13 Carbon Monoxide-Metal Oxide Interactions
Downloaded by IOWA STATE UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch013
Surface Site Requirements for Electron Transfer Processes
KENNETH J. KLABUNDE, RICHARD A. KABA, and RUSSELL M. MORRIS Department of Chemistry, University of North Dakota, Grand Forks, ND 58202
Electron transfer from metal oxide surfaces to C O can be quite facile, occurring at room temperature. This process can be important as an initial C O activation step in metal oxide catalyzed reduction schemes. We have attempted to clarify what types of metal oxides interact (MO + C O -> MO . . . CO .) with C O in this way, and what surface features these active metal oxides possess. Only MgO, CaO, SrO, BaO, and ThO were electron transfer active. These oxides have in common the possession of both Lewis basic sites and one electron reducing site. It appears that C O is first adsorbed on Lewis base sites followed by slow migration to electron transfer reducing sites. The studies leading to this conclusion are discussed. +
-
2
A ctive Sites on Metal Oxides for Electron Transfer Processes. N u m e r o u s studies h a v e a p p e a r e d t h r o u g h o u t t h e l i t e r a t u r e d e a l i n g w i t h E S R studies of p a r a m a g n e t i c centers generated o n m e t a l o x i d e surfaces b y a v a r i e t y of m e t h o d s .
Scheme
1 s u m m a r i z e s some o f this w o r k b u t is
l i m i t e d to M g O , w h i c h serves as a n i l l u s t r a t i v e e x a m p l e . radiation
(neutrons
or y-rays)
High
energy
cause m a n y c r y s t a l l i n e defects
where
electrons c a n b e t r a p p e d to f o r m p a r a m a g n e t i c F o r F ' centers defects)
a n d S o r S ' centers
(surface
centers are " m e t a l excess" sites c a u s e d
defects)
(I).
The F
b y t h e presence
(bulk and S
of a n anion
v a c a n c y a n d t h e n e l e c t r o n t r a p p i n g . T h e r e a r e c o r r e s p o n d i n g V centers, w h i c h a r e c a t i o n vacancies t h a t t r a p p o s i t i v e holes.
I t is p r o b a b l e that
0-8412-0429-2/79/33-173-140$05.00/0 © 1979 American Chemical Society
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
13.
KLABUNDE
CO-Metal
E T AL.
Scheme 1.
141
Oxide Interactions
Paramagnetic Centers Generated on MgO
MgO
Downloaded by IOWA STATE UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch013
CO
less energy is r e q u i r e d to f o r m a c a t i o n v a c a n c y ( l e a d i n g to V c e n t e r s ) t h a n a n i o n vacancies ( l e a d i n g to S a n d F centers)
(1).
T h e c h e m i s t r y of the t r a p p e d electron centers ( S a n d F ) has b e e n s t u d i e d extensively w i t h a d d e d s m a l l m o l e c u l e s . a d d i t i o n has b e e n s t u d i e d i n some d e t a i l (2,3). t h a n M g O h a v e b e e n s t u d i e d s i m i l a r l y (4-10).
I n particular, oxygen
M a n y m e t a l oxides other E x t e n s i v e w o r k has s h o w n
that O " - , 0 ~ - , a n d 0 ' - c a n be obtained b y interacting the F a n d S 2
centers w i t h N 12,13).
3
2
0 (3), 0 , and N 2
2
0 ( w i t h 0 ~- present) respectively 2
(11,
T h e O " - species is p r e p a r e d p a r t i c u l a r l y w e l l b y U V i r r a d i a t i o n
of M g O i n the p r e s e n c e of H
2
(3), followed by N 0 addition. 2
Further-
m o r e , several groups h a v e b e g u n investigations of t h e c h e m i s t r y o f t h e
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
142
INORGANIC
COMPOUNDS
WITH
UNUSUAL
PROPERTIES
O " ' species f r o m t h e aspect o f surface a n i o n - m o l e c u l e reactions I n p a r t i c u l a r , a l k a n e d e h y d r o g e n a t i o n b y O - o n M g O (14) -
a n d ethylene oxide to f o r m H C = C ~ 2
b e e n s t u d i e d (15,16).
