6 The Water Gas Shift Reaction as Catalyzed by Ruthenium Carbonyl in Acidic Solutions P E T E R C . F O R D , P A U L Y A R R O W , and HAIM C O H E N
Downloaded by TUFTS UNIV on October 3, 2016 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch006
Department of Chemistry, University of California, Santa Barbara, C A 93106
The p a s t s e v e r a l y e a r s have s e e n renewed i n t e r e s t i n t h e c a t a l y s t c h e m i s t r y o f t h e w a t e r g a s s h i f t r e a c t i o n (WGSR, E q . 1 ) . CO + H 0 5 = i 2
CO + H
(1)
2
T h i s h a s been l a r g e l y s t i m u l a t e d b y t h e r e c o g n i t i o n t h a t t h e s h i f t r e a c t i o n i s a key step i n t h e p r o d u c t i o n o f t h e copious hydrogen a n d / o r s y n t h e s i s g a s (H2/CO) r e q u i r e d f o r t h e g a s i f i c a t i o n o r liquifaction of coal. I n 1977, we r e p o r t e d t h a t r u t h e n i u m c a r b o n y l i n a l k a l i n e aqueous e t h o x y e t h a n o l s o l u t i o n formed a homogeneous WGSR c a t a l y s t 01,2,) . S u b s e q u e n t l y , a number o f o t h e r r e p o r t s o f homogeneous s h i f t r e a c t i o n c a t a l y s t s have a p p e a r e d (3-12). Our r a t i o n a l e f o r c h o o s i n g a n a l k a l i n e s o l u t i o n r e a c t i o n medium f o r o u r i n i t i a l s t u d i e s d e r i v e d f r o m t h e h i s t o r i c a l p r e c e d e n t by H e i b e r (14) t h a t m e t a l c a r b o n y l s u n d e r g o r e a c t i o n s w i t h aqueous b a s e s t o g i v e m e t a l c a r b o n y l h y d r i d e a n i o n s ( e . g . , Eq. 2 ) . A c i d i f i c a t i o n o f t h e s e s o l u t i o n s r e l e a s e d b o t h Fe(C0)
5
+ 30H~
σ* t r a n s i t i o n o f t h e c l u s t e r m e t a l - m e t a l bond f r a m e w o r k (20) a n d t h a t o t h e r r u t h e n i u m c l u s t e r s show s i m i l a r n e a r UV o r v i s i b l e a b s o r p t i o n b a n d s , i t seems l i k e l y that the ruthenium c a r b o n y l s p e c i e s i n the a c i d i c diglyme c a t a l y s t a r e mononuclear o r d i n u c l e a r . The k i n e t i c s r e s u l t s o f t h e b a t c h r e a c t o r r u n s l e a d t o t h e f o l l o w i n g q u a l i t a t i v e o b s e r v a t i o n s : A t l o w CO p r e s s u r e s ( l e s s t h a n a b o u t 1 atm) t h e c a t a l y s i s a p p e a r s t o be f i r s t o r d e r i n r u t h e n i u m o v e r t h e r a n g e 0.018 M t o 0.072 M and a l s o i n P a s i l l u s t r a t e d by the l o g P v s t i m e p l o t s o f F i g . 2 and a l s o shown by t h e method o f i n i t i a l r a t e s . Changes i n t h e s u l f u r i c a c i d and w a t e r c o n c e n t r a t i o n s o v e r t h e r e s p e c t i v e r a n g e s 0.25 M t o 2.0 M and 4 M t o 12 M have r e l a t i v e l y s m a l l e f f e c t s o n t h e c a t a l y s i s r a t e s , a l t h o u g h t h e f u n c t i o n a l i t i e s a r e c o m p l i c a t e d and show c o n c a v e r a t e v s c o n c e n t r a t i o n c u r v e s w i t h maximum r a t e s c o
2
=
m a
3
5
3
1 2
c
c
o
Ford; Catalytic Activation of Carbon Monoxide ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
o
CATALYTIC ACTIVATION OF CARBON MONOXIDE
Downloaded by TUFTS UNIV on October 3, 2016 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch006
98
Figure 1. UV-visible spectrum (0ΛΟcm cell) of a catalyst solution prepared from Ru (CO) (3 X 10 Μ), H SO (0.5M), H 0 (8.0M) under a CO atmos phere (Pco = 1 atm) in diglyme at 100°C. The upper curve represents the spectrum 5 min after the solution was prepared at this temperature, the lower curve is the spectrum after 6 h. 3
3
12
2
h
2
500
300
[Ru3(C0)12] 1
.006 M
II
.012 M
III
.024 M
0.5
0
III
II l 10
0
20 Time (hours)
Figure 2. First-order rate plots for the consumption of CO in a 100-mL batch reactor (catalyst solution is 5 mL of aqueous diglyme with 8.5M H O 1.0M H SO, Τ = 100°C and ? o (initial) = 0.9 atm). Slopes of the three linear plots are 2 X 10' , 4.4 χ 10 , and 9.3 X 10~ h' for the respective Ru (CO) initial concentra tions of (I) 0.006U, (II) 0.012M, and (III) 0.024U. 2
C
2
2
2
1
3
I2
Ford; Catalytic Activation of Carbon Monoxide ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
t
2
lf
6.
