-1542.
296 297 298 299
(8)
Reis, P. R.; Pedro Neto, M.; Franco, R. A. Control of Brevipalpus phoenicis (Geijskes, 1939) and Oligonychus ilicis (McGregor, 1917) (Acari: Tenuipalpidae, Tetranychidae) in coffee plants and the impact on beneficial mites. II - Spirodiclofen and Azocyclotin. Ciênc. Agrotec. 2005, 29, 528-537.
300 301 302 303
(9)
Reis, P. R.; Pedro Neto, M.; Franco, R. A.; Teodoro, A. V. Control of Brevipalpus phoenicis (Geijskes, 1939) and Oligonychus ilicis (McGregor, 1917) (Acari: Tenuipalpidae, Tetranychidae) In coffee plants and the impact on beneficial mites. I - Abamectin and emamectin. Ciênc. Agrotec. 2004, 28, 269-281.
304 305
(10)
Waller, J. M.; Bigger, M.; Hillocks, R. J. Coffee Pests, Diseases and Their Management; CABI Publishing, 2007; 434 pp.
306 307 308
(11)
Ramiro, D. A.; Guerreiro-Filho, O.; Queiroz-Voltan, R. B.; Matthiesen, S. C. Caracterização anatômica de folhas de cafeeiros resistentes e suscetíveis ao bicho-mineiro. Bragantia 2004, 63, 363-372.
309 310 311
(12)
Avelino, J.; Romero-Gurdian, A.; Cruz-Cuellar, H. F.; Declerck, F. A. J. Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes. Ecol. Appl. 2012, 22, 584-596.
312 313 314
(13)
Trinh, P. Q.; Wesemael, W. M. L.; Nguyen, C. N.; Moens, M. Decline of Pratylenchus coffeae and Radopholus arabocoffeae populations after death and removal of 5-year-old arabica coffee (Coffea arabica cv. Catimor) trees. Nematology 2011, 13, 491-500.
12 ACS Paragon Plus Environment
Page 12 of 27
Page 13 of 27
Journal of Agricultural and Food Chemistry
315 316
(14)
Damon, A. A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera : Scolytidae). Bull. Entomol. Res. 2000, 90, 453-465.
317 318 319
(15)
Jaramillo, J.; Borgemeister, C.; Baker, P. Coffee berry borer Hypothenemus hampei (Coleoptera : Curculionidae): searching for sustainable control strategies. Bull. Entomol. Res. 2006, 96, 223-233.
320 321 322
(16)
Vega, F. E.; Infante, F.; Johnson, A. J. The genus Hypothenemus, with emphasis on H. hampei, the coffee berry borer. In Bark Beetles: Biology and Ecology of Native and Invasive Species; F. E. Vega and R. W. Hoffstetter, Eds.; Academic Press, San Diego, 2015; pp 427-494.
323 324 325
(17)
Cilas, C.; Bouyjou, B.; Decazy, B. Frequency and distribution of Antestiopsis orbitalis Westwood (Hem., Pentatomidae) in coffee plantations in Burundi: implications for sampling techniques. J. Appl. Entomol. 1998, 122, 601-606.
326
(18)
McNutt, D. N. Control of Antestiopsis spp. on coffee in Uganda. Pans 1979, 25, 5-15.
327 328 329
(19)
Matsuura, Y.; Hosokawa, T.; Serracin, M.; Tulgetske, G. M.; Miller, T. A.; Fukatsu, T. Bacterial symbionts of a devastating coffee plant pest, the stinkbug Antestiopsis thunbergii (Hemiptera: Pentatomidae). Appl. Environ. Microb. 2014, 80, 3769-3775.
330 331
(20)
Infante, F.; Mumford, J.; Baker, P. Life history studies of Prorops nasuta, a parasitoid of the coffee berry borer. Biocontrol 2005, 50, 259-270.
332 333 334
(21)
Infante, F.; Castillo, A.; Perez, J.; Vega, F. E. Field-cage evaluation of the parasitoid Phymastichus coffea as a natural enemy of the coffee berry borer, Hypothenemus hampei. Biol. Control 2013, 67, 446-450.
335 336 337 338
(22)
Jiménez-Soto, E.; Cruz-Rodríguez, J. A.; Vandermeer, J.; Perfecto, I. Hypothenemus hampei (Coleoptera: Curculionidae) and its interactions with Azteca instabilis and Pheidole synanthropica (Hymenoptera: Formicidae) in a shade coffee agroecosystem. Environ. Entomol. 2013, 42, 915-924.
339 340 341
(23)
Haraprasad, N.; Niranjana, S. R.; Prakash, H. S.; Shetty, H. S.; Wahab, S. Beauveria bassiana A potential mycopesticide for the efficient control of coffee berry borer, Hypothenemus hampei (Ferrari) in India. Biocontrol Sci. Technol. 2001, 11, 251-260.
342 343 344 345
(24)
Samuels, R. I.; Pereira, R. C.; Gava, C. A. T. Infection of the coffee berry borer Hypothenemus hampei (Coleoptera : Scolytidae) by Brazilian isolates of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae (Deuteromycotina : Hyphomycetes). Biocontrol Sci. Technol. 2002, 12, 631-635.
346 347 348 349
(25)
Tatiana Vera, J.; Cecilia Montoya, E.; Benavides, P.; Gongora, C. E. Evaluation of Beauveria bassiana (Ascomycota: Hypocreales) as a control of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) emerging from fallen, infested coffee berries on the ground. Biocontrol Sci. Technol. 2010, 21, 1-14.
