Characterization of the New Zeolite ECR-1 - ACS Publications

for ECR-1, a typical example of a micro- crystalline zeolite. The zeolite features a 12- ring single channel, formed by a regular alternation of conne...
0 downloads 0 Views 1MB Size
Chapter 28

Characterization of the New Zeolite ECR-1 1

D. E . W. Vaughan, M . E . Leonowicz , and K . G . Strohmaier

Downloaded via TUFTS UNIV on July 26, 2018 at 05:43:17 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Exxon Research and Engineering Company, Annandale, N J 08801

Results from diverse experimental methods were combined to arrive at structure proposals for ECR-1, a t y p i c a l example of a microcrystalline zeolite. The zeolite features a 12ring single channel, formed by a regular alternation of connected sheets of mordenite and mazzite. Crucial clues to the structure came from the HREM observation of a mazzite e p i t a x i a l overgrowth on an ECR-1 c r y s t a l . Electron and x-ray d i f f r a c t i o n , infra-red spectroscopy and synthesis phase relationships were essential additional data sources.

K n o w i n g t h e s t r u c t u r a l t o p o l o g y o f a new z e o l i t e a l l o w s one, by analogy w i t h t h e p r o p e r t i e s o f other e s t a b l i s h e d and w e l l r e s e a r c h e d z e o l i t e s , t o r e a d i l y assess potential applications f o r t h e new m a t e r i a l . However, r a r e l y do new s y n t h e t i c z e o l i t e s grow a s c r y s t a l s l a r g e enough t o be r a p i d l y a n a l y z e d b y s i n g l e c r y s t a l d i f f r a c t i o n methods. A l t h o u g h s i n g l e m i c r o - c r y s t a l a n a l y s e s ( 5 ) , i n d i c a t i n g a p o s s i b l e c l o s e r e l a t i o n s h i p between ECR-1 a n d m a z z i t e . However, t h e new z e o l i t e forms l o n g l a t h l i k e c r y s t a l s - a morphology v e r y s i m i l a r t o mordenite i n n a t u r a l and s y n t h e t i c o c c u r r e n c e s . Sorption

Properties

E x p e r i m e n t s t o o p t i m i z e t h e ECR-1 c r y s t a l l i z a t i o n r e s u l t e d i n a p p a r e n t l y p u r e ECR-1 on t h e b a s i s o f PXD a n d s c a n n i n g EM a n a l y s e s , b u t some s a m p l e s h a d v a r i a b l e hexane s o r p t i o n p r o p e r t i e s reminiscent o f large and small port mordenite, o f f r e t i t e o r g m e l i n i t e . V a r i a t i o n s i n hydrocarbon s o r p t i o n c a p a c i t i e s u s u a l l y i n d i c a t e blockage o f the channels i n these s t r u c t u r e s by f a u l t i n g , i n t e r g r o w t h s o f secondary c o e x i s t e n t s t r u c t u r e s (such as c h a b a z i t e i n g m e l i n i t e , o r e r i o n i t e i n o f f r e t i t e ) , d e t r i t a l g e l components o r r e s i d u a l c o k e f r o m t h e t e m p l a t e b u r n o f f p r o c e d u r e . I n optimum material, sorption i s o t h e r m s f o r l i n e a r h y d r o c a r b o n s were s i m i l a r t o t h o s e f o r o f f r e t i t e o r L (FIGURE 1) , h a v i n g a maximum n-hexane c a p a c i t y o f 8wt.%, a n d s i m i l a r b u t s l o w e r s o r p t i o n o f c y c l o - h e x a n e , i n d i c a t i n g a p o s s i b l e 10- o r 12r i n g channel system. T h e r m o g r a v i m e t r i c a n a l y s e s (FIGURE 2) showed t h a t t h e d i m e t h y l d i e t h y l ammonium t e m p l a t e was removed f r o m ECR-1 a t a b o u t 450°C a n d f r o m t h e ECR-4 f a u j a s i t e (11) s u p e r c a g e a t a b o u t 350°C. I n c o n t r a s t , TMA i s r e m o v e d f r o m f r o m t h e m a z z i t e 8 - r i n g g m e l i n i t e c a g e s a t a b o u t 560°C, a n d TEA(12) f r o m t h e L i n d e L 1 2 - r i n g c h a n n e l s a t 460°C, i n d i c a t i n g t h a t ECR-1 p r o b a b l y h a d a 1 0 - o r 1 2 - r i n g p o r e o p e n i n g . A f t e r p u r g i n g o f t h e t e m p l a t e f r o m optimum ECR-1 s a m p l e s , t h e z e o l i t e s o r b e d between 14 and 15% wt. o f w a t e r . Spectroscopic Analyses 2 9