FORD ET AL.
99
Ru-Catalyzed Water Gas Shift
f o u n d a t ~4 M H 2 O and a t -0.5 M H S0i, w i t h P o « However, u s i n g H3POU, CH3CO2H o r C F C 0 H i n s t e a d a s t h e added a c i d decreased the a c t i v i t y markedly. The s y s t e m i s t e m p e r a t u r e s e n s i t i v e w i t h a n a c t i v a t i o n e n e r g y o f a b o u t 14 k c a l / m o l e d e r i v e d from a l i n e a r A r r h e n i u s p l o t f o r t h e c a t a l y s i s r a t e s over t h e t e m p e r a t u r e r a n g e 90-140°C i n t h e l o w P region. A dramatic t u r n a r o u n d i n a c t i v i t y o c c u r s a t CO p r e s s u r e s much l a r g e r t h a n 1 atm w i t h t h e p r o d u c t i o n o f H and C 0 b e i n g i n h i b i t e d b y increasing P under t h e c o n d i t i o n s . Notably, a batch reactor r u n i n i t i a t e d a t l o w p r e s s u r e s and d e m o n s t r a t e d t o be a c t i v e d i s p l a y s a much l o w e r r a t e when t h e b u l b i s c h a r g e d w i t h a h i g h P . The i n i t i a l c a t a l y t i c a c t i v i t y i s r e g e n e r a t e d when t h e system i s r e c h a r g e d a t t h e l o w e r P , t h u s showing t h e i n h i b i t i o n at higher P t o be r e v e r s i b l e . Another c h a r a c t e r i s t i c o f the batch r e a c t o r runs i s that a f t e r a number o f f l u s h i n g / r e c h a r g i n g c y c l e s ( s e e E x p e r i m e n t a l ) o v e r a p e r i o d o f d a y s t h e r e i s a marked d e g r a d a t i o n o f t h e system's c a t a l y t i c a c t i v i t y . Whether t h i s i s t h e r e s u l t o f i r r e v e r s i b l e transformations o f the catalyst to inactive species ( f o r example i n t r o d u c t i o n o f a i r t o a h o t c a t a l y s t s o l u t i o n causes i r r e v e r s i b l e d e s t r u c t i o n o f the a c t i v i t y ) o r o f the l o s s of v o l a t i l e ruthenium s p e c i e s d u r i n g the freeze/thaw, degassing/ recharging cycles i s not clear. The l a t t e r i s c e r t a i n l y a m a j o r c o n t r i b u t o r t o the slow d e g r a d a t i o n o f the a c t i v i t y i n the f l o w r e a c t o r runs where, d e s p i t e t h e presence o f a condensor designed t o r e t u r n s o l v e n t and c a t a l y s t t o t h e r e a c t i o n v e s s e l , v o l a t i l e r u t h e n i u m c a r b o n y l s p e c i e s a r e t r a p p e d downstream f r o m t h e reactor (see below). I f a fresh, active catalyst i n acidic d i g l y m e i s c o o l e d t o room t e m p e r a t u r e a f t e r o p e r a t i n g u n d e r a l o w P , t h e s o l u t i o n i s l i g h t y e l l o w and u n d e r g o e s a s l o w t r a n s f o r m a t i o n t o g i v e Ru3(CO)i which p r e c i p i t a t e s from s o l u t i o n Over a p e r i o d o f s e v e r a l d a y s . A s much a s 95% o f t h e o r i g i n a l R u 3 ( C 0 ) i c a n be r e c o v e r e d u n d e r t h e s e c o n d i t i o n s . I n contrast a s o l u t i o n o p e r a t i n g under a h i g h e r P (2.7 atm) p r e c i p i t a t e s R u 3 ( C 0 ) i q u i c k l y upon c o o l i n g i n d i c a t i n g t h a t t h e p r i n c i p a l ruthenium s p e c i e s p r e s e n t under such c o n d i t i o n s i s R u ( C O ) o r one e a s i l y c o n v e r t e d t o t h i s c l u s t e r . = 1