350 351 352
(26)
Fernandes, F. L.; Picanc, M. C.; Fernandes, M. E. S.; Dangelo, R. A. C.; Souza, F. F.; Guedes, R. N. C. A new and highly effective sampling plan using attractant-baited traps for the coffee berry borer (Hypothenemus hampei). Journal of Pest Science 2015, 88, 289-299.
13 ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
353 354 355
(27)
Dufour, B. P.; Frérot, B. Optimization of coffee berry borer, Hypothenemus hampei Ferrari (Col., Scolytidae), mass trapping with an attractant mixture. J. Appl. Entomol. 2008, 132, 591600.
356 357
(28)
Baker, P. S.; Barrera, J. F. A field-study of a population of coffee berry borer, Hypothenemus hampei (Coleoptera, Scolytidae) in Chjiapas, Mexico. Trop. Agric. 1993, 70, 351-355.
358 359 360
(29)
Jaramillo, J.; Chabi-Olaye, A.; Kamonjo, C.; Jaramillo, A.; Vega, F. E.; Poehling, H.-M.; Borgemeister, C. Thermal tolerance of the coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest. PLoS ONE 2009, 4, e6487.
361 362 363
(30)
Jaramillo, J.; Muchugu, E.; Vega, F. E.; Davis, A.; Borgemeister, C.; Chabi-Olaye, A. Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS ONE 2011, 6, e24528.
364 365 366
(31)
Jaramillo, J.; Setamou, M.; Muchugu, E.; Chabi-Olaye, A.; Jaramillo, A.; Mukabana, J.; Maina, J.; Gathara, S.; Borgemeister, C. Climate change or urbanization? Impacts on a traditional coffee production system in East Africa over the last 80 years. PLoS ONE 2013, 8, e51815.
367 368
(32)
Dufour, B. P. Le scolyte des baies du caféier, Hypothenemus hampei (Ferr.), présent en Martinique. Cah. Agric. 2013, 22, 575-578.
369 370
(33)
Burbano, E.; Wright, M.; Bright, D. E.; Vega, F. E. New record for the coffee berry borer, Hypothenemus hampei, in Hawaii. J. Insect Sci. 2011, 11, 117.
371 372 373 374
(34)
Alonso-Salces, R. M.; Serra, F.; Reniero, F.; Heberger, K. Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): chemometric evaluation of phenolic and methylxanthine contents. J. Agric. Food Chem. 2009, 57, 42244235.
375 376
(35)
Campa, C.; Ballester, J. F.; Doulbeau, S.; Dussert, S.; Hamon, S.; Noirot, M. Trigonelline and sucrose diversity in wild Coffea species. Food Chem. 2004, 88, 39-43.
377 378 379
(36)
Dussert, S.; Laffargue, A.; de Kochko, A.; Joët, T. Effectiveness of the fatty acid and sterol composition of seeds for the chemotaxonomy of Coffea subgenus Coffea. Phytochemistry 2008, 69, 2950-2960.
380 381
(37)
Aguiar, A. T. d. E.; Fazuoli, L. C.; Salva, T. d. J. G.; Favarin, J. L. Diversidade química de cafeeiros na espécie Coffea canephora. Bragantia 2005, 64, 577-582.
382 383 384 385
(38)
Garrett, R.; Schmidt, E. M.; Pereira, L. F. P.; Kitzberger, C. S. G.; Scholz, M. B. S.; Eberlin, M. N.; Rezende, C. M. Discrimination of arabica coffee cultivars by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and chemometrics. LWT-Food Sci. Technol. 2013, 50, 496-502.
386 387 388
(39)
da Silva Taveira, J. H.; Borem, F. M.; Figueiredo, L. P.; Reis, N.; Franca, A. S.; Harding, S. A.; Tsai, C.-J. Potential markers of coffee genotypes grown in different Brazilian regions: A metabolomics approach. Food Res. Int. 2014, 61, 75-82.
389 390
(40)
Bicho, N. C.; Lidon, F. C.; Ramalho, J. C.; Leitao, A. E. Quality assessment of Arabica and Robusta green and roasted coffees - A review. Emirates J. Food Agr. 2013, 25, 945-950.
14 ACS Paragon Plus Environment
Page 14 of 27
Page 15 of 27
Journal of Agricultural and Food Chemistry
391 392 393 394
(41)
Akiyama, M.; Murakami, K.; Ohtani, N.; Iwatsuki, K.; Sotoyama, K.; Wada, A.; Tokunu, K.; Iwabuchi, H.; Tanaka, K. Analysis of volatile compounds released during the grinding of roasted coffee beans using solid-phase microextraction. J. Agric. Food Chem. 2003, 51, 19611969.
395 396
(42)
Aley Tavares, L.; Ferreira, A. G. Quali- and quantitative analysis of commercial coffee by NMR. Quim. Nova 2006, 29, 911-915.
397 398
(43)
Fisk, I. D.; Kettle, A.; Hofmeister, S.; Virdie, A.; Kenny, J. S. Discrimination of roast and ground coffee aroma. Flavour 2012, 1, 14.
399 400
(44)
Coffee, Volume 1: Chemistry. Clarke, R.J.; Macrae, R. Eds.; Elsevier Science Publishers, UK., 1985.