(14,15).
a n d ethylene
a n d H C — C H 0 " radicals have 2
2
0 , C O , a n d ethylene f o r m 0 ~ - , C 0 " - , a n d 2
3
C H ~ - a c c o r d i n g t o N a c c a c h e (16). 2
II
4
2
T h e r e is m u c h f a s c i n a t i n g c h e m i s t r y
s t i l l t o b e i n v e s t i g a t e d r e g a r d i n g these k i n d s of i n t e r a c t i o n s . A n u m b e r o f other m o l e c u l e s h a v e b e e n a l l o w e d to i n t e r a c t w i t h t h e F a n d S centers.
Even C 0
2
c a n b e r e d u c e d b y t h e centers
(17,18,19).
S i m i l a r l y , t h e r m a l l y a c t i v a t e d a n d U V - a c t i v a t e d M g O exposed to S 0
2
causes t h e f o r m a t i o n of t w o different S 0 ~ - r a d i c a l s ( 2 0 ) . A l s o , H S ~ Downloaded by IOWA STATE UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch013
2
2
c a n b e f o r m e d b y a d d i t i o n of H S to U V - a c t i v a t e d M g O (21).
2
Thus, it
2
appears that t h e c h e m i s t r y of O " - o n M g O a n d F a n d S centers o n M g O or other oxides are r i c h areas f o r investigations, a n d E S R is a p o w e r f u l t o o l to use i n these studies
(22).
G e n e r a l l y , i t appears that U V - a c t i v a t e d M g O is s i m i l a r i n c h e m i s t r y to y - r a y o r n e u t r o n - b o m b a r d e d M g O ( o r other o x i d e s ) , a l t h o u g h there is s t i l l r o o m f o r m o r e d e t a i l e d studies r e g a r d i n g U V w a v e l e n g t h d e p e n d e n c e a n d " q u a n t u m y i e l d " studies. H o w e v e r , there are gross differences b e t w e e n t h e a c t i v e sites o n M g O g e n e r a t e d t h e r m a l l y
(nonparamagnetic)
a n d those g e n e r a t e d b y i r r a d i a t i o n t e c h n i q u e s ( p a r a m a g n e t i c ) .
Thermally
g e n e r a t e d sites are s t i l l " r e d u c i n g sites" i n t h e sense that e l e c t r o n transfer to a d d e d m o l e c u l e s takes p l a c e . A t t h e same t i m e , h o w e v e r , b a c k b o n d i n g o r b a c k d o n a t i o n c a n a l l o w t h e r e d u c e d m o l e c u l e to d r a i n b a c k
charge
d e n s i t y to t h e o x i d e surface b u t s t i l l m a i n t a i n a p a r a m a g n e t i c b o n d i n g p i c t u r e . T h e s e a c t i v e sites, w h a t e v e r t h e y l o o k l i k e , are selective. 0
2
Thus,
does n o t react w i t h t h e r m a l l y generated a c t i v e sites o n M g O t o y i e l d
p a r a m a g n e t i c species
( 1 , 2 3 ) , n o r does C 0
2
form paramagnetic
w h e n e x p o s e d to t h e r m a l l y a c t i v a t e d M g O , a l t h o u g h C 0
2
species
is a d s o r b e d
( n o n p a r a m a g n e t i c a l l y ) at r o o m t e m p e r a t u r e to t h e extent o f near m o n o l a y e r coverage
(1).
I n a f a s c i n a t i n g p a p e r , T e n c h a n d N e l s o n discuss t h e r m a l l y g e n e r a t e d a c t i v e sites o n M g O , a n d t h e i r e l e c t r o n transfer t o a d s o r b e d n i t r o c o m p o u n d s to f o r m p a r a m a g n e t i c a n i o n r a d i c a l s ( 2 4 ) . A c c o r d i n g t o p r o t o n s p l i t t i n g a n i s o t r o p y , i t w a s c o n c l u d e d t h a t n i t r o b e n z e n e lies flat o n t h e M g O surface after a c c e p t i n g t h e electron.