2
3
a t m
C
2
c
o
2
2
c o
c o
c o
Downloaded by TUFTS UNIV on October 3, 2016 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch006
c
o
c o
2
2
c
o
2
3
1 2
In S i t u Spectroscopic Studies: B e s i d e s t h e e l e c t r o n i c s p e c t r a l s t u d i e s n o t e d a b o v e , we h a v e also c a r r i e d out i n s i t u studies o f the a c i d i c ruthenium c a t a l y s t u s i n g nmr and i n f r a r e d s p e c t r a l t e c h n i q u e s . A k e y s e t o f o b s e r v a t i o n s d e r i v e f r o m t h e *H and C nmr s p e c t r a o f a n o p e r a t i n g c a t a l y s t a t 90° and P 1 atm w h i c h i n d i c a t e t h e p r e s e n c e o f o n l y one m a j o r r u t h e n i u m s p e c i e s . The p r o t o n s p e c t r u m shows a s h a r p s i n g l e t a t 24.0 τ w h i c h r e m a i n s s u c h when t h e s o l u t i o n i s c o o l e d t o room t e m p e r a t u r e , a l t h o u g h t h e s l o w f o r m a t i o n o f o t h e r s p e c i e s was o b s e r v e d o v e r a p e r i o d o f h o u r s at the l a t t e r conditions. The ^ - d e c o u p l e d C spectrum o f the 1 3
c
o
1 3
Ford; Catalytic Activation of Carbon Monoxide ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
CATALYTIC
100
ACTIVATION
OF
CARBON
MONOXIDE
o p e r a t i n g c a t a l y s t a l s o shows a s i n g l e t a t 198.2 ppm d o w n f i e l d f r o m TMS) w h i c h becomes a d o u b l e t (Jc-H=10 Hz) when p r o t o n coupled. The same s p e c t r u m i s s e e n when t h e s o l u t i o n i s c o o l e d t o room t e m p e r a t u r e . N o t a b l y t h e s e nmr s p e c t r a a r e i n c o n s i s t e n t w i t h t h o s e o f H 2 R u ( C 0 ) u o r HRu(C0)"£ ( T a b l e I ) w h i c h s h o u l d be k e y s p e c i e s i n a c a t a l y s i s c y c l e b a s e d s o l e l y on m o n o n u c l e a r c o m p l e x e s . For e x a m p l e , t h e p r o t o n r e s o n a n c e a t 24.0 τ i s c o n s i d e r a b l y h i g h e r f i e l d than those seen f o r the mononuclear s p e c i e s w i t h t e r m i n a l h y d r i d e s (17.6 and 17.2 τ, r e s p e c t i v e l y ) and f a l l s i n t h e r e g i o n where b r i d g i n g h y d r i d e s a r e n o r m a l l y s e e n . Further c o m p a r i s o n o f t h e s p e c t r a i n T a b l e I shows t h a t t h e c a t a l y s t s o l u t i o n C resonance occurs at a p o s i t i o n d o w n f i e l d from those f o u n d f o r c a t i o n i c r u t h e n i u m c a r b o n y l h y d r i d e s s u c h a s HRu(C0)+ and HRu3(C0)"i2 i i n a r e g i o n more c o n s i s t e n t w i t h a n e u t r a l o r a n i o n i c c o m p l e x . Thus we c o n c l u d e t h a t t h e p r i n c i p a l s p e c i e s p r e s e n t i n t h e a c i d i c c a t a l y s t s o l u t i o n has a s i n g l e h y d r i d e , i s n e u t r a l o r a n i o n i c and i s f l u x i o n a l a t room t e m p e r a t u r e and a b o v e . Given the c o n c l u s i o n from the U V - v i s i b