401 402 403 404
(45)
Bertrand, B.; Vaast, P.; Alpizar, E.; Etienne, H.; Davrieux, F.; Charmetant, P. Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving SudaneseEthiopian origins with traditional varieties at various elevations in Central America. Tree Physiol. 2006, 26, 1239-1248.
405 406 407
(46)
Montagnon, C.; Marraccini, P.; Bertrand, B. Breeding for Coffee Quality. In Specialty Coffee: Managing Quality; T. Oberthür; P. Läderach; H. Pohlan and J. Cock, Eds.; IPNI, 2012; pp 93122.
408 409 410
(47)
Stashenko, E. E.; Martínez, J.R.; Cárdenas-Vargas, S.; Saavedra-Barrera, R.; Durán, D.C. GCMS study of compounds isolated from Coffea arabica flowers by different extraction techniques. J. Sep. Sci. 2013, 36, 2901-2914.
411 412 413
(48)
Waldhauser, S. S. M.; Kretschmar, J. A.; Baumann, T. W. N-methyltransferase activities in caffeine biosynthesis: Biochemical characterization and time course during leaf development of Coffea arabica. Phytochemistry 1997, 44, 853-859.
414 415 416
(49)
Waldhauser, S. S. M.; Baumann, T. W. Compartmentation of caffeine and related purine alkaloids depends exclusively on the physical chemistry of their vacuolar complex formation with chlorogenic acids. Phytochemistry 1996, 42, 985-996.
417 418 419
(50)
Jeszka-Skowron, M.; Zgola-Grzeskowiak, A.; Grzeskowiak, T. Analytical methods applied for the characterization and the determination of bioactive compounds in coffee. Eur. Food Res. Technol. 2015, 240, 19-31.
420
(51)
Baumann, T. W. Caffeine. Bot. Helv. 1996, 106, 127-158.
421 422 423
(52)
Ribeiro, V. S.; Leitao, A. E.; Ramalho, J. C.; Lidon, F. C. Chemical characterization and antioxidant properties of a new coffee blend with cocoa, coffee silverskin and green coffee minimally processed. Food Res. Int. 2014, 61, 39-47.
424 425 426
(53)
Good Kitzberger, C. S.; dos Santos Scholz, M. B.; Benassi, M. d. T. Bioactive compounds content in roasted coffee from traditional and modern Coffea arabica cultivars grown under the same edapho-climatic conditions. Food Res. Int. 2014, 61, 61-66.
15 ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
427 428 429
(54)
Antonio, A. G.; Moraes, R. S.; Perrone, D.; Maia, L. C.; Santos, K. R. N.; Iorio, N. L. P.; Farah, A. Species, roasting degree and decaffeination influence the antibacterial activity of coffee against Streptococcus mutans. Food Chem. 2010, 118, 782-788.
430 431 432
(55)
Almeida, A. A. P.; Farah, A.; Silva, D. A. M.; Nunan, E. A.; Gloria, M. B. A. Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J. Agric. Food Chem. 2006, 54, 8738-8743.
433 434
(56)
Kim, Y.-S.; Uefuji, H.; Ogita, S.; Sano, H. Transgenic tobacco plants producing caffeine: a potential new strategy for insect pest control. Transgenic Res. 2006, 15, 667-672.
435 436 437
(57)
Wright, G. A.; Baker, D. D.; Palmer, M. J.; Stabler, D.; Mustard, J. A.; Power, E. F.; Borland, A. M.; Stevenson, P. C. Caffeine in floral nectar enhances a pollinator's memory of reward. Science 2013, 339, 1202-1204.
438 439 440
(58)
Durand, N.; Bertrand, B.; Guyot, B.; Guiraud, J. P.; Tachon, A. F. Study on the Coffea arabica/Colletotrichum kahawae pathosystem: Impact of a biological plant protection product. J. Plant Dis. Protect. 2009, 116, 78-85.
441 442
(59)
Guerreiro, O.; Mazzafera, P. Caffeine and resistance of coffee to the berry borer Hypothenemus hampei (Coleoptera : Scolytidae). J. Agric. Food Chem. 2003, 51, 6987-6991.
443 444 445
(60)
Ceja-Navarro, J. A.; Vega, F. E.; Karaoz, U.; Hao, Z.; Jenkins, S.; Lim, H. C.; Kosina, P.; Infante, F.; Northen, T. R.; Brodie, E. L. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nature Communications 2015, 6, 7618.
446 447 448
(61)
Araque, P.; Casanova, H.; Ortiz, C.; Henao, B.; Peláez, C. Insecticidal activity of caffeine aqueous solutions and caffeine oleate emulsions against Drosophila melanogaster and Hypothenemus hampei. J. Agric. Food Chem. 2007, 55, 6918-6922.
449 450 451
(62)
Miyashira, C. H.; Tanigushi, D. G.; Gugliotta, A. M.; Santos, D. Influence of caffeine on the survival of leaf-cutting ants Atta sexdens rubropilosa and in vitro growth of their mutualistic fungus. Pest Manag. Sci. 2012, 68, 935-940.
452 453 454
(63)
Fernandes, F. L.; Picanço, M. C.; Fernandes, M. E. S.; Queiroz, R. B.; Xavier, V. M.; Martinez, H. E. P. The effects of nutrients and secondary compounds of Coffea arabica on the behavior and development of Coccus viridis. Environ. Entomol. 2012, 41, 333-341.