Si-MASNMR s p e c t r a o f ECR-1 a r e c o m p l e x , a n d a t t e m p t s t o d e a l u m i n a t e ECR-1 were u n s u c c e s s f u l , making such i n f o r m a t i o n d i f f i c u l t t o i n t e r p r e t ( t h e ECR-1 m o d e l s t u r n o u t t o h a v e t e n d i f f e r e n t T atoms) . A t y p i c a l ECR-1 IR s p e c t r u m i s compared w i t h s p e c t r a f o r m a z z i t e a n d m o r d e n i t e i n FIGURE 3, a n d c o n t a i n s t w o s h a r p p e a k s a t 1210 a n d 1240 cm" , a r e g i o n p r e v i o u s l y a s s i g n e d t o 5 - r i n g e l e m e n t s ( 1 3 ) . M o r d e n i t e shows a peak a t 1220 c m " b u t m a z z i t e shows no a b s o r p t i o n i n t h i s r e g i o n , even t h o u g h t h e s t r u c t u r e c o n t a i n s 5 - r i n g s . ECR-1 a l s o h a s a 6 - r i n g peak a t 615 cm"" , i n t h e i d e n t i c a l p o s i t i o n t o mazzite, and mordenite has strong a b s o r p t i o n s a t 580 a n d 625 cm"" . These a n a l y s e s s t r e n g t h e n e d our o r i e n t a t i o n towards 5 - r i n g s t r u c t u r e s o f t h e mordenite t y p e . However, many p r o p o s e d t h e o r e t i c a l p o s s i b i l i t i e s i n t h i s s y s t e m (14, 15) f a i l e d t o g i v e t h e r e q u i r e d u n i t c e l l values. 1

1

1

1

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

306

CHARACTERIZATION AND CATALYST DEVELOPMENT

HEXANE ABSORPTION 12

n

"i— — —i— — —r~

r

1

1

1

1

1

o ECR-1

10

o o •

a> " O) c

o •



• Linde KL

CO O 6 O) | 4h

Temperature

-J

i

L 30

_L 60

I





90

20.8°C

I

L_

I

120

150

Pressure-Torr

FIGURE 1: Hexane i s o t h e r m s (21°C) f o r L i n d e KL and Na, H ECR-1 ( a f t e r b u r n i n g o u t t h e t e m p l a t e ) .

100

n — i — i — " — i — > — i —

1

— r

ECR-1

Linde Omega-Maz

0

100 200 300 400 500 600 700 800 900 1000 1100 ECR-4-FAU Temperature (°C) J

i

I

1

L_

FIGURE 2: T h e r m o g r a v i m e t r i c a n a l y s e s f o r ECR-1, L i n d e Omega ( m a z z i t e ) a n d ECR-4 ( f a u j a s i t e ) , r u n a t 10°C/min. i n a i r , u s i n g a DuPont 951/1090 TGA. The d i s t i n c t i v e h i g h temperature weight l o s s e s r e p r e s e n t t h e decomposition and d e s o r p t i o n o f t h e o r g a n i c "templates"

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

28.

VAUGHAN ET AL.

