Chapter 31
Characterization of Catalysts by Scanning Transmission Electron Microscopy William M . Targos and Steven A. Bradley
Downloaded by COLUMBIA UNIV on February 26, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch031
U O P Research Center, Des Plaines, IL 60017
The dedicated scanning transmission electron microscope (STEM) is an integral tool for characterizing catalysts because of its unique ability to image and analyze nano sized volumes. This information is valuable in optimiz ing catalyst formulations and determining causes for reduced catalyst performance. For many commercial catal ysts direct correlations between structural features of metal crystallites and catalytic performance are not attainable. When these instances occur, determination of elemental distribution may be the only information avail able. In this paper we will discuss some of the techni ques employed and limitations associated with charac terizing commercial catalysts.
The e l e c t r o n m i c r o s c o p e o f f e r s a unique approach f o r measuring i n d i v i d u a l n a n o - s i z e d volumes w h i c h may be c a t a l y t i c a l l y a c t i v e as opposed t o t h e a v e r a g i n g method employed by s p e c t r o s c o p i c t e c h n i ques. I t i s j u s t t h i s a b i l i t y o f b e i n g a b l e t o observe and measure d i r e c t l y s m a l l c r y s t a l l i t e s o r nano-volumes o f a c a t a l y s t s u p p o r t t h a t s e t s t h e m i c r o s c o p e a p a r t from o t h e r a n a l y s e s . There have been many s t u d i e s r e p o r t e d i n t h e l i t e r a t u r e over t h e p a s t f i f t e e n y e a r s w h i c h emphasize t h e use o f a n a l y t i c a l and t r a n s m i s s i o n e l e c t r o n m i c r o s c o p y i n t h e c h a r a c t e r i z a t i o n o f c a t a l y s t s . Reviews ( 1 - 5 ) o f t h e s e s t u d i e s emphasize t h e r e l a t i o n s h i p between t h e s t r u c t u r e o f the s i t e and c a t a l y t i c a c t i v i t y and s e l e c t i v i t y . Most commercial c a t a l y s t s do n o t r e a d i l y p e r m i t such c l e a r d i s t i n c t i o n o f p h y s i c a l p r o p e r t i e s w i t h performance. The importance o f e s t a b l i s h i n g t h e p r o x i m i t y o f elements, e l e m e n t a l d i s t r i b u t i o n and component p a r t i c l e s i z e i s o f t e n o v e r l o o k e d as v i t a l i n f o r m a t i o n i n t h e d e s i g n and evaluation of catalysts. F o r example, t h i s i n t e r a c t i v e approach was s u c c e s s f u l l y u s e d i n t h e development o f a F i s c h e r - T r o p s c h c a t a l y s t (6). A l t h o u g h some measurements on commercial c a t a l y s t s c a n be made r o u t i n e l y w i t h a STEM, t h e r e a r e complex c a t a l y s t s w h i c h r e q u i r e 0097-6156/89/0411-0342$06.00/0 © 1989 American Chemical Society
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by COLUMBIA UNIV on February 26, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch031
31.
TARGOS & BRADLEY
Characterization of Catalysts by STEM
343
t e d i o u s a n a l y t i c a l approaches. The methodology and l i m i t a t i o n s as they a p p l y t o commercial c a t a l y s t s w i l l be d i s c u s s e d i n t h i s paper. Most o f t h e s t u d i e s r e p o r t e d i n t h e l i t e r a t u r e use t r a n s m i s s i o n e l e c t r o n m i c r o s c o p e s , TEM o r a m o d i f i e d TEM w i t h s c a n n i n g f e a t u r e s c a l l e d a s c a n n i n g t r a n s m i s s i o n e l e c t r o n m i c r o s c o p e , STEM. These m o d i f i e d m i c r o s c o p e s a r e r e f e r r e d t o as TEM/STEM. There i s a l s o a n o t h e r type o f m i c r o s c o p e , a d e d i c a t e d s c a n n i n g t r a n s m i s s i o n e l e c t r o n m i c r o s c o p e (STEM), w h i c h o f f e r s unique advantages w i t h r e g a r d t o t h e a n a l y t i c a l a s p e c t s o f t h e measurements made i n c h a r a c t e r i z i n g c a t a l y s t s . The p r i m a r y advantage t h e STEM has o v e r a c o n v e n t i o n a l TEM i s t h a t a more i n t e n s e e l e c t r o n beam c a n be r o u t i n e l y f o c u s e d i n t o an l.Onm beam s i z e . The r e a s o n f o r t h i s advantage i s t h a t a f i e l d e m i s s i o n e l e c t r o n s o u r c e i s used t o g e n e r a t e t h e e