455 456 457
(64)
Rodrigues, F. A.; Carre-Missio, V.; Jham, G. N.; Berhow, M.; Schurt, D. A. Chlorogenic acid levels in leaves of coffee plants supplied with silicon and infected by Hemileia vastatrix. Trop. Plant Pathol. 2011, 36, 404-408.
458 459 460 461
(65)
Martínez-Tomé, M.; Ma Jiménez-Monreal, A.; García-Jimenéz, L.; Almela, L.; García-Diz, L.; Mariscal-Arcas, M.; Antonia Murcia, M. Assessment of antimicrobial activity of coffee brewed in three different ways from different origins. Eur. Food Res. Technol. 2011, 233, 497-505.
462 463
(66)
Ramalakshmi, K.; Kubra, I. R.; Rao, L. J. M. Antioxidant potential of low-grade coffee beans. Food Res. Int. 2008, 41, 96-103.
16 ACS Paragon Plus Environment
Page 16 of 27
Page 17 of 27
Journal of Agricultural and Food Chemistry
464 465 466 467
(67)
Bertrand, B.; Villarreal, D.; Laffargue, A.; Posada, H.; Lashermes, P.; Dussert, S. Comparison of the effectiveness of fatty acids, chlorogenic acids, and elements for the chemometric discrimination of coffee (Coffea arabica L.) varieties and growing origins. J. Agric. Food Chem. 2008, 56, 2273-2280.
468 469
(68)
Bicho, N. C.; Leitao, A. E.; Ramalho, J. C.; Lidon, F. C. Chemical descriptors for sensory and parental origin of commercial Coffea genotypes. Int. J. Food Sci. Nutr. 2012, 63, 835-842.
470 471 472 473
(69)
Campa, C.; Mondolot, L.; Rakotondravao, A.; Bidel, L. P. R.; Gargadennec, A.; Couturon, E.; La Fisca, P.; Rakotomalala, J.-J.; Jay-Allemand, C.; Davis, A. P. A survey iof mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: biological implications and uses. Ann. Bot. 2012, 110, 595-613.
474 475 476
(70)
Somporn, C.; Kamtuo, A.; Theerakulpisut, P.; Siriamornpun, S. Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea Arabica L. cv. Catimor) harvested from north-eastern Thailand. J.Sci. Food Agr. 2012, 92, 1956-1963.
477 478 479
(71)
Vaast, P.; Bertrand, B.; Perriot, J. J.; Guyot, B.; Genard, M. Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J. Sci. Food Agr. 2006, 86, 197-204.
480 481 482
(72)
Bosselmann, A. S.; Dons, K.; Oberthur, T.; Olsen, C. S.; Raebild, A.; Usma, H. The influence of shade trees on coffee quality in small holder coffee agroforestry systems in Southern southern Colombia. Agric. Ecosyst. Environ. 2009, 129, 253-260.
483 484 485
(73)
Magalhães, S. T. V.; Fernandes, F. L.; Demuner, A. J.; Picanço, M. C.; Guedes, R. N. C. Leaf alkaloids, phenolics, and coffee resistance to the leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). J. Econ. Entomol. 2010, 103, 1438-1443.
486 487 488
(74)
Ortiz, A.; Ortiz, A.; Vega, F. E.; Posada, F. Volatile composition of coffee berries at different stages of ripeness and their possible attraction to the coffee berry borer Hypothenemus hampei (Coleoptera : Curculionidae). J. Agric. Food Chem. 2004, 52, 5914-5918.
489 490 491
(75)
Mendesil, E.; Bruce, T. J. A.; Woodcock, C. M.; Caulfield, J. C.; Seyoum, E.; Pickett, J. A. Semiochemicals used in host location by the coffee berry borer, Hypothenemus hampei. J. Chem. Ecol. 2009, 35, 944-950.
492 493
(76)
Mathieu, F.; Malosse, C.; Frérot, B. Identifications of the volatile components released by fresh coffee berries at different stages of ripeness. J. Agric. Food Chem. 1998, 46, 1106-1110.
494 495 496
(77)
Cruz Roblero, E. N.; Malo, E. A. Chemical analysis of coffee berry volatiles that elicit an antennal response from the coffee berry borer Hypothenemus hampei. J. Mex. Chem. Soc. 2013, 57, 321-327.
497 498 499
(78)
Coral G, F.; Bacca, T.; Dias, L. G. Efecto atractivo de los volatiles de un terpenoide a insectos asociados a Coffea arabica L. (Rubiaceae). Boletín Científico. Centro de Museos. Museo de Historia Natural 2012, 16, 78-86.
500 501 502
(79)
Román-Ruíz, A. K.; Malo, E. A.; Huerta, G.; Castillo, A.; Barrera, J. F. Rojas, J. C. Identification and origin of host-associated volatiles attractive to Prorops nasuta, a parasitoid of the coffee berry borer. Arthropod-Plant Inte., 2012, 6, 611-620.
17 ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
503 504 505 506
(80)
Burbano, E. G.; Wright, M. G.; Gillette, N. E.; Mori, S.; Dudley, N.; Jones, T.; Kaufmann, M. Efficacy of traps, lures, and repellents for Xylosandrus compactus (Coleoptera: Curculionidae) and other ambrosia beetles on Coffea arabica plantations and Acacia koa nurseries in Hawaii. Environ. Entomol. 2012, 41, 133-140.