l e s p e c t r a t h a t the n u c l e a r i t y o f t h e c o m p l e x i s l e s s t h a n t h r e e ( s e e a b o v e ) and t h e c o n c l u s i o n f r o m t h e nmr d a t a t h a t t h e h y d r i d e i s b r i d g i n g , t h e c i r c u m s t a n t i a l evidence i s that the p r i n c i p a l ruthenium species under the c a t a l y s i s c o n d i t i o n s i s a d i n u c l e a r complex. A l o g i c a l p r o p o s i t i o n i s t h a t t h i s i s t h e d i n u c l e a r a n i o n HRu (C0)e w h i c h i s unknown f o r r u t h e n i u m , a l t h o u g h t h e i r o n a n a l o g i s known and has been shown t o be f l u x i o n a l e v e n t o l o w t e m p e r a t u r e s ( 2 1 ) . Attempts to o b t a i n i n s i t u i n f r a r e d s p e c t r a of t h i s c a t a l y s t system u t i l i z i n g a h i g h temperature i n f r a r e d c e l l s i m i l a r to t h a t d e s c r i b e d by K i n g (25) h a v e met w i t h m i x e d s u c c e s s o w i n g t o t h e s t r o n g a b s o r p t i o n o f t h e s o l v e n t medium i n t h e c a r b o n y l region. B r o a d p e a k s a t 2084, 2040, 2013 and 1 9 6 0 ( b r ) cm" a l l o f medium t o s t r o n g i n t e n s i t y w e r e o b s e r v e d f o r t h e r e a c t i o n s o l u t i o n a t 100°C u n d e r an a t m o s p h e r e o f CO. A survey of r u t h e n i u m c a r b o n y l i n f r a r e d s p e c t r a i n d i c a t e t h a t t h e s e bands a r e not c o n s i s t e n t w i t h those expected f o r Ru(C0)s, R u ( C O ) i 2 , H2Ru(C0)i* o r R u ( C O ) among t h e s i m p l e r known s p e c i e s o f t h i s type. Lowering the temperature of the r e a c t i o n s o l u t i o n to 25°C does n o t l e a d t o m a j o r d i f f e r e n c e s i n t h e s p e c t r u m a l t h o u g h t h e r e a r e some c h a n g e s i n t h e r e l a t i v e peak h e i g h t s . Whether t h i s i s the r e s u l t of s h i f t s i n the c o n c e n t r a t i o n s of s e v e r a l s p e c i e s p r e s e n t i n s o l u t i o n o r o f medium e f f e c t s on t h e band s h a p e s i s n o t c l e a r ; h o w e v e r , t h e f o r m e r i s an u n l i k e l y p r o s p e c t g i v e n t h e nmr r e s u l t s n o t e d above t h a t t h e p r o t o n and c a r b o n - 1 3 s p e c t r a do n o t u n d e r g o i m m e d i a t e c h a n g e s upon l o w e r i n g t h e c a t a l y s t s o l u t i o n t e m p e r a t u r e f r o m 90° t o 25°.
Downloaded by TUFTS UNIV on October 3, 2016 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch006
13
a
n
(
2
1
3
2
9
A Proposed Mechanism f o r C a t a l y s i s : The i n f o r m a t i o n c u r r e n t l y a v a i l a b l e f o r t h e a c i d i c r u t h e n i u m c a t a l y s t s y s t e m , i s c o n s i s t e n t w i t h a c y c l i c mechanism s u c h as
Ford; Catalytic Activation of Carbon Monoxide ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
6.
FORD
X
T a b l e I : H and
13
Downloaded by TUFTS UNIV on October 3, 2016 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch006
Complex
Ru^CO)^
1 3
C N.M.R. D a t a f o r R u t h e n i u m C a r b o n y l Complexes.