T h e s e authors discuss three
p o s s i b i l i t i e s f o r t h e m e c h a n i s m of t h e e l e c t r o n transfer, o r i n p a r t i c u l a r t h e exact surface site r e q u i r e d . T h e y r e p o r t e d that a d s o r p t i o n of H C0
2
2
0 or
( n o n p a r a m a g n e t i c a l l y ) c o m p l e t e l y i n h i b i t s t h e e l e c t r o n transfer t o
nitro compounds.
T h e y c o n s i d e r three site p o s s i b i l i t i e s : ( 1 ) t r a n s i t i o n
m e t a l i m p u r i t y ions; ( 2 ) electrons t r a p p e d at i n t r i n s i c defects ( F o r S centers);
a n d ( 3 ) lattice o x y g e n ions o n t h e surface.
T h e y reject
(1)
b e c a u s e o f t h e v e r y l o w concentrations of t r a n s i t i o n m e t a l ions v s . spins o b s e r v e d a n d ( 2 ) b e c a u s e F a n d S centers are E S R o b s e r v a b l e a n d
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
13.
KLABUNDE
ET
CQ-Metdl
AL.
Oxide
143
Interactions
essentially none are present o n t h e r m a l l y a c t i v a t e d M g O . T h e y c o n c l u d e that ( 3 ) is the m e c h a n i s m , w h i c h means that a n O i o n m u s t g i v e u p one r
e l e c t r o n to the n i t r o c o m p o u n d .
N o w the reaction O
e x o t h e r m i c i n the gas phase b y ~ 6.5 e V (24,25,26), lattice the 0
O" +
r
e
"
i o n s h o u l d b e g r e a t l y s t a b i l i z e d b y the c o u l o m b i c
=
T h u s , the ease w i t h w h i c h O =
s
field.
gives u p a n e l e c t r o n w i l l d e p e n d greatly
r
o n its degree of c o o r d i n a t i o n . c o o r d i n a t i o n of the 0
*
but i n the M g O
T e n c h a n d N e l s o n c o n c l u d e that i f t h e
i o n is correct, t h e n c o m p o u n d s of e l e c t r o n affinity
of 0.7 or greater c a n a c c e p t a n electron ( s u c h as n i t r o c o m p o u n d s ) , b u t m o l e c u l e s of < 0.5 e V ( s u c h as 0 ) Downloaded by IOWA STATE UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch013
2
cannot
(24).
T h u s , i n t h e r m a l l y a c t i v a t e d M g O , a n d p r e s u m a b l y i n other oxides t h e r m a l l y a c t i v a t e d that d o not s h o w F a n d S centers, w e h a v e a c o m p l e t e l y different t y p e of a c t i v e center t h a n i n i r r a d i a t e d samples ( F a n d S u n p a i r e d e l e c t r o n c e n t e r s ) . W h a t does this t h e r m a l l y g e n e r a t e d a c t i v e site l o o k l i k e ?
A n d w h a t does the " h o l e " left b e h i n d l o o k l i k e ?
Very
l i t t l e has b e e n established c o n c e r n i n g these questions, e x c e p t t h a t i t is v e r y i m p r o b a b l e that t r a n s i t i o n m e t a l i m p u r i t i e s p l a y a r o l e
(23,24,27,
28,29). Electron Transfer to C O from Thermally Activated M g O and T h 0 . 2
T h e classic w o r k of L u n s f o r d a n d J a y n e i n 1966 first s h o w e d that C O adsorption on thermally activated M g O yielded a paramagnetic
species
T h i s p a p e r r e p o r t e d that C O interacts i n s u c h a w a y as to p r o d u c e
(30).