507 508
(81)
Panizzi, A. R.; Parra, J. R. P., Eds.; Insect Bioecology and Nutrition for Integrated Pest Management; CRC Press, 2012; 750 pp.
509 510 511
(82)
Bertrand, B.; Etienne, H.; Lashermes, P.; Guyot, B.; Davrieux, F. Can near-infrared reflectance of green coffee be used to detect introgression in Coffea arabica cultivars? J. Sci. Food Agric. 2005, 85, 955-962.
512 513 514
(83)
Romano, R.; Santini, A., Le Grottaglie, L., Manzo, N., Visconti, A., Ritieni, A. Identification markers based on fatty acid composition to differentiate between roasted Arabica and Canephora (Robusta) coffee varieties in mixtures. J. Food Compos. Anal. 2014, 35, 1-9.
515 516
(84)
Grzywacz, D.; Stevenson, P. C.; Mushobozi, W. L.; Belmain, S.; Wilson, K. The use of indigenous ecological resources for pest control in Africa. Food Secur. 2014, 6, 71-86.
517 518 519 520
(85)
Sola, P.; Mvumi, B. M.; Ogendo, J. O.; Mponda, O.; Kamanula, J. F.; Nyirenda, S. P.; Belmain, S. R.; Stevenson, P. C. Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: making a case for plant-based pesticidal products. Food Secur. 2014, 6, 369-384.
521 522 523
(86)
Zorzetti, J.; Oliveira Janeiro Neves, P. M.; Constanski, K. C.; Santoro, P. H.; Batista Fonseca, I. C. Extratos vegetais sobre Hypothenemus hampei (Coleoptera: Curculionidae) e Beauveria bassiana. Ciênc. Agrár. 2012, 33, 2849-2861.
524 525 526 527
(87)
Santos, M. R. A.; Lima, R. A.; Silva, A. G.; Teixeira, C. A. D.; Alpirez, I. P. V.; Facundo, V. A. Composição química e atividade inseticida do extrato acetônico de Piper alatabaccum Trel & Yuncker (Piperaceae) sobre Hypothenemus hampei Ferrari. Rev. Bras. Plantas Med. 2013, 15, 332-336.
528 529 530 531 532
(88)
Santos, M. R. A.; Lima, R. A.; Silva, A. G.; Lima, D. K. S.; Sallet, L. A. P.; Teixeira, C. A. D.; Facundo, V. A. Composição química e atividade inseticida do óleo essencial de Schinus terebinthifolius Raddi (Anacardiaceae) sobre a broca-do-café (Hypothenemus hampei) Ferrari Schinus terebinthifolius Raddi (Anacardiaceae) on coffee berry borer (Hypothenemus hampei) Ferrari. Rev. Bras. Plantas Med. 2013, 15, 757-762.
533 534 535 536
(89)
Mawussi, G., Tounou, A. K.; Ayisah, K. D.; Vilarem, G.; Raynaud, C.; Merlina, G.; Wegbe, K.; Sanda, K. Chemical composition and insecticidal activity of Ocimum canum essential oil against coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae). J. Essent. Oil Bear. Pl. 2012, 15, 955-963.
537 538 539 540
(90)
Mawussi, G., Vilarem, G.; Raynaud, C.; Merlina, G.; Gbongli, A. K.; Wegbe, K., Danda, K. J. Chemical composition and insecticidal activity of Aeollanthus pubescens essential oil against coffee berry borer [(Hypothenemus hampei (Ferrari)] (Coleoptera: Scolytidae). J. Essent. Oil Bear. Pl., 2009, 12, 327-332.
541
18 ACS Paragon Plus Environment
Page 18 of 27
Page 19 of 27
Journal of Agricultural and Food Chemistry
542 543
(91)
Li, Y.; Fabiano-Tixier, A.-S.; Chemat, F. Essential Oils as reagents in Green Chemistry, Springer International Publishing, 2014, 71 pp.
544 545
(92)
Saleem, S.; ul Hasan, M.; Sagheer, M.; Sahi, S. T. Insecticidal activity of essential oils of four medicinal plants against different stored grain insect pests. Pak. J. Zool. 2014, 46, 1407-1414.
546 547 548 549
(93)
de Lima Santos, N. D.; de Moura, K. S.; Napoleao, T. H.; Novais Santos, G. K.; Breitenbach Barroso Coelho, L. C.; do Amaral Ferraz Navarro, D. M.; Guedes Paiva, P. M. Ovipositionstimulant and ovicidal activities of Moringa oleifera lectin on Aedes aegypti. PLoS ONE 2012, 7, e44840.
550 551 552 553
(94)
Coelho, J. S.; Santos, N. D. L.; Napoleao, T. H.; Gomes, F. S.; Ferreira, R. S.; Zingali, R. B.; Coelho, L. C. B. B.; Leite, S. P.; Navarro, D. M. A. F.; Paiva, P. M. G. Effect of Moringa oleifera lectin on development and mortality of Aedes aegypti larvae. Chemosphere 2009, 77, 934938.
554 555 556 557
(95)
Pontual, E. V.; Napoleao, T. H.; Dias de Assis, C. R.; Bezerra, R. d. S.; Xavier, H. S.; do Amaral Ferraz Navarro, D. M.; Breitenbach Barroso Coelho, L. C.; Guedes Paiva, P. M. Effect of Moringa oleifera flower extract on larval trypsin and acetylcholinesterase activities in Aedes aegypti. Arch. Insect Biochem. 2012, 79, 135-152.