l e c t r o n beam. Thus n a n o - s i z e d c r y s t a l l i t e s c a n be e a s i l y i d e n t i f i e d and c h a r a c t e r i z e d . I n g e n e r a l , t h e two i n s t r u m e n t s c o m p l i ment each o t h e r and s h o u l d be used t o g e t h e r when c h a r a c t e r i z i n g c a t a l y s t s . Most o f t h e comments made i n t h i s paper w i l l be from t h e p o i n t o f v i e w o f u s i n g t h e d e d i c a t e d STEM. F i n a l l y , as w i t h most problems e n c o u n t e r e d i n i n d u s t r y , a m u l t i p l e t e c h n i q u e approach s h o u l d be implemented when p o s s i b l e t o a c h i e v e a b e t t e r u n d e r s t a n d i n g o f t h e problem. Experimental The m i c r o s c o p e used i n o b t a i n i n g t h e r e s u l t s p r e s e n t e d i n t h i s paper was a Vacuum G e n e r a t o r s HB-5 STEM. A Kevex energy d i s p e r s i v e x - r a y s p e c t r o m e t e r , EDS, w i t h 10mm Be window was used f o r t h e e l e m e n t a l microanalysis. Specimen p r e p a r a t i o n f o r c a t a l y s t s i s n o t as s e v e r e a problem as i s commonly found f o r m e t a l l u r g i c a l o r c e r a m i c samples. F o r example, r e a s o n a b l y good specimens c a n be p r e p a r e d by s i m p l y g r i n d i n g a c a t a l y s t i n t o a f i n e powder, s u s p e n d i n g t h e powder i n i s o p r o p a n o l , and d e p o s i t i n g t h e s u s p e n s i o n on a c a r b o n c o a t e d n y l o n o r copper g r i d . T h i s approach r e s u l t s i n a wide range o f p a r t i c l e s i z e s from w h i c h t o observe unique m o r p h o l o g i c a l f e a t u r e s and d e t e r m i n e t h e c o m p o s i t i o n and s t r u c t u r a l p r o p e r t i e s o f t h e c a t a l y s t . U l t r a m i c r o t o m i n g a c a t a l y s t can a l s o p r o v i d e unique informat i o n t o the a n a l y s t . Since the thickness i s uniform throughout the specimen, e l e m e n t a l p a r t i c l e i n f o r m a t i o n , m e t a l s d i s t r i b u t i o n and s t r u c t u r a l i n f o r m a t i o n n o t o b t a i n e d by t h e g r i n d i n g method c a n be o b t a i n e d (7-8). The l i m i t a t i o n s a r e t h a t i t i s more time consuming and c o s t l y t h a n t h e g r i n d i n g o r s c r a p i n g method. A l s o specimens may n o t n e c e s s a r i l y be o b t a i n e d from t h e e x a c t r e g i o n o f i n t e r e s t . I n b o t h p r e p a r a t i v e methods t h e i n t e g r i t y o f t h e c a t a l y s t i s compromised. Exposure t o ambient c o n d i t i o n s , e x t e r i o r c h e m i c a l e n v i r o n m e n t s , and exposure t o h i g h vacuum i n t h e m i c r o s c o p e may a l t e r t h e c a t a l y s t p r o p e r t i e s . Employment o f s p e c i a l chambers f o r redox p r e t r e a t m e n t s and/or e n v i r o n m e n t a l m i c r o s c o p e s p r o v i d e s some a s s i s t a n c e i n overcoming t h e s e problems (9). I t appears t h a t r e g a r d l e s s o f t h e approach t a k e n , compromises i n specimen p r e p a r a t i o n o r i n s t r u m e n t a l performance must be made. These f a c t o r s must be k e p t i n mind when i n t e r p r e t i n g r e s u l t s o b t a i n e d from e l e c t r o n m i c r o s c o p i c measurements. 2
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
344
CHARACTERIZATION AND CATALYST DEVELOPMENT
Downloaded by COLUMBIA UNIV on February 26, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch031
Commercial and E x p e r i m e n t a l C a t a l y s t s Many o f t h e TEM s t u d i e s o f c a t a l y s t s r e p o r t e d i n t h e l i t e r a t u r e u s e model c a t a l y s t s w i t h v i s i b l e m e t a l c r y s t a l l i t e s s u p p o r t e d on a m e t a l o x i d e s u p p o r t , w h i c h u s u a l l y i s s e l e c t e d because i t o f f e r s m i n i m a l e l e c t r o n s c a t t e r i n g i n t e r f e r e n c e . These model c a t a l y s t s a r e s t u d i e d because d i r e c t measurements r e g a r d i n g c r y s t a l l i t e s i z e and s t r u c t u r e can be made. E x t r a p o l a t i o n o f t h i s i n f o r m a t i o n t o s m a l l e r m e t a l c l u s t e r s i z e s u s u a l l y p r e s e n t i n commercial c a t a l y s t s i s a n t i c i p a t e d t o p r o v i d e i n s i g h t i n t