a r a d i c a l w i t h u n i a x i a l a n i s o t r o p y of the g factor,
and with bonding
s i m i l a r to that b e l i e v e d to exist i n m e t a l c a r b o n y l s
(strong
7r-acceptor
c h a r a c t e r i s t i c of C O ) . T h e y o b s e r v e d values of 2.0021 f o r g u a n d 2.0055 f o r gjL. It w a s p r o p o s e d t h a t the r a d i c a l f o r m e d w a s a c t u a l l y n e u t r a l or e v e n s l i g h t l y p o s i t i v e o w i n g to the strong d o n a t i o n of a n e l e c t r o n p a i r to the M g O , a n d r e c e i v i n g i n r e t u r n a n e l e c t r o n i n a n a n t i b o n d i n g ir o r b i t a l . F u r t h e r , L u n s f o r d a n d J a y n e (30)
b e l i e v e d that i r o n i o n i m p u r i t i e s w e r e
necessary a n d w e r e r e l a t e d to the electron transfer process this is t h o u g h t not to be true
(currently
(27).
B r e y a n d c o - w o r k e r s e x t e n d e d these studies to t h e r m a l l y a c t i v a t e d T h 0 , a n d o b s e r v e d several p a r a m a g n e t i c species after C O a d d i t i o n ( 2 9 ) . 2
T h e s e authors
o u t l i n e several
models
for the
a d s o r p t i o n process,
as
d e s c r i b e d i n S c h e m e 2. T h e y b e l i e v e that ( A ) is f o r m e d b y C O a d s o r p t i o n o n a site w i t h a p r e e x i s t i n g surface defect that has
immediately
a v a i l a b l e a n u n p a i r e d e l e c t r o n ( s i m i l a r to the L u n s f o r d m o d e l (30)). believe ( B )
and ( C )
They
are f o r m e d b y s l o w d i f f u s i o n of defects i n T h 0
2
w h i c h finally r e a c h the surface a n d react w i t h a d s o r b e d C O to p r o b a b l y form
b r i d g e d C O r a d i c a l species.
A fourth E S R
s i g n a l is
probably
a t t r i b u t e d to a C O - species ( D ) , a l t h o u g h o v e r a l l the species w o u l d +
p r o b a b l y b e n e a r l y n e u t r a l . A n d w i t h C O - , ( D ) c o u l d interact w i t h +
toformCO/- (E)
(29).
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
0
=
144
INORGANIC
Scheme 2.
COMPOUNDS
WITH
UNUSUAL
PROPERTIES
II
Assignment of CO Surface Structures to Observed ESR Signal (29)
II
II
C
C
^
0
=
_—>
CO~
Downloaded by IOWA STATE UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch013
D
O
.0.
.0
\\
//
C C
II c
B
C
M e r i a u d e a u , Breysse, a n d C l a u d e l ( 3 1 ) also s t u d i e d C O o n T h 0
2
w i t h p a r t i c u l a r emphasis o n t h e p o s s i b l e f o r m a t i o n of C O since t h e y h a d +
p r o p o s e d this species earlier as a n i n t e r m e d i a t e i n t h e c a t a l y t i c o x i d a t i o n of C O ( 3 2 ) .
1 3
C O as w e l l as
1 2
C O experiments w e r e c a r r i e d o u t w i t h
the c o n c l u s i o n that t h e o n l y species t h e y c a n ascribe to a C O species has a n a x i a l s y m m e t r i c s i g n a l s i m i l a r to ( C ) i n S c h e m e 2. U s i n g t h e s p i n densities o b t a i n e d f r o m t h e i r
1 3
C O work, M e r i a u d e a u a n d co-workers
( 3 1 ) w e r e a b l e to c a l c u l a t e that the C O r a d i c a l species has its u n p a i r e d e l e c t r o n i n a n o r b i t a l of h i g h p c h a r a c t e r a n d spends 15 o r 3 3 % of its t i m e a r o u n d t h e c a r b o n a t o m ( t w o different p a r a m a g n e t i c C O absorbates). T h e i r C O - s u r f a c e b o n d i n g interpretation depends o n the fact that m a r k e d c h a n g e i n e l e c t r i c a l c o n d u c t i v i t y of t h e T h 0 s o r p t i o n w a s f o u n d . T h e y b e l i e v e that t h e C O - T h 0
2
2
a
during C O chemielectronic exchange
results i n the f o r m a t i o n of s l i g h t l y p o s i t i v e C O adsorbates a n d a surface b e c o m i n g n e g a t i v e as a w h o l e to a d e p t h of a f e w a t o m i c layers.