558 559
(96)
Chen, Y.; Yan, T.; Gao, C.; Cao, W.; Huang, R. Natural products from the genus Tephrosia. Molecules 2014, 19, 1432-1458.
560 561 562
(97)
Boeke, S. J.; Baumgart, I. R.; van Loon, J. J. A.; van Huis, A.; Dicke, M.; Kossou, D. K. Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. J. Stored Prod. Res. 2004, 40, 423-438.
563 564 565
(98)
Belmain, S. R.; Amoah, B. A.; Nyirenda, S. P.; Kamanula, J. F.; Stevenson, P. C. Highly variable insect control efficacy of Tephrosia vogelii chemotypes. J. Agric. Food Chem. 2012, 60, 10055-10063.
566 567 568
(99)
Schmutterer, H.; Singh, R. List of insect species susceptible to neem products. In The Neem Tree Azadirachta indica A. Juss. and Other Meliaceous Plants; H. Schmutterer, Ed.; VCH, 1995; pp 326-365.
569 570 571
(100)
Mordue, A. J.; Simmonds, M. S. J.; Ley, S. V.; Blaney, W. M.; Mordue, W.; Nasiruddin, M.; Nisbet, A. J. Actions of azadirachtin, a plant allelochemical, against insects. Pestic. Sci. 1998, 54, 277-284.
572 573 574
(101)
Blaney, W. M.; Simmonds, M. S. J.; Ley, S. V.; Anderson, J. C.; Toogood, P. L. Antifeedant effects of azadirachtin and structurally related compounds on lepidopterous larvae. Entomol. Exp. Appl. 1990, 55, 149-160.
575 576 577 578
(102)
Simmonds, M. S. J.; Blaney, W. M.; Ley, S. V.; Anderson, J. C.; Banteli, R.; Denholm, A. A.; Green, P. W. C.; Grossman, R. B.; Gutteridge, C.; Jennens, L.; Smith, S. C.; Toogood, P. L.; Wood, A. Behavioral and neurophysiological responses of Spodoptera littoralis to azadirachtin and a range of synthetic analogs. Entomol. Exp. Appl. 1995, 77, 69-80.
579
19 ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
580 581
(103)
Bernays, E. A.; Chapman, R. F. Host-plant selection by phytophagous insects; Chapman & Hall, 1994; 312 pp.
582 583
(104)
Langford, S. D.; Boor, P. J. Oleander toxicity: An examination of human and animal toxic exposures. Toxicology 1996, 109, 1-13.
584 585
(105)
Begum, S.; Siddiqui, B. S.; Sultana, R.; Zia, A.; Suria, A. Bio-active cardenolides from the leaves of Nerium oleander. Phytochemistry 1999, 50, 435-438.
586 587 588
(106)
Siddiqui, B. S.; Sultana, R.; Begum, S.; Zia, A.; Suria, A. Cardenolides from the methanolic extract of Nerium oleander leaves possessing central nervous system depressant activity in mice. J. Nat. Prod. 1997, 60, 540-544.
589 590 591 592
(107)
Zhao, M.; Bai, L.; Wang, L.; Toki, A.; Hasegawa, T.; Kikuchi, M.; Abe, M.; Sakai, J.-i.; Hasegawa, R.; Bai, Y.; Mitsui, T.; Ogura, H.; Kataoka, T.; Oka, S.; Tsushima, H.; Kiuchi, M.; Hirose, K.; Tomida, A.; Tsuruo, T.; Ando, M. Bioactive cardenolides from the stems and twigs of Nerium oleander. J. Nat. Prod. 2007, 70, 1098-1103.
593 594
(108)
Begum, S.; Sultana, R.; Siddiqui, B. S. Triterpenoids from the leaves of Nerium oleander. Phytochemistry 1997, 44, 329-332.
595 596
(109)
Siddiqui, B. S.; Khatoon, N.; Begum, S.; Durrani, S. A. Two new triterpenoid isomers from Nerium oleander leaves. Nat. Prod. Res. 2009, 23, 1603-1608.
597 598 599
(110)
Siddiqui, B. S.; Khatoon, N.; Begum, S.; Farooq, A. D.; Qamar, K.; Bhatti, H. A.; Ali, S. K. Flavonoid and cardenolide glycosides and a pentacyclic triterpene from the leaves of Nerium oleander and evaluation of cytotoxicity. Phytochemistry 2012, 77, 238-244.
600 601 602 603
(111)
Manrique, V.; Diaz, R.; Erazo, L.; Reddi, N.; Wheeler, G. S.; Williams, D.; Overholt, W. A. Comparison of two populations of Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae) as candidates for biological control of the invasive weed Schinus terebinthifolia (Sapindales: Anacardiaceae). Biocontrol Sci. Technol. 2014, 24, 518-535.
604 605 606
(112)
Wheeler, G. S.; Mc Kay, F.; Vitorino, M. D.; Williams, D. A. Biology and host range of Omolabus piceus, a weevil rejected for biological control for Schinus terebinthifolius in the USA. BioControl 2013, 58, 693-702.
607 608 609
(113)
Kweka, E. J.; Nyindo, M.; Mosha, F.; Silva, A. G. Insecticidal activity of the essential oil from fruits and seeds of Schinus terebinthifolia Raddi against African malaria vectors. Parasites & Vectors 2011, 4, 129.