o t h e r e l a t i o n s h i p between s t r u c t u r e and chemical r e a c t i v i t y (10). Commercial f r e s h , s p e n t , and r e g e n e r a t e d c a t a l y s t s e x h i b i t a wide range o f m e t a l d i s t r i b u t i o n s and d i s p e r s i o n s . I d e a l l y , the c a t a l y t i c c h e m i s t would l i k e t o know i n d e t a i l t h e s t r u c t u r e , quant i t y , and d i s t r i b u t i o n o f t h e c a t a l y t i c s i t e s . There a r e a number o f e x p e r i m e n t a l l i m i t a t i o n s w h i c h i n h i b i t such a complete s u r v e y o f the p r o p e r t i e s o f t h e c a t a l y s t . O f t e n commercial c a t a l y s t s w i l l n o t have r e a d i l y i d e n t i f i a b l e s i t e s , i . e . , c r y s t a l l i t e s w h i c h c a n be o b s e r v e d and a n a l y z e d f o r s t r u c t u r a l and c o m p o s i t i o n a l p r o p e r t i e s . T h i s i s u s u a l l y t h e case e n c o u n t e r e d f o r f r e s h c a t a l y s t s w h i c h have m e t a l l o a d i n g s below 0.5 wt.% and on s u p p o r t s w h i c h o f f e r a h i g h degree o f i n t e r f e r e n c e from e l e c t r o n s c a t t e r . On a c a t a l y s t o f t h i s t y p e , o f t e n o n l y i n f o r m a t i o n on the u n i f o r m i t y o f t h e e l e m e n t a l d i s t r i b u t i o n c a n be determined. I n g e n e r a l , t h e d e d i c a t e d STEM w i l l a l l o w the m i c r o s c o p i s t t o determine c o m p o s i t i o n a l a n a l y s e s on volumes o f a p p r o x i m a t e l y 40 nm . An example o f two s u p p o r t s s y n t h e s i z e d by s i m i l a r p r o c e d u r e s and a n a l y z e d f o r u n i f o r m i t y i s shown i n T a b l e I . I t i s o b v i o u s from the s t a n d a r d d e v i a t i o n t h a t s u p p o r t A was n o t made as w e l l as B. T h i s problem was r e s o l v e d by a l t e r i n g mixing variables. S u b t l e v a r i a t i o n s o f t h i s type o f t e n have a d r a m a t i c i n f l u e n c e on c a t a l y s t performance. Catalytically a c t i v e m e t a l s on s u p p o r t s c a n a l s o be m o n i t o r e d i n t h i s manner ( 1 1 ) . Many commercial c a t a l y s t s employ m i x t u r e s o f s e v e r a l m e t a l o x i d e s . The advantages o f t h e s e mixed o x i d e systems v a r i e s from t h e r m a l s t a b i l i t y t o enhanced a c i d i c p r o p e r t i e s and/or s u p p o r t m e t a l i n t e r a c t i o n s . The d e d i c a t e d STEM does an e x c e l l e n t j o b o f i d e n t i f y i n g t h e i n d i v i d u a l mixed o x i d e components and d e t e r m i n i n g l o c a t i o n of the c a t a l y t i c metals. B e i n g a b l e t o o b t a i n i n f o r m a t i o n on the m e t a l s d i s t r i b u t i o n and d i s p e r s i o n as a f u n c t i o n o f p r e p a r a t i v e , o p e r a t i o n a l , and regeneration c o n d i t i o n s i s v i t a l l y important i n h e l p i n g d i r e c t the o p t i m i z a t i o n o f new c a t a l y s t f o r m u l a t i o n s . A f t e r a c a t a l y s t has been exposed t o o p e r a t i n g and/or carbon b u r n c o n d i t i o n s , m e t a l s a g g l o m e r a t i o n may o c c u r . A l s o t h e r e may be c i r c u m s t a n c e s w h e r e i n the f r e s h c a t a l y s t might have s p e c i f i e d s i z e m e t a l c r y s t a l l i t e s . I n t h e s e c a s e s , t h e c h a r a c t e r i z a t i o n by STEM becomes more complex. Thorough c h a r a c t e r i z a t i o n r e q u i r e s c o m p o s i t i o n a l and s t r u c t u r a l i n f o r m a t i o n o f t h e d i f f e r e n t s i z e c r y s t a l l i t e s , and t o what e x t e n t a l l o f t h e c r y s t a l l i t e s comprise t h e t o t a l amount o f m e t a l p r e s e n t . T h i s i s a d i f f i c u l t i f n o t i m p o s s i b l e t a s k t o c a r r y o u t i n some cases because o f t h e i n t e r f e r e n c e t h e s u p p o r t l e n d s t o t h e a n a l y s i s problem. I n F i g u r e 1, a m i c r o g r a p h o f 2-3 nm p l a t i n u m - c r y s t a l l i t e s on 7 - A l 0 i s shown. A l t h o u g h t h e r e a r e many c o n t r a s t i n g f e a t u r e s , o n l y those i n d i c a t e d by arrows were p l a t i n u m . T h i s i n f o r m a t i o n 3
2
3
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
31.