Characterization of the New Zeolite ECR-1

FIGURE 3: IR s p e c t r a f o r ECR-1, m o r d e n i t e and L i n d e Omega ( m a z z i t e ) , showing common framework v i b r a t i o n s , and a d i s t i n c t i v e 5 - r i n g d o u b l e t a t 1210 and 1240cm.-1 f o r ECR-1.

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

307

308

CHARACTERIZATION AND CATALYST DEVELOPMENT

X-ray and E l e c t r o n D i f f r a c t i o n A n a l y s i s Most i n i t i a l s y n t h e s e s o f ECR-1 were c o n t a m i n a t e d w i t h a n a l c i m e , a n d a c u r s o r y e v a l u a t i o n o f PXD p a t t e r n s showed a s i m i l a r i t y t o t h o s e o f m o r d e n i t e a n d m a z z i t e (FIGURE 4 ) , b u t w i t h d i s t i n c t i v e d i f f e r e n c e s . S c a n n i n g EM c l e a r l y showed o n l y one p h a s e i n a d d i t i o n t o a n a l c i m e , a n d l a t e r s a m p l e s were c l e a r l y monophasic. I n both cases t h e data r e s i s t e d i n d e x i n g by c o n v e n t i o n a l c o m p u t e r t e c h n i q u e s , p r o b a b l y due t o t h e combined e f f e c t o f d i s p a r a t e c e l l l e n g t h s a n d s y s t e m a t i c absences i n t h e p a t t e r n s ( v i d e i n f r a ) . The u n i t cell g e o m e t r y was e l u c i d a t e d w i t h s e l e c t e d area electron d i f f r a c t i o n experiments, although a complete d e s c r i p t i o n o f t h e l a t t i c e f r o m p a t t e r n s t i l t e d a b o u t a common r e c i p r o c a l l a t t i c e v e c t o r c o u l d not be o b t a i n e d because o f i n s t r u m e n t a l c o n s t r a i n t s . Approximate c e l l constants obtained from electron diffraction patterns o f t h ethree principal r e c i p r o c a l l a t t i c e p r o j e c t i o n s , shown i n FIGURE 5 were u s e d t o i n d e x t h e PXD p a t t e r n w i t h a p r i m i t i v e o r t h o r h o m b i c u n i t c e l l having least-squares r e f i n e d values o f a=7.310(4)A; b = 1 8 . 1 4 4 ( 6 ) A ; £=26.31(1)A. F u r t h e r m o r e , t h e hkO p r o j e c t i o n displayed a systematic e x t i n c t i o n c o n d i t i o n h+k=2n+l, i m p l y i n g an n - g l i d e p l a n e n o r m a l t o t h e 26A a x i s . Pmmn i s t h e only c e n t r o - s y m m e t r i c space group c o n s i s t e n t w i t h these d i f f r a c t i o n data. Unit c e l l constants play a c r i t i c a l role i n z e o l i t e s t r u c t u r e d e t e r m i n a t i o n w i t h model b u i l d i n g t e c h n i q u e s . D i f f e r e n t t h r e e d i m e n s i o n a l f r a m e w o r k s o f t e n c o n t a i n common s t r u c t u r a l s u b u n i t s , the presence o f which are i n d i c a t e d by "magic number" l a t t i c e c o n s t a n t s , s u c h as 5A, 7.5A a n d lOA. Such d i v e r s e s t r u c t u r e t y p e s a s o f f r e t i t e , m a z z i t e , L i n d e L, m o r d e n i t e a n d t h e h y p o t h e t i c a l omega s t r u c t u r e a l l c o n t a i n c o r r u g a t e d t h r e e t e t r a h e d r a c h a i n s , r e p e a t i n g e v e r y 7.5A, and i n t e r c o n n e c t e d t o form 8 - r i n g p o r e s normal t o t h e c h a i n . Thus, t h e p r e s e n c e o f a 7.5A u n i t c e l l c o n s t a n t i n an unknown s t r u c t u r e s u g g e s t s t h i s c a n d i d a t e c o n n e c t i v i t y . The l a s t f o u r s t r u c t u r e s l i s t e d above a l s o h a v e a n 18A c e l l c o n s t a n t , b u t long repeat distances a l l o w s o many p e r m u t a t i o n s i n t e t r a h e d r a l c o n n e c t i v i t y that s i m i l a r i t i e s a r e tenuous. However, some a s s u m p t i o n s must b e made a b o u t t h e t o p o l o g y o f c o m p l e x , unknown s t r u c t u r e s t o r e d u c e t h e d e g r e e s o f freedom t o manageable p r o p o r t i o n s i n model b u i l d i n g . S i m i l a r i t i e s i n u n i t c e l l v a l u e s and symmetries b e t w e e n known a n d unknown s t r u c t u r e s may i n d i c a t e a s t a r t i n g p o i n t . F o r ECR-1 t h e combined data d e s c r i b e d i n the p r e v i o u s s e c t i o n s i n d i c a t e d that mordenite, a s t r u c t u r e with a centered orthorhombic l a t t i c e o f d i m e n s i o n s 18A x 20A x 7. 5A, w o u l d b e a g o o d candidate s t r u c t u r e . Unfortunately, e f f o r t s t o interconnect 7.5A x 18A m o r d e n i t e s h e e t s w i t h i n t h e c o n s t r a i n t s o f Pmmn, w h i l s t s t r e t c h i n g t h e r e p e a t d i s t a n c e f r o m 20A t o 26A were u n s u c c e s s f u l . M o d e l s b a s e d on m o d i f i c a t i o n s o f o t h e r r e l a t e d frameworks were e q u a l l y d i s a p p o i n t i n g .