610 611 612
(114)
Silva, A. G.; Almeida, D. L.; Ronchi, S. N.; Bento, A. C.; Scherer, R.; Ramos, A. C.; Cruz, Z. M. The essential oil of Brazilian pepper, Schinus terebinthifolia Raddi in larval control of Stegomyia aegypti (Linnaeus, 1762). Parasites & Vectors 2010, 3, 79.
613 614 615
(115)
Almeida Barbosa, L. C.; Demuner, A. J.; Clemente, A. D.; de Paula, V. F.; Ismail, F. M. D. Seasonal variation in the composition of volatile oils from Schinus terebinthifolius Raddi. Quim. Nova 2007, 30, 1959-1965.
616
20 ACS Paragon Plus Environment
Page 20 of 27
Page 21 of 27
Journal of Agricultural and Food Chemistry
617 618 619
(116)
Feuereisen, M. M.; Hoppe, J.; Zimmermann, B. F.; Weber, F.; Schulze-Kaysers, N.; Schieber, A. Characterization of phenolic compounds in Brazilian pepper (Schinus terebinthifolius Raddi) Exocarp. J. Agric. Food Chem. 2014, 62, 6219-6226.
620 621
(117)
Skopp, G.; Schwenker, G. Biflavonoids from Schinus terebinthifolius Raddi (Anacardiaceae). Z. Naturforsch. B 1986, 41, 1479-1482.
622 623
(118)
Ceruks, M.; Romoff, P.; Favero, O. A.; Lago, J. H. G. Polar phenolic constituents from Schinus terebinthifolius Raddi (Anacardiaceae). Quim. Nova 2007, 30, 597-599.
624 625 626
(119)
Parmar, V. S.; Jain, S. C.; Bisht, K. S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O. D.; Prasad, A. K.; Wengel, J.; Olsen, C. E.; Boll, P. M. Phytochemistry of the genus Piper. Phytochemistry 1997, 46, 597-673.
627 628 629 630
(120)
Parmar, V. S.; Jain, S. C.; Gupta, S.; Talwar, S.; Rajwanshi, V. K.; Kumar, R.; Azim, A.; Malhotra, S.; Kumar, N.; Jain, R.; Sharma, N. K.; Tyagi, O. D.; Lawrie, S. J.; Errington, W.; Howarth, O. W.; Olsen, C. E.; Singh, S. K.; Wengel, J. Polyphenols and alkaloids from Piper species. Phytochemistry 1998, 49, 1069-1078.
631 632
(121)
Facundo, V. A.; da Silveira, A. S. P.; Morais, S. M. Constituents of Piper alatabaccum Trel & Yuncker (Piperaceae). Biochem. Syst. Ecol. 2005, 33, 753-756.
633 634 635
(122)
Jaramillo, J.; Borgemeister, C.; Baker, P. Coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): searching for sustainable control strategies. Bull. Entomol. Res. 2006, 96, 223-233.
636 637
(123)
Bertrand, B.; Guyot, B.; Anthony, F.; Lashermes, P. Impact of the Coffea canephora gene introgression on beverage quality of C. arabica. Theor. Appl. Genet. 2003, 107, 387-394.
638
(124)
Pursglove, J. W. Rubiaceae. In Tropical Crops; Longman, London, 1968; pp 458-499.
639
(125)
Vega, F. E. The rise of coffee. Am. Sci. 2008, 96, 138-145.
640
(126)
Wellman, F.L. Coffee, Botany, Cultivation and Utilization, 1961, Leonard Hill Books, 488 pp.
641 642
(127)
Wrigley, G. Coffee, Tropical Agriculture Series, 1988, Longman Scientific and Technical, 639 pp.
643 644 645
(128)
Good Kitzberger, C. S.; dos Santos Scholz, M. B.; Protasio Pereira, L. F.; Benassi, M. d. T. Chemical composition of traditional and modern Arabica coffee cultivars. Pesqui. Agropecu. Bras. 2013, 48, 1498-1506.
646 647
(129)
Rubayiza, A. B.; Meurens, M. Chemical discrimination of arabica and robusta coffees by Fourier transform Raman spectroscopy. J. Agric. Food Chem. 2005, 53, 4654-4659.
648 649
(130)
Clifford, M. N.; Williams, T.; Bridson, D. Chlorogenic acid and caffeine as possible taxonomic criteria in Coffea and Psilanthus. Phytochemistry 1989, 28, 829-838.
650 651
(131)
Greathead, D. J. A taxonomic study of species of Antestiopsis (Hemiptera: Pentatomidae) associated with Coffea arabica in Africa. Bull. Entomol. Res. 1966, 56, 515-&.
21 ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
652 653
(132)
Greathead, D. J. Supplementay notes on Orbitalis (Westw.) group of Antestiopsis (Hemiptera Pentatomidae). Bull. Entomol. Res. 1968, 58, 227-&.
654 655
(133)
Greathead, D. J. On Taxonomy of Antestiopsis Spp. (Hem, Pentatomidae) of Madagascar, with notes on their biology. Bull. Entomol. Res. 1969, 59, 307-&.
656 657 658
(134)
Mbondji, P. M. Eco-biological observations on the Antestiopsis lineaticollis intricata in Cameroon (Heteroptera: Pentatomidae: Pentatominae). Ann. Soc. Entomol. Fr. 1999, 35, 7781.