TARGOS & BRADLEY
Characterization of Catalysts by STEM
Comparison o f Two D i f f e r e n t l y P r e p a r e d S i l i c a - A l u m i n a Supports
Support
A
Support
Downloaded by COLUMBIA UNIV on February 26, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch031
Weight %
B
Weight %
Al
Si
Al
Si
47,.0 33..0 21..1 40..9 20,.1* 26..2 50,.2 59,.3 60,.0 30.,4 38.,8±14.9
53,.0 67,.0 78,.9 59,.1 79,.9 73,.8 49,.8 40,.8 40,.0 68,.6 61,.2±14.9
35,.1 30..5 36,.6 34..1 34,.9 33,.8 34..0 32.,3 36..7 28.,6 33.,9 37.,0 34.,0±2.5
64,.9 69,.5 63,.4 65,.9 65,.1 66,.2 66,.0 67,.7 63,.3 71,.4 66,.1 63,.0 66..0±2.5
F i g u r e 1.
P l a t i n u m c r y s t a l l i t e s on 7-alumina.
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
345
Downloaded by COLUMBIA UNIV on February 26, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch031
346
CHARACTERIZATION AND CATALYST DEVELOPMENT
c o u l d o n l y be v e r i f i e d by a p o i n t by p o i n t m i c r o a n a l y s i s u s i n g EDS. X - r a y mapping u s u a l l y does n o t p r o v i d e s u f f i c i e n t s i g n a l t o n o i s e f o r d i s t i n g u i s h i n g 2-3nm c r y s t a l l i t e s from t h e s u p p o r t ( 1 2 ) . I n c r e a s e d sweep times w i t h s t a t e o f t h e a r t EDS d e t e c t o r s may i n some cases p r o v i d e s u f f i c i e n t s e n s i t i v i t y t o make t h i s measurement. C o n s e q u e n t l y , t h e e l e c t r o n beam must be d i r e c t e d t o a v e r y s m a l l volume o f c a t a l y s t by o p e r a t i n g a t h i g h m a g n i f i c a t i o n s , i . e . , 20 m i l l i o n times i n a r a s t e r o r s p o t t e d beam mode. O f t e n count t i m e s o f up t o 100 seconds o r more a r e r e q u i r e d t o determine i f an a r e a o f h i g h c o n t r a s t c o n t a i n s a c a t a l y t i c m e t a l . T h i s experiment i s t e d i o u s , b u t i n many i n s t a n c e s i s t h e o n l y p r a c t i c a l approach. There a r e s i t u a t i o n s i n w h i c h c r y s t a l l i t e s a r e r e a d i l y v i s i b l e , e s p e c i a l l y on s u p p o r t s w h i c h do n o t o f f e r e x c e s s i v e e l e c t r o n scatter. I n these c a s e s , m e t a l c o n t e n t c a n be q u a n t i t a t i v e l y d e t e r m i n e d f o r areas w h i c h have h i g h l y d i s p e r s e d m e t a l and agglomerated metal. This information i n conjunction w i t h the c r y s t a l l i t e s i z e d i s t r i b u t i o n provides the m i c r o s c o p i s t w i t h the i n f o r m a t i o n r e q u i r e d t o make an e s t i m a t e o f m e t a l d i s p e r s i o n ( 1 3 ) . These e s t i m a t e s a r e v a l u a b l e e s p e c i a l l y i n s i t u a t i o n s where c o n v e n t i o n a l gas a d s o r p t i o n measurements cannot be made on t h e m e t a l , i . e . , when the c r y s t a l l i t e s a r e contaminated, have m u l t i p l e o x i d a t i o n s t a t e s , or