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

28.

VAUGHAN ETAL.

309

Characterization of the New Zeolite ECR-1

S870 S889 S871

WwAj

LA 111 ECR-1 MAZ.

0.0

4.0

8.0

12.0

18.0

20.0

24.0

28.0

32.0

38.0

40.0

Two-Theta (Degrees)

F I G U R E 4: A c o m p a r i s o n o f PXD p a t t e r n s ECR-1 a n d L i n d e Omega ( m a z z i t e ) .

f o r mordenite,

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

310

CHARACTERIZATION AND CATALYST DEVELOPMENT

F I G U R E 5: ED p a t t e r n s o f d i f f e r e n t ECR-1: a c , a b a n d c b .

projection planes i n

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

28.

VAUGHAN ETAL.

Characterization of the New Zeolite ECR-1

High R e s o l u t i o n L a t t i c e

311

Imaging

High resolution transmission electron microscopy (HRTEM) l a t t i c e i m a g i n g h a s r e c e n t l y been d e m o n s t r a t e d as one o f t h e most p o w e r f u l methods o f s o l v i n g unknown z e o l i t e s t r u c t u r e s ( 1 6 ) . The f a i l u r e t o s o l v e t h e ECR-1 s t r u c t u r e by a l t e r n a t e m e t h o d s c l e a r l y i n d i c a t e d t h a t HRTEM was t h e p r e f e r r e d approach, p a r t i c u l a r l y as t h e s o r p t i o n data i n d i c a t e d t h e presence o f l a r g e channels and t h e p o s s i b i l i t y o f s t r u c t u r a l f a u l t i n g . U n f o r t u n a t e l y , s a m p l e s t h i n enough f o r i m a g i n g a l o n g t h e l a t h a x i s , t h e d i r e c t i o n o f any 10- o r 12-ring channels i n t h e m a t e r i a l , r e q u i r e d ultramicrotomy o f embedded c r y s t a l l i t e s . M i c r o s c o p y e f f o r t s were a l s o hampered by t h e s e n s i t i v i t y o f t h e z e o l i t e s t o damage b y t h e 120KV beam o f t h e P h i l i p s 420ST TEM t h a t was a v a i l a b l e f o r t h e i m a g i n g e x p e r i m e n t s ; l o w d o s e t e c h n i q u e s were e m p l o y e d t o o b t a i n l a t t i c e images o f ECR-1 w i t h t h i s i n s t r u m e n t . L a t t i c e i m a g e s t a k e n n o r m a l t o t h e l a t h a x i s were s t r u c t u r a l l y uninformative, but r e g u l a r i t y i n the fringe p a t t e r n s s u g g e s t e d t h a t f a u l t i n g was n o t an i m p o r t a n t mechanism i n c h a n n e l b l o c k a g e ( FIGURE 6 ) . The d e f i c i e n c i e s i n s o r p t i o n p r o p e r t i e s t h e r e f o r e p r o b a b l y r e s u l t from a combination of the high aspect r a t i o of t h e l a t h c r y s t a l s ( i e . v e r y l o n g channels) and d e t r i t a l m a t e r i a l o c c l u d e d i n t h e c h a n n e l s . Images a l o