This
creates e n e r g y - b a n d c u r v a t u r e near the surface a n d accounts f o r t h e change i n electrical conductivity (31). Thermally Activated Alkaline
E a r t h Oxides
(MgO, CaO, S r O ,
BaO) as Catalysts. I t is c u r i o u s that t h e r m a l a c t i v a t i o n of a l k a l i n e e a r t h oxides, besides p r o m o t i n g e l e c t r o n transfer processes, also leads to m o r e a c t i v e h y d r o g e n a t i o n a n d i s o m e r i z a t i o n catalysts. I n a n e x t r e m e l y signific a n t p a p e r , H a t t o r i , T a n a k a , a n d T a n a b e ( 3 3 ) d e s c r i b e M g O as a h y d r o g e n a t i o n catalyst a n d s h o w t h a t i t a p p a r e n t l y operates i n a n i o n i c m o d e (H
2
-> H + H " o n t h e s u r f a c e ) that a l l o w s D +
2
u p t a k e i n t o 1,3-butadiene
w i t h o u t H - D s c r a m b l i n g to f o r m c i s - 2 - b u t e n e - l , 4 - d . 2
Alkaline
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
earth
13.
KLABUNDE
CO-Metal
ET A L .
Oxide
145
Interactions
oxides s h o w e d a n a c t i v i t y o r d e r o f C a O > S r O > M g O > B a O > > B e O f o r this r e a c t i o n w h e n a c t i v a t e d b e t w e e n 8 0 0 ° - 1 0 0 0 ° C also b e h y d r o g e n a t e d temperatures.
(34). Alkenes can
( 3 5 ) b y these oxides b y u s i n g h i g h e r r e a c t i o n
O t h e r processes h a v e also b e e n s t u d i e d w i t h the a l k a l i n e
e a r t h oxides as catalysts: i s o m e r i z a t i o n of alkenes (36,37,38), t i o n o f styrene (39,40), exchange
and H - D 2
2
(28).
Results and Downloaded by IOWA STATE UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch013
polymeriza-
esterification o f b e n z a l d e h y d e (41),
Discussion
W h a t types o f surface sites are i n v o l v e d i n these e l e c t r o n transfer a n d c a t a l y t i c processes o n t h e r m a l l y a c t i v a t e d a l k a l i n e e a r t h
oxides?
T a n a b e a n d h i s c o - w o r k e r s b e l i e v e that L e w i s base sites a n d o n e - e l e c t r o n " r e d u c i n g sites" a r e b o t h i m p o r t a n t a n d h a v e s h o w n f o r C a O that o n e t y p e o f site c a n b e f a v o r e d o v e r the other b y different t h e r m a l a c t i v a t i o n procedures
(39,42).
W e h a v e u s e d T a n a b e ' s i d e a i n p r i n c i p l e f o r t h e q u a n t i t a t i v e s t u d y of the n u m b e r of r e d u c i n g sites o n M g O . T h e measurements w e r e m a d e b y d e t e r m i n i n g t h e n u m b e r of spins o f C H N 0 ~ - f o r m e d o n M g O samples 6
5
2
after e a c h h a d b e e n heat t r e a t e d at a different t e m p e r a t u r e a n d t h e n c o o l e d to 2 5 ° C .
(400°-1000°C)
T h e samples w e r e a g e d f o r several w e e k s to
i n s u r e c o m p l e t e r a d i c a l a n i o n f o r m a t i o n . T h e s e experiments w e r e c a r r i e d o u t t o : ( 1 ) d e t e r m i n e i f t h e n u m b e r of r e d u c i n g sites g e n e r a t e d b y heat treatment
of M g O i n v a c u o c h a n g e d w i t h c h a n g e
i n temperature,
as
T a n a b e h a d f o u n d f o r heat treatment of C a O i n a i r ; a n d ( 2 ) t o d e t e r m i n e i f the C H N 0 ~ 6
5
2
formation paralleled C O ' - formation o n identically
treated M g O samples.