C0(ppm)
^(τ)
J^C-^HiHz)
22 29.3
HRujCO)^"
203.7
25.8
HRu (CO)
202.2
22.6
6
198.2
27.0
7.3
1 ] L
"
H Ru (CO) ~ l t
1 2
HRu (CO) NO 3
Ru (C0) 3
1 0
3
2
2,22 23 T h i s work
17.6
180.4 178.4
HRu(CO)*
2
(average)
202.9,195.5 21.9 194.5,185.8
192.5 190.1
HRu (CO)|
22
198.0
1 2
22
10.3 ( t r a n s ) 5.9 ( c i s )
220.0
2
3
References
223.7
2
H^u^CCO)^ ""
3
101
Ru-Catalyzed Water Gas Shift
ET AL.
191.0,188.0 184.5,178.9
17.2
9
Q
β
24
7 (cis) (trans) 4 (cis) 24 ( t r a n s )
T h i s work
T h i s work
Ford; Catalytic Activation of Carbon Monoxide ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
CATALYTIC
102
ACTIVATION
OF
CARBON
MONOXIDE
i l l u s t r a t e d by Scheme I I . The k e y f e a t u r e s o f t h i s scheme a r e t h a t a t low P t h e r u t h e n i u m i s p r e s e n t l a r g e l y a s t h e HRu (CO)7 c o
2
CO HRu (C0) 2
C0
2
+
r
Ru(C0)
5
HRuCCO)^
8
If
H
HRu (C0) (C0 H) 2
8
-H
H Ru(C0)
2
2
Downloaded by TUFTS UNIV on October 3, 2016 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch006
H2O-
? Ru (C0)9
Ru(CO)
2
4
CO Ru(CO)1 -CO
Ru(CO). Scheme I I
a n i o n and t h e r a t e l i m i t i n g s t e p i s t h e r e a c t i o n o f t h i s i o n w i t h CO t o c l e a v e t h e m e t a l - m e t a l l i n k a g e g i v i n g R u ( C 0 ) s p l u s HRu(CO)^. Under s u c h c o n d i t i o n s t h e r a t e s h o u l d be f i r s t o r d e r i n b o t h [Ru] and P s i n c e t h e c o n c e n t r a t i o n o f H R u ( C 0 ) e w o u l d be p r o p o r t i o n a l to the t o t a l c o n c e n t r a t i o n of r u t h e n i u m p r e s e n t . The n e x t s t e p w o u l d be p r o t o n a t i o n o f H R u ( C 0 K t o g i v e t h e d i h y d r i d e w h i c h u n d e r goes r e d u c t i v e e l i m i n a t i o n o f d i h y d r o g e n . Although the f i r s t pK of H Ru(C0) i s as y e t unknown, v a l u e s f o r t h e i r o n and osmium a n a l o g s (26) c l e a r l y i n d i c a t e t h a t HRu(CO)^ s h o u l d be s u f f i c i e n t l y s t r o n g a b a s e t o be f u l l y p r o t o n a t e d u n d e r t h e s o l u t i o n c o n d i t i o n s . The d i h y d r i d e i s r e p o r t e d t o be u n s t a b l e i n t o l u e n e s o l u t i o n above -20°C; however i n t h a t c a s e e x c e s s CO was n o t p r e s e n t and t h e p r o d u c t s p r e s u m a b l y w e r e r u t h e n i u m c l u s t e r s (24) ( s e e b e l o w ) . I n h i b i t i o n of c a t a l y s i s at high P may be e x p l a i n e d as r e f l e c t i n g c o n d i t i o n s where t h e e q u i l i b r i u m c o
a
2
2
l t
c o
CO + R u ( C 0 ) 2
9
ς=±
2 Ru(C0)
5
(3)
becomes a d o m i n a n t f a c t o r i n t h e c a t a l y s i s . Support f o r t h i s p r o p o s i t i o n comes f r o m t h e f l o w r e a c t o r k i n e t i c s c u r r e n t l y i n progress. At v e r y low ruthenium c o n c e n t r a t i o n s , f i r s t o r d e r b e h a v i o r i n [Ru] a p p a r e n t l y no l o n g e r h o l d s and t h e r e a c t i o n k i n e t i c s i n d i c a t e o r d e r s c l o s e r t o two t h a n one, t h u s s u p p o r t i n g t h e p o s s i b l e i m p o r t a n c e o f Eq. (3) t o t h e o v e r a l l c a t a l y s i s r a t e u n d e r t h e s e c o n d i t i o n s . F u r t h e r s u p p o r t i n g e v i d e n c e comes f r o m a c o m p l i c a t i o n i n the f l o w r e a c t o r k i n e t i c s . These s y s t e m s show
Ford; Catalytic Activation of Carbon Monoxide ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
6.