are poisoned. One o f t h e d i f f i c u l t i e s i n d i r e c t l y a n a l y z i n g s t r u c t u r e s o f c r y s t a l l i t e s w i t h a 1-3 run s i z e range i s t h e i r beam s e n s i t i v i t y . Some c r y s t a l l i t e s w i l l d i s s o c i a t e i n t h e beam w h i l e o t h e r s t e n d t o agglomerate ( 1 4 ) . The mass o f t h e c r y s t a l l i t e , s u p p o r t - m e t a l i n t e r a c t i o n , c h e m i c a l environment, o x i d a t i o n s t a t e o f t h e m e t a l , e t c . , a l l have an i n f l u e n c e on how t h e c r y s t a l l i t e and e l e c t r o n beam interact. I n o r d e r t o f o r m u l a t e a c o r r e l a t i o n o f these v a r i a b l e s w i t h c r y s t a l l i t e r e a c t i v i t y w i t h t h e beam, t h e c r y s t a l l i t e s i t e c h e m i s t r y i s r e q u i r e d . T h i s i s d i f f i c u l t i f n o t i m p o s s i b l e t o do because t h e s i t e c h e m i s t r y i s a l t e r e d d u r i n g m i c r o s c o p i c examinat i o n . W i t h p a r a l l e l EELS d e t e c t i o n t h e time may be s u f f i c i e n t l y reduced t h a t u s e f u l c h e m i c a l i n f o r m a t i o n c a n be o b t a i n e d and c o r r e l a t i o n s o f t h e type p r e v i o u s l y d e s c r i b e d c a n be made. The s e n s i t i v i t y o f these s m a l l c r y s t a l l i t e s t o t h e e l e c t r o n beam makes o b t a i n i n g m i c r o d i f f r a c t i o n p a t t e r n s v e r y d i f f i c u l t . U s u a l l y a p p a r a t u s w h i c h i n v o l v e s s p e c i a l i z e d o p t i c s and e l e c t r o n i c m o n i t o r i n g d e v i c e s such as those developed b y Cowley (15) c a n reduce beam exposure time and thus p r o v i d e some m e a n i n g f u l d a t a w h i c h might be u s e f u l i n s t u d y i n g t h e s u p p o r t - m e t a l i n t e r a c t i o n o r s t r u c t u r e reactivity relationship. There a r e two approaches w h i c h enhance o b s e r v a t i o n o f 1-2 nm supported metal c r y s t a l l i t e s . One i s a n n u l a r dark f i e l d o r Z-cont r a s t d e t e c t i o n (16) and t h e o t h e r i s c a l l e d a x i a l dark f i e l d ( 1 7 ) . These t e c h n i q u e s c a n be e a s i l y u t i l i z e d f o r s i m p l e c a t a l y s t composit i o n s . The a n n u l a r dark f i e l d d e t e c t i o n method a n a l y z e s e l a s t i c a l l y s c a t t e r e d e l e c t r o n s a t wide a n g l e s from t h e c e n t r a l beam. The s c a t t e r i n g a n g l e i s a f u n c t i o n o f atomic number. Consequently, elements such as p l a t i n u m a r e e f f e c t i v e l y o b s e r v e d i n low atomic number s u p p o r t s such as A l 0 o r S i 0 (18) . The method i s a l s o e f f e c t i v e i n d e t e c t i n g l a r g e r c r y s t a l l i t e s i n support p a r t i c l e s 2
3
2
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
31.