n g t h e l a t h a x i s were much more r e v e a l i n g , s h o w i n g a r e g u l a r a r r a y o f c i r c u l a r c h a n n e l s . One s u c h image showed a t w i n mode o f ECR-1 t h a t p r o v i d e d k e y s t r u c t u r a l i n f o r m a t i o n . I n t h e m i c r o g r a p h shown i n FIGURE 7 a h e x a g o n a l p h a s e i s o b s e r v e d t o s y n t a c t i c a l l y o v e r g r o w on an ECR-1 l a t h , s h a r i n g a t w i n p l a n e d e f i n e d b y t h e 7 . 5A x 18A d i r e c t i o n s . D e t a i l e d examination of the contrast patterns i n t h i s r e g i o n o f t h e micrograph r e v e a l s t h a t t h e l a y e r used t o c o n s t r u c t t h e h e x a g o n a l p h a s e i s a l s o p r e s e n t i n t h e ECR-1 region of the c r y s t a l l i t e , but with a d i f f e r e n t layer i n t e r p o s e d t o e x t e n d t h e p e r i o d i c i t y t o 26A. T h i s s u g g e s t s t h a t ECR-1 a n d i t s h e x a g o n a l o v e r g r o w t h phase s h a r e a common s t r u c t u r a l layer. Although naive i n t e r p r e t a t i o n of l a t t i c e images c a n be m i s l e a d i n g b e c a u s e c o n t r a s t l e v e l s a r e s t r o n g l y a f f e c t e d by sample t h i c k n e s s and o r i e n t a t i o n and by microscope defocus ( w e l l i l l u s t r a t e d by t h e examples i n ( 1 7 ) ) ; s u c h a f f e c t s s h o u l d be m i n i m a l i n t h e s h o r t d i s t a n c e s over which t h i s overgrowth extends. Three w e l l known z e o l i t e s t r u c t u r e t y p e s - L i n d e L ( 1 8 ) , m a z z i t e (19) a n d t h e h y p o t h e t i c a l o m e g a - s t r u c t u r e ( 2 0 ) - have e s s e n t i a l l y i d e n t i c a l h e x a g o n a l l a t t i c e c o n s t a n t s w i t h a=18A and £=7 . 5A, b u t o n l y m a z z i t e h a s a 7. 5A x 18A l a y e r t h a t c o n t a i n s an n - g l i d e p l a n e o p e r a t o r ; t h e t h i c k n e s s o f t h i s l a y e r i s -15.5A. I f t h e h e x a g o n a l o v e r g r o w t h i s m a z z i t e , t h e e l e c t r o n micrograph interpretation i m p l i e s t h a t ECR-1 c o m p r i s e s m a z z i t e s h e e t s i n t e r c o n n e c t e d w i t h some o t h e r s u b u n i t t o f o r m t h e o b s e r v e d 2 6A r e p e a t d i s t a n c e . The

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

312

CHARACTERIZATION AND CATALYST DEVELOPMENT

F I G U R E 6: L a t t i c e i m a g e o f t h e c r y s t a l s i d e v i e w a l o n g t h e ECR-1 l a t h s ( O i l ) , showing a high degree o f r e g u l a r i t y , a n d no evidence o f d e f e c t s a s s o c i a t e d w i t h channel blockage.