F i g u r e 1 is a p l o t of r e l a t i v e C O ' - f o r m a t i o n v s .
absolute C H N 0 ' - f o r m a t i o n , b o t h v s . t e m p e r a t u r e of heat treatment. 6
5
2
N o t e t h e excellent production.
c o r r e l a t i o n of C H N 0 " 6
5
production with C O " -
2
W e b e l i e v e this is s t r o n g e v i d e n c e that t h e same t y p e of
r e d u c i n g sites a r e i n v o l v e d i n b o t h s y s t e m s — C O a n d C H N 0 . 6
5
It
2
r e m a i n s to b e seen i f o t h e r a l k a l i n e e a r t h oxides w i l l b e h a v e s i m i l a r l y a n d i f other m o l e c u l e s w i l l b e h a v e s i m i l a r l y o n these oxides. T h e s e d a t a also s u p p o r t o u r c o n t e n t i o n that t r a n s i t i o n m e t a l i m p u r i t i e s a r e n o t r e s p o n s i b l e f o r f o r m a t i o n of the r a d i c a l species o b s e r v e d . W e h a v e d e t e r m i n e d surface areas of the heat-treated M g O samples b y B E T m e t h o d s . T h e values r a n g e d f r o m 213 m / g to 83 m / g ( 8 3 m / g 2
2
2
at 3 0 0 ° C heat treatment, 213 at 4 0 0 ° , 139 at 5 0 0 ° , 140 at 6 0 0 ° , 130 at 7 0 0 ° , 134 at 8 0 0 ° , 129 at 9 0 0 ° , a n d 122 at 1 0 0 0 ° C ) .
D u r i n g the experi-
m e n t i t appears t h a t at 4 0 0 ° - 5 0 0 ° C t h e m a i n p o r t i o n s o f H 0 , 0 , C 0 , 2
2
2
a n d other gases a r e d e s o r b e d i n v a c u o . T h e surface area becomes l o w e r w i t h h i g h e r heat treatment a n d t h e n stabilizes at a b o u t 5 0 0 ° C , a n d this is w h e r e m a x i m u m r a d i c a l f o r m a t i o n a c t i v i t y w a s f o u n d .
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
146
INORGANIC
COMPOUNDS
WITH
UNUSUAL
PROPERTIES
II
40 :r
o
Downloaded by IOWA STATE UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch013
20
400
600
Heat Treatment
1000
800
Temperature
Figure 1. Relative radical concentration (spins/g) in the MgO/CO (circles) system and absolute radical concentration (spins/g) of the MgO/nitrobenzene (triangles) system as a function of the heat treatment temperature of MgO. NB. The scales for the two systems are different; also some samples have not reached their maximum radical growth value, especially in the MgO/CO system. K n o w i n g t h e surface areas, w e w e r e a b l e to c a l c u l a t e c r y s t a l l i t e sizes a n d t h e r e b y d e t e r m i n e t h e ratio o f M g O surface to M g O i n t e r n a l as 0.12. A l s o k n o w i n g t h e n u m b e r of spins of C H N 0 ~ - f o r m e d , w e w e r e 6
5
2
a b l e to c a l c u l a t e t h e n u m b e r of M g O surface m o l e c u l e s t o C H N 0 ~ - at 6
5
2
a p p r o x i m a t e l y 1 5 : 1 ( f o r t h e 5 0 0 ° C heat t r e a t e d s a m p l e ) . A l s o , a l t h o u g h m o r e d a t a is s t i l l n e e d e d , w e estimate t h e M g O surface m o l e c u l e to C O " f o r m a t i o n as a p p r o x i m a t e l y 4 0 0 : 1 f o r t h e same
M g O sample.