TARGOS & BRADLEY
347
Characterization of Catalysts by STEM
u s u a l l y too t h i c k f o r e l e c t r o n beam t r a n s m i s s i o n . Such a n example f o r 10-60 nm p l a t i n u m c r y s t a l l i t e s on a l u m i n a i s shown i n F i g u r e 2. V a r y i n g the b l a c k l e v e l o f the p h o t o m u l t i p l i e r c a n enhance imaging of the c r y s t a l l i t e s by making them l o o k l i g h t e r o r d a r k e r w i t h r e s p e c t t o the s u p p o r t . The a x i a l dark f i e l d i m a g i n g i s a c h i e v e d b y obtaining a m i c r o - d i f f r a c t i o n pattern o f a c r y s t a l l i t e , t i l t i n g the e l e c t r o n beam so as t o move one o f the d i f f r a c t i o n s p o t s t o t h e o p t i c a x i s , and t h e n imaging w i t h t h i s d i f f r a c t e d beam. I f t h e c r y s t a l l i t e s p r e s e n t have s u f f i c i e n t l y d i f f e r e n t l a t t i c e s p a c i n g s from t h e s u p p o r t , the c r y s t a l l i t e s w i l l be h i g h l i g h t e d on the d a r k f i e l d image. For example, i n F i g u r e 3, c r y s t a l l i t e s o n c a r b o n a r e shown u s i n g t h i s t e c h n i q u e . Cowley and G a r c i a (19) demonstrated t h i s t e c h n i q u e on the more c o m p l i c a t e d Rh/Ce0 system. A t t e m p t s t o use t h i s approach f o r p l a t i n u m on 7 - A l 0 w i l l n o t work, because t h e major d i f f r a c t i o n s p o t s f o r P t and 7 - A l 0 cannot be d i f f e r e n t i a t e d . The ease o f a n a l y s i s depends on how w e l l some o f t h e s e t e c h n i ques a r e i n t e g r a t e d w i t h one a n o t h e r t o e s t a b l i s h how the c a t a l y s t i s designed. For monometallic supported c a t a l y s t s p r e v i o u s l y d e s c r i b e d , more o f t h e s e t e c h n i q u e s are a p p l i c a b l e because o f t h e r e d u c e d i n t e r f e r e n c e from the s u p p o r t . The o p t i o n s a r e r e d u c e d as the s u p p o r t c o m p o s i t i o n becomes more complex. There a r e some commercial c a t a l y s t s w h i c h c o n t a i n m u l t i m e t a l l i c s i t e s on complex m e t a l o x i d e s u p p o r t s . D i r e c t m i c r o a n a l y s i s o f a r e a s b y EDS i s sometimes the o n l y approach t h a t can be t a k e n , e s p e c i a l l y i f t h e metals are h i g h l y d i s p e r s e d . I f c r y s t a l l i t e s are p r e s e n t , x-ray mapping (20) might be a f e a s i b l e approach f o r q u i c k l y e s t a b l i s h i n g the e x t e n t o f b i m e t a l l i c f o r m a t i o n . Sometimes b i m e t a l l i c c r y s t a l l i t e s have s p e c i f i c m o r p h o l o g i c a l c h a r a c t e r i s t i c s w h i c h e n a b l e t h e m i c r o s c o p i s t t o i d e n t i f y the b i m e t a l l i c c r y s t a l l i t e s . I n F i g u r e s 4a and b, a c a t a l y s t c o m p r i s e d o f R u / I r on 7 - A l 0 and Ru on 7 - A l 0 , r e s p e c t i v e l y a r e shown. The R u / I r c r y s t a l l i t e s a r e e l o n g a t e d whereas the Ru c r y s t a l l i t e s a r e s y m m e t r i c a l . EDS shows t h e s e R u / I r c r y s t a l l i t e s t o have a c o m p o s i t i o n o f 80 wt.% Ru and 20 wt.% I r . Thus b y v i s u a l o b s e r v a t i o n a r a p i d e v a l u a t i o n o f the e x t e n t o f b i m e t a l l i c f o r m a t i o n can be made f o r t h i s c a t a l y s t . However, most of the time the d a t a a r e n o t e a s i l y o b t a i n e d and i n d i v i d u a l a n a l y s e s of a r e a s o f i n t e r e s t must be made.
Downloaded by COLUMBIA UNIV on February 26, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch031
2
2
3
2
3
2
3
2
3
There a r e a l s o c a t a l y s t f o r m u l a t i o n s w h i c h have h i g h l y d i s p e r s e d m e t a l s w h i c h are d e l i b e r a t e l y h e t e r o g e n e o u s l y d i s t r i b u t e d on a s u p p o r t . I f the m i c r o s c o p i s t i s aware o f the s i t u a t i o n , he c a n t a k e p r e c a u t i o n s i n the sample p r e p a r a t i o n . T h i s t y p e o f sample i s the w o r s t p o s s i b l e case t o a n a l y z e because n o t o n l y does the a n a l y s t have a complex m i x t u r e o f components t o s o r t o u t , b u t the a n a l y s i s s t a t i s t i c s a r e v e r y poor. C o n s e q u e n t l y , a d d i t i o n a l time i s u s u a l l y r e q u i r e d t o s u r v e y the c a t a l y s t p a r t i c l e s i n o r d e r t o e s t a b l i s h a consensus o f how i t was c o n s t r u c t e d . S p e c i a l i z e d specimen p r e p a r a t i o n such as u l t r a m i c r o t o m i n g and s c r a p i n g the e x t e r i o r o f a sphere or e x t r u d a t e may a l l e v i a t e some o f the i n t e r p r e t a t i o n problems. A d d i t i o n a l a i d may be s o l i c i t e d from a s c a n n i n g e l e c t r o n m i c r o s c o p e w h e r e i n an e l e m e n t a l d i s t r i b u t i o n o f a p o l i s h e d c r o s s s e c t i o n o f t h e c a t a l y s t sphere o r e x t r u d a t e can be made.