659 660 661
(135)
Wanjala, F. M. E. Effect of infesting green coffee berries with different population levels of Antestiopsis lineaticollis Stal (Heteroptera, Pentatomidae) in Kenya. Turrialba 1980, 30, 109111.
662 663
(136)
Nzeyimana, I.; Hartemink, A. E.; de Graaff, J. Coffee farming and soil management in Rwanda. Outlook Agr., 2013, 42, 47-52.
664 665 666
(137)
Karamura, E. B. Comparative efficiency of 2 methods used for sampling Antestiopsis species (Hemiptera, Pentatomidae) in arabica coffee in Uganda. Trop. Pest Manage. 1989, 35, 207209.
667 668
(138)
Web of Science™. Thomson Reuters, http://apps.webofknowledge.com/, accessed 2 October 2015.
669
(139)
Isman, M. B. Botanical insecticides: for richer, for poorer. Pest Manag. Sci. 2008, 64, 8-11.
670 671
(140)
Bussolo, M.; Godart, O.; Lay, J.; Thiele, R. The impact of coffee price changes on rural households in Uganda. Agric. Econ. 2007, 37, 293-303.
672 673
(141)
Hillocks, R. J.; Phiri, N. A.; Overfield, D. Coffee pest and disease management options for smallholders in Malawi. Crop Prot. 1999, 18, 199-206.
674 675 676
(142)
Chaves, B.; Riley, J. Determination of factors influencing integrated pest management adoption in coffee berry borer in Columbian farms. Agric. Ecosyst. Environ. 2001, 87, 159177.
677 678 679
(143)
Boulogne, I.; Germosen-Robineau, L.; Ozier-Lafontaine, H.; Jacoby-Koaly, C.; Aurela, L.; Loranger-Merciris, G. Acromyrmex octospinosus (Hymenoptera: Formicidae) management. Part 1: Effects of TRAMIL's insecticidal plant extracts. Pest Manag. Sci. 2012, 68, 313-320.
680 681 682 683
(144)
Essolakina, B. M.; Koffi, K.; Nenonene, A. Y.; Wiyao, P.; Komlan, A. P.; Bakouma, L., Abouwaliou, N. N.; Christine, R.; Komla, S. Insecticidal activities of Ocimum canum essential oil on Macrotermes subhyalinus Rambur (Isoptera: Termitidae). J. Essent. Oil Bear. Pl. 2014, 726-733.
684 685 686 687
(145)
Trindade, F. T. T.; Stabeli, R. G.; Facundo, V. A.; Cardoso, C. T.; da Silva, M. A.; Gil, L. H. S.; Silva-Jardim, I.; de Almeida e Silva, A. Evaluation of larvicidal activity of the methanolic extracts of Piper alatabaccum branches and P. tuberculatum leaves and compounds isolated against Anopheles darlingi. Rev. Bras. Farmacog. 2012, 22, 979-984.
688
22 ACS Paragon Plus Environment
Page 22 of 27
Page 23 of 27
689 690 691 692
Journal of Agricultural and Food Chemistry
(146)
Arriaga, A. M. C.; de Oliveira, M. d. C. F.; da Silva, M. G. R.; de Lemos, T. L. G.; da Silva, F. R. L.; Tavares, L. C.; Nascimento, R. F.; Malcher, G. T.; Santiago, G. M. P.; Vasconcelos, J. N.; Braz-Filho, R. Tephrosia purpurea: A source of larvicidal compounds against Aedes aegypti. Chem. Nat. Compd. 2014, 50, 1125-1127.
693
23 ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
694 695 696
Figure 1. Female coffee berry borer (Hypothenemus hampei) on coffee seed (Left) and detail of female coffee berry borer head (right). Photos by P. Grebb, USDA, ARS (left) and G. Bauchan, USDA, ARS (right).
24 ACS Paragon Plus Environment
Page 24 of 27
Page 25 of 27
Journal of Agricultural and Food Chemistry
Table 1: Some plants that have been evaluated for the control of CBB.
Plant
Activity(i.e. ≥ 30% mortality) against CBB
Examples of activity against other pests
Aeollanthus pubescens Benth.
220ppm crude essential oil (LD50)90
-
Azadirachta indica A. Juss
10% w/v ethanol extract of leaf (44%)86
Multiple99
Moringa oleifera Lam.
10% w/v ethanol extracts of leaf (48%) and seed (62%)86
Stored product pests92
10% w/v water extract of seed (56%)86 Nerium oleander L.
10% w/v ethanol extract of leaf (34%)86
Leafcutter ants143
Ocimum canum L.
320ppm crude essential oil (LD50)89
Macrotermes subhyalinus144
Piper alatabaccum Trel. & Yunck
0.5 mg ml -1 of a dried acetone extract (75% after 48 h)87
Anopheles darlingi145
Schinus terebinthifolia Raddi.
10-2 to 10-8 v/v dilutions of essential oil (100% to 30%)88
Disease vectors113 114
Tephrosia purpurea (L.) Pers.
10% w/v ethanol extracts of leaf (96%) and root (36%)86
Ae. aegypti146
25 ACS Paragon Plus Environment
Journal of Agricultural and Food Chemistry
338x190mm (96 x 96 DPI)
ACS Paragon Plus Environment
Page 26 of 27
Page 27 of 27
Journal of Agricultural and Food Chemistry
ACS Paragon Plus Environment