These
results d e m o n s t r a t e that these e l e c t r o n transfer processes are major surface processes of s i g n i f i c a n t i m p o r t a n c e a n d n o t s i m p l y c a u s e d b y m i n o r effects and/or small impurities. Is M g O u n i q u e i n these e l e c t r o n transfer processes?
A r e alkaline
e a r t h oxides u n i q u e ? W e c a r r i e d o u t studies o n a w i d e r a n g e of oxides, carbonates, h y d r o x i d e s , a n d sulfides l o o k i n g f o r a c t i v i t y f o r f o r m a t i o n of p a r a m a g n e t i c species w i t h C O . T h e s e w e r e a l l heat t r e a t e d a t 6 0 0 ° C o r as h i g h as t h e i r m e l t i n g p o i n t o r d e c o m p o s i t i o n p o i n t w o u l d a l l o w . T a b l e I lists t h e c o m p o u n d s s t u d i e d . I t c a n b e seen that o n l y t h e a l k a l i n e e a r t h oxides a n d T h 0
2
w e r e f o u n d t o b e a c t i v e . W h a t d o these h a v e i n
c o m m o n that t h e other m a t e r i a l s s t u d i e d d o not?
M u c h previous w o r k
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
13.
KLABUNDE
ET
CO-Metal
AL.
Oxide
147
Interactions
i n d i c a t e s that these a l l possess f a i r l y strong L e w i s base surface sites as w e l l as " r e d u c i n g sites" (24, 42-46). L e w i s a c i d sites o n its surface.
I n a d d i t i o n to these, T h 0
2
also has
N o n e of the other materials possess basic
a n d r e d u c i n g sites together ( 4 7 ) .
F u r t h e r m o r e , since the C O r a d i c a l
f o r m a t i o n is s l o w c o m p a r e d w i t h C O a d s o r p t i o n a n d since L e w i s a c i d s s u c h as C 0 believe (0
2
(27)
p o i s o n the surface t o w a r d s a n y C O r a d i c a l f o r m a t i o n , w e that C O a b s o r p t i o n first takes p l a c e o n L e w i s base sites
sites) i n a p p r o x i m a t e m o n o l a y e r coverage,
=
m u c h like Tench
and
N e l s o n (24) d e s c r i b e for H 0 o r C 0 . W e also b e l i e v e that once the C O 2
2
Downloaded by IOWA STATE UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch013
is a d s o r b e d o n basic sites, s l o w m i g r a t i o n of C O to r e d u c i n g sites takes place
(23,27).
T h e o r d e r of a c t i v i t y f o r the C O r a d i c a l f o r m a t i o n is
M g O > C a O > SrO > B a O (very weak)
(27).
A s p r e v i o u s l y m e n t i o n e d , it has b e e n suggested b y earlier w o r k e r s (30)
that i r o n i m p u r i t i e s p l a y a n i m p o r t a n t p a r t i n the f o r m a t i o n of C O
r a d i c a l s o n M g O . T h e d a t a i n T a b l e I suggests that this is not the case f o r o u r samples
(i.e., i t seems u n l i k e l y that i r o n i m p u r i t i e s w o u l d o n l y
l e a d to r a d i c a l f o r m a t i o n i n the a l k a l i n e e a r t h oxides a n d t h o r i u m o x i d e ) . F u r t h e r m o r e , o u r d e t e r m i n a t i o n of the i r o n content of the v a r i o u s samples ( M g O , 0.0018% F e ; C a O , 0.0005% F e ; a n d SrO, 0.0019% F e )
certainly
d i d n o t reflect the o b s e r v e d o r d e r of a c t i v i t y of the a l k a l i n e e a r t h oxides t o w a r d s C O r a d i c a l f o r m a t i o n discussed earlier.
T h u s , w e b e l i e v e i t is
u n l i k e l y that i r o n i m p u r i t i e s p l a y a role i n the present w o r k . T h e E P R s i g n a l of the a d s o r b e d C O r a d i c a l o n M g O , F i g u r e 2, shows a n u n s y m m e t r i c g v a l u e . T h e s i g n a l is not d e s t r o y e d u n t i l the s a m p l e is h e a t e d to > 1 5 0 ° C .