American Chemical Society Library 1155 15th St., N.W.
In Characterization and Catalyst Development; Bradley, S., et al.; Washington, D.C. 20036 ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by COLUMBIA UNIV on February 26, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch031
348
CHARACTERIZATION AND CATALYST DEVELOPMENT
F i g u r e 2. P l a t i n u m c r y s t a l l i t e s on t h i c k p a r t i c l e s o f 7-alumina u s i n g annular dark f i e l d .
F i g u r e 3. P l a t i n u m c r y s t a l l i t e s on a c a r b o n f i l m u s i n g dark f i e l d .
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
axial
Downloaded by COLUMBIA UNIV on February 26, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch031
31.
TARGOS & BRADLEY
Figure 4 a . alumina.
Characterization of Catalysts by STEM
Ruthenium - i r i d i u m e l o n g a t e d c r y s t a l l i t e s on 7-
Figure 4b.
Ruthenium on
7-alumina.
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
349
350
CHARACTERIZATION AND CATALYST DEVELOPMENT
C a t a l y s t Poisons Any c a t a l y s t exposed t o r e a c t i o n c o n d i t i o n s may have been s u b j e c t e d t o p o i s o n s . I n some c a s e s , a n a l y s i s b y STEM o f i n d i v i d u a l c r y s t a l l i t e s w i l l d e t e c t t h e p o i s o n ( 1 2 ) . T h i s i s p r i m a r i l y because t h e a c t i v e c a t a l y s t s i t e may s e l e c t i v e l y scavenge t h e p o i s o n thus concentrating i t to a level of detectability. I n many c a s e s , however, the p o i s o n s a r e a t l o w c o n c e n t r a t i o n s and may remain u n d e t e c t e d by STEM.
Downloaded by COLUMBIA UNIV on February 26, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch031
C a t a l y s t S t a b i l i t y Under Beam
Exposure
I t may be t a k e n f o r g r a n t e d t h a t a n a l y s i s f o r a l l elements on a c a t a l y s t s u p p o r t work e q u a l l y w e l l . We have performed experiments on many d i f f e r e n t c a t a l y s t s and have found t h a t elements such as C I , K, Na, and S a r e v e r y s e n s i t i v e t o t h e e l e c t r o n beam. C I and S appear t o v o l a t i l i z e i n t h e vacuum w h i l e K and Na move away from t h e i n c i d e n t beam. T h i s i s e s p e c i a l l y t r u e when t h e beam i s s p o t t e d d i r e c t l y onto t h e p a r t i c l e v e r s u s u s i n g t h e l e s s damaging r a s t e r mode. Examples o f how e l e m e n t a l a n a l y s e s o f a BaS0 , z e o l i t e , and NaCl p a r t i c l e s v a r y as a f u n c t i o n o f time a r e shown i n F i g u r e 5. O f t e n c a t a l y s t m a t e r i a l s a r e viewed as b e i n g e x t r e m e l y s t a b l e because t h e y a r e exposed t o s e v e r e o x i d a t i o n and r e d u c t i o n c o n d i t i o n s a t v e r y h i g h temperature and a r e c o n s e q u e n t l y s t a b i l i z e d b y such t r e a t m e n t s . I n a n a l y z i n g a c a t a l y s t w i t h an e l e c t r o n beam many i n t e r e s t i n g c h e m i c a l r e a c t i o n s may o c c u r w h i c h r e n d e r t h e s u p p o r t m e t a s t a b l e . Many examples have been s i g h t e d i n t h e l i t e r a t u r e (21) w h i c h show s u p p o r t s such as z e o l i t e s , a l u m i n a , and s i l i c a degrade under an e l e c t r o n beam. I t i s o f i n t e r e s t t o note t h a t a l t h o u g h beam damage may o c c u r i n a l l c a s e s , t h e e x t e n t o f d e g r a d a t i o n appears t o be h i g h l y v a r i a b l e . We have o b s e r v e d i n s t a n c e s i n w h i c h z e o l i t e s and/or a l u m i n a have shown v a r i a b l e r e a c t i v i t y i n an e l e c t r o n beam. Sometimes p a r t i c l e s o b t a i n e d from t h e same c a t a l y s t may e x h i b i t d i f f e r e n t beam s e n s i t i v i t y . I t i s possible that the catal y