FORD
ET AL.
103
Ru-Caialyzed Water Gas Shift
slow decreases i n a c t i v i t y over a p e r i o d o f time owing t o the l o s s of r u t h e n i u m f r o m t h e s o l u t i o n , a p r o b l e m e s p e c i a l l y a p p a r e n t a t h i g h P . E x a m i n a t i o n o f a low t e m p e r a t u r e t r a p downstream from t h e c a t a l y s i s v e s s e l showed t h e p r e s e n c e o f a c l e a r s o l u t i o n , m o s t l y aqueous d i g l y m e , w h i c h when warmed t o room t e m p e r a t u r e t u r n e d y e l l o w and s l o w l y p r e c i p i t a t e d R u ( C 0 ) i 2 . Thus t h e g a s s t r e a m o f t h e f l o w s y s t e m s e r v e d t o sweep a v o l a t i l e r u t h e n i u m s p e c i e s out o f the r e a c t i o n s o l u t i o n , p r o b a b l y R u ( C 0 ) but p o s s i b l y l ^ R u C C O ) ^ . T h e r e i s a n o t h e r p o t e n t i a l s o u r c e o f t h e CO i n h i b i t i o n i n Scheme I I . S t u d i e s i n p r o g r e s s i n t h i s l a b o r a t o r y (27) have shown t h a t t h e i n i t i a l s t e p i n t h e d e c o m p o s i t i o n and c l u s t e r i f i c a t i o n o f H2Ru(G0)i» i n s o l u t i o n i s n o t H e l i m i n a t i o n b u t i s CO dissociation. Thus i t i s p o s s i b l e t h a t t h e e l i m i n a t i o n o f H from H R u ( C 0 ) t i r e q u i r e s p r i o r CO d i s s o c i a t i o n v i a a mechanism s i m i l a r to t h a t proposed f o r H e l i m i n a t i o n from H 0 s ( C 0 ) (28) a n d t h u s w o u l d be i n h i b i t e d a t t h e h i g h e r P . T h i s q u e s t i o n i s c u r r e n t l y being i n v e s t i g a t e d . c o
3
5
2
2
Downloaded by TUFTS UNIV on October 3, 2016 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch006
2
2
2
l |
c o
Experimental
Procedures
I n f r a r e d s p e c t r a were r e c o r d e d o n a P e r k i n - E l m e r m o d e l 283 spectrophotometer. P r o t o n and c a r b o n - 1 3 n u c l e a r m a g n e t i c r e s o n a n c e s p e c t r a w e r e r e c o r d e d o n V a r i a n XL-100 and CFT-20 s p e c t r o m e t e r s , r e s p e c t i v e l y , o p e r a t i n g i n t h e p u l s e d mode. UV-visible s p e c t r a were r e c o r d e d o n a C a r y 118C r e c o r d i n g s p e c t r o m e t e r e q u i p ped w i t h a t h e r m o s t a t e d c e l l compartment. Gas s a m p l e a n a l y s e s were p e r f o r m e d o n a H e w l e t t - P a c k a r d 5830A p r o g r a m m a b l e g a s c h r o m a t o g r a p h , c a l i b r a t e d f o r t h e a p p r o p r i a t e s u b s t r a t e s . The c o l u m n s u s e d were C a r b o s i e v e Β (Mesh 80-100) c o l u m n s o b t a i n e d f r o m H e w l e t t P a c k a r d a n d t h e c a r r i e r gas u s e d was a L i n d e p r e p a r e d 8.5% H / 9 1 . 