C a O behaves q u i t e s i m i l a r l y . W a t e r a d d i t i o n at
r o o m t e m p e r a t u r e to the C O r a d i c a l M g O system i m m e d i a t e l y causes a change i n the E P R s i g n a l (see Table I.
Figure 2).
T h e a v a i l a b l e data suggest
Oxides, Hydroxides, Carbonates, and Other Materials Tested for A c t i v i t y for Formation of Paramagnetic Species"
Active MgO CaO SrO BaO Th0
2
Non-Active BeO N a 0 (220 ° C ) Na0H(5%):Si0 N a O H (250°C) N a O O C H (190°C) Na C0 2
2
2
A1 0 2
3
2
3
3
a
2
2
2
2
2
; 2
2
3
2
2
8
Al 0 (45%):Si0 SiO Ti0 FeS(7%):Si0 2
F e O ( 0 . 0 5 % ) : A l O :'3 Ge0 ZnO ZrO La 0 Ce0 Nd 0 Eu 0 Dy 0 U0 /U 0 PbO Sn0 3
2
3
2
3
3
2
5
2
°A11 materials were heat treated at 600°C unless otherwise indicated i n vacuo (10 Torr) for 12-18 hr before exposing to 150 Torr C O . -6
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1
= 2.0053
%
Figure 2. EPR spectra of the CO-derived radical in the MgO/CO system. MgO heat treated at 800° C. (A) After ca. two weeks exposure to 160 Torr CO; (B) MgO/CO system, spectra (A), upon exposure to ca. 25 Torr D 0.
g
Downloaded by IOWA STATE UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch013
13.
KLABUNDE
that the H
2
E TA L .
CO-Metal
Oxide
149
Interactions
0 ( o r D 0 ) is a d s o r b e d i n the v i c i n i t y of t h e a d s o r b e d r a d i c a l , 2
c h a n g i n g its e n v i r o n m e n t a n d thus t h e E P R s i g n a l rather t h a n f o r m i n g a new radical. I n later p u b l i c a t i o n s w e w i l l d e s c r i b e some C O r a d i c a l c h e m i s t r y o n a l k a l i n e earth oxides w i t h reagents s u c h as 0 , H 2
2
,H 0 , D 0 , and 2
2
organics. A l s o , w e are testing M g O a n d C a O i n m o d e l c o m p o u n d r e d u c t i o n sequences to d e t e r m i n e i f r a d i c a l processes s u c h as those d e s c r i b e d here are a c t u a l l y i m p o r t a n t i n the C O - H 0 r e d u c i n g m e d i u m . 2
Downloaded by IOWA STATE UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch013
Relationship Electron
to Catalysis, Coal Liquefaction,
and
Movement in Metal Oxides
U n d e r s t a n d i n g i n d e t a i l t h e c h e m i s t r y of C O a n d C O - H 0 m i x t u r e s 2
over m e t a l o x i d e surfaces has c o n s i d e r a b l e i m p o r t a n c e f o r a n u m b e r of reasons: pure H
( 1 ) C O - H 0 is a m o r e effective r e d u c i n g m e d i u m r e l a t i v e to 2
2
f o r r e d u c t i o n a n d d e p o l y m e r i z a t i o n o f l o w r a n k coals
m e t a l oxides a n d o t h e r m i n e r a l s c a n a c t as i n s i t u catalysts 51,52);
where
(48,49,50,
( 2 ) C O - H 0 is better t h a n H f o r t h e r e d u c t i o n o f some o r g a n i c 2
f u n c t i o n a l groups (53,54);
2
( 3 ) some m e t a l oxides, e s p e c i a l l y basic oxides,
are u s e d as p r o m o t o r s i n F i s c h e r - T r o p s c h c a t a l y t i c c h e m i s t r y a n d t h e i r role is n o t u n d e r s t o o d m e c h a n i s t i c a l l y (55,56,57); are o f t e n u s e d as catalysts f o r t h e C O + H
2
a n d ( 4 ) m e t a l oxides
0