s t was n o t c o m p l e t e l y t r a n s f o r m e d t o a s t a b l e c o n d i t i o n d u r i n g preparation. Atomic rearrangement and/or f u r t h e r r e d u c t i o n o f c r y s t a l l i t e s w i t h mixed o x i d a t i o n s t a t e s (22) as a f u n c t i o n o f e l e c t r o n beam exposure have been observed. We have n o t e d t h a t m e t a l c r y s t a l l i t e s l e s s t h a n 4 nm i n s i z e a r e p a r t i c u l a r l y s u s c e p t i b l e t o beam i r r a d i a t i o n damage. Another phenomenon commonly observed i n t h e a n a l y s i s o f c a t a l y s t s i s t h e d e p o s i t i o n o f carbon i n t h e a r e a o f beam c o n c e n t r a t i o n ( 2 3 ) . I n many i n s t a n c e s t h i s c a n be a s s o c i a t e d w i t h r e s i d u a l o r g a n i c m a t e r i a l l e f t on t h e c a r b o n c o a t e d g r i d s . We have a l s o found t h a t t h e c a t a l y s t p a r t i c l e s themselves may have o r g a n i c d e b r i s on them w h i c h s u b s e q u e n t l y r e a c t i n t h e e l e c t r o n beam c r e a t i n g carbonaceous m a t e r i a l . U n f o r t u n a t e l y , t h i s may d i s r u p t o b s e r v a t i o n o f s m a l l c r y s t a l l i t e s and/or t h e q u a n t i t a t i v e a n a l y s i s o f t h e particle. F o r example, STEM e x a m i n a t i o n o f a F i s c h e r - T r o p s c h c a t a l y s t w h i c h h a d wax d e p o s i t e d on t h e a l u m i n a p a r t i c l e s c o n t a i n i n g Ru c r y s t a l l i t e s was made. Due t o t h e r e a c t i v i t y o f t h e wax i n t h e e l e c t r o n beam t h e p a r t i c l e s t u r n e d p r o g r e s s i v e l y d a r k e r as a f u n c t i o n o f exposure t i m e , u n t i l f i n a l l y t h e Ru c r y s t a l l i t e s were n o t A
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by COLUMBIA UNIV on February 26, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch031
31. TARGOS & BRADLEY
351
Characterization of Catalysts by STEM
•
ZEOLITE K/SI
A Cl/Na • S/Ba
A
•
• A
• •X100
*A 0
0
i
40
80
120
160
200
TIME (SEC) F i g u r e 5. E f f e c t o f the e l e c t r o n beam on the K / S i r a t i o f o r a z e o l i t e , C l / N a r a t i o f o r N a C l , and S/Ba r a t i o f o r BaS0 . 4
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
352
CHARACTERIZATION AND CATALYST DEVELOPMENT
observable. C a t a l y s t s w h i c h c o n t a i n c a r b o n from o t h e r r e a c t i o n s i n w h i c h t h e carbon i s h i g h l y u n s a t u r a t e d show l i t t l e beam i n t e r a c t i o n . Sometimes t h e o r i g i n o f t h e carbon d e p o s i t i o n and/or o t h e r c o n t a m i n a t i o n e f f e c t s may n o t be r e a d i l y i d e n t i f i a b l e . A d d i t i o n a l p r e p a r a t i o n may be r e q u i r e d t o o b t a i n a specimen w h i c h c a n be analyzed. F o r example, p l a c i n g t h e c a t a l y s t p a r t i c l e s on d i f f e r e n t c a r b o n c o a t e d g r i d s , u s i n g a d i f f e r e n t method f o r d e p o s i t i n g t h e c a t a l y s t p a r t i c l e s , o r u s i n g a d i f f e r e n t g r i d f i l m such as s i l i c a may o f f e r a l t e r n a t i v e approaches f o r o b t a i n i n g u s e f u l e l e c t r o n micrographs.
Downloaded by COLUMBIA UNIV on February 26, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch031
A n a l y s i s o f L i g h t Elements A means o f p r o b i n g carbon and t h e l i g h t elements may be more e f f e c t i v e l y a c h i e v e d w i t h e l e c t r o n energy l o s s s p e c t r o s c o p y , EELS. With the i m p l e m e n t a t i o n o f the p a r a l l e l EELS d e t e c t o r ( 2 4 ) , t h e s e n s i t i v i t y o f t h i s t e c h n i q u e has i n c r e a s e d d r a m a t i c a l l y , maybe 1000 f o l d . S m a l l c l u s t e r s o f atoms may be d e t e c t a b l e ,