5 % He m i x t u r e . Gas s a m p l e s w e r e t a k e n w i t h A n a l y t i c a l P r e s s u r e Lok g a s s y r i n g e s o b t a i n e d f r o m P r e c i s i o n S a m p l i n g Corporation. C a l i b r a t i o n c u r v e s f o r the chromatographs and sampl i n g p r o c e d u r e s w e r e p r e p a r e d p e r i o d i c a l l y f o r CO, CH^, C 0 , a n d H f o r gas sample s i z e s r a n g i n g f r o m 0.05 t o 1.5 mL STP o f t h e g a s . These c a l i b r a t i o n c u r v e s were l i n e a r f o r CO, CH^, a n d C 0 b u t n o t f o r H . C a t a l y t i c a c t i v i t y a n d k i n e t i c s r u n s w e r e l a r g e l y done i n a l l - g l a s s b a t c h r e a c t o r s (100 mL) c o n s i s t i n g o f r o u n d b o t t o m f l a s k s w i t h s i d e a r m s t o p c o c k s d e s i g n e d f o r a t t a c h m e n t t o a vacuum l i n e and f o r p e r i o d i c gas p h a s e s a m p l i n g . Typically, theRu (C0) and s o l v e n t medium were added t o t h e r e a c t o r v e s s e l ( a t room t e m p e r a t u r e ) w h i c h was t h e n a t t a c h e d t o t h e vacuum l i n e , a n d t h e s o l u t i o n was d e g a s s e d by f reeze-pump-thaw c y c l e s t h e n c h a r g e d w i t h a CO/CH^ (94/6) gas m i x t u r e ( L i n d e ) a t t h e d e s i r e d p r e s s u r e . The r e a c t o r s were s u s p e n d e d i n t h e r m o s t a t e d o i l b a t h s a n d t h e s o l u t i o n s s t i r r e d m a g n e t i c a l l y . The s y s t e m s w e r e p e r i o d i c a l l y f l u s h e d a n d r e c h a r g e d w i t h t h e CO/CH^ m i x t u r e i n a manner s i m i l a r t o t h a t d e s c r i b e d a b o v e . Gas s a m p l e s were removed b y gas s y r i n g e a n d t h e c o m p o s i t i o n s were a n a l y z e d w i t h methane s e r v i n g a s a n i n t e r n a l c a l i b r a n t , thus a l l o w i n g f o r the c a l c u l a t i o n o f the a b s o l u t e 2
2
2
2
2
3
Ford; Catalytic Activation of Carbon Monoxide ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
1 2
CATALYTIC
104
ACTIVATION
OF
CARBON
MONOXIDE
q u a n t i t i e s o f H 2 and CO2 p r o d u c e d and CO consumed. These v a l u e s were c o r r e c t e d f o r t h e s m a l l b a c k g r o u n d s i g n a l s n o t e d when g a s s a m p l e s f r o m c o n t r o l r e a c t i o n s i n t h e a b s e n c e o f added c a t a l y s t were a n a l y z e d . Acknowledgements :
Downloaded by TUFTS UNIV on October 3, 2016 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch006
T h i s r e s e a r c h was s u p p o r t e d b y t h e D e p a r t m e n t o f E n e r g y , O f f i c e o f B a s i c Energy S c i e n c e s . I n i t i a l s t u d i e s on the a c i d i c ruthenium c a r b o n y l c a t a l y s t system were c a r r i e d out by Dr. C h a r l e s Ungermann i n t h i s g r o u p , P r o f e s s o r R . G . R i n k e r and h i s r e s e a r c h g r o u p o f t h e UCSB C h e m i c a l E n g i n e e r i n g D e p a r t m e n t c o n t r i b u t e d s i g n i f i c a n t l y t o t h e d i s c u s s i o n and i n t e r p r e t a t i o n o f t h e s e results.
Abstract: Solutions prepared from Ru (CO) in acidic aqueous diglyme solutions are shown to be catalysts for the water gas shift reaction under reasonably mild conditions (100°C, P =1 atm). This system shows an induction period of about six hours before constant activity is attained during which the Ru (CO) undergoes complete conversion to another ruthenium carbonyl complex. In situ nmr studies suggest this species to be the HRu (CO)-8 ion. Kinetic studies show complex rate profiles; however, a key observation is that the catalysis rate is first order in P at low pressures (P