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

28.

VAUGHAN ET AL.

Characterization of the New Zeolite ECR-1

313

FIGURE 7: L a t t i c e image o f t h e s e c t i o n n o r m a l t o t h e l a t h l e n g t h , showing c i r c u l a r f e a t u r e s e q u a t e d w i t h 12r i n g c h a n n e l s i n E C R - 1 ( a ) , a t r a n s i t i o n zone c o r r e s p o n d i n g t o a m a z z i t e t w i n p l a n e ( c ) , and a s u r f a c e o v e r g r o w t h o f m a z z i t e ( b ) showing t h e c h a r a c t e r i s t i c hexagonal arrangements o f c h a n n e l s .

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

314

CHARACTERIZATION AND CATALYST DEVELOPMENT

s t r u c t u r e model m a t e r i a l i z e d w i t h t h e r e c o g n i t i o n that m o r d e n i t e h a s a -10.5A t h i c k ( 26A - 15.5A ) , 7 . 5A x 18A sheet c o n t a i n i n g a n n _ - g l i d e p l a n e , a n d t h a t i t c a n be interposed with t h e mazzite sheet while simultaneously fulfilling t h e s y m m e t r y r e q u i r e m e n t s o f Pmmn a n d t h e c o n s t r a i n t s o f three d i m e n s i o n a l t e t r a h e d r a l network bonding; the i n t e r c o n n e c t i o n o f mazzite and mordenite sheets i s i l l u s t r a t e d i n FIGURE 8. Even w i t h i n t h e u n i t c e l l a n d symmetry c o n s t r a i n t s o f t h i s s y s t e m , t h e r e a r e two ways t o i n t e r c o n n e c t m a z z i t e a n d m o r d e n i t e s h e e t s i n t h r e e d i m e n s i o n s - one r e l a t e d t o t h e o t h e r b y a s h i f t o f aV2. D i f f e r e n t i a t i o n o f t h e two models w i l l be b e s t r e s o l v e d b y f u l l R i e t v e l d r e f i n e m e n t o f t h e observed data. This s i t u a t i o n o f several r e l a t e d structures h a v i n g t h e same t w o d i m e n s i o n a l p r o j e c t i o n s b u t d i f f e r e n t three dimensional connectivity i s common i n z e o l i t e s t r u c t u r a l c h e m i s t r y ( e g . m a z z i t e - omega; s e v e r a l members o f t h e ABC-6 f a m i l y o f s t r u c t u r e s ) . Structural

Modelling

The o b j e c t i v e o f s t r u c t u r e m o d e l l i n g i s t h e i n v e n t i o n of a z e o l i t e s t r u c t u r e having a t h e o r e t i c a l x-ray d i f f r a c t i o n p a t t e r n (21) t h a t matches t h e PXD s p e c t r u m f o r t h e unknown experimental m a t e r i a l . A short-cut i s t o use a p r e v i o u s l y g e n e r a t e d s o u r c e o f PXD p a t t e r n s f o r t h e many t h e o r e t i c a l s t r u c t u r e s a l r e a d y d e s c r i b e d i n t h e l i t e r a t u r e (eg. s e e 2 2 ) . A l t h o u g h s u c h a v a l u a b l e d a t a bank h a s b e e n p r o p o s e d b y Smith (23), i t i s n o t y e t funded o r a v a i l a b l e , except i n p a r t i a l f o r m w i t h i n a few i n d i v i d u a l companies a n d u n i v e r s i t y departments. To s u b s t a n t i a t e a p r o p o s e d model structure, the e x p e r i m e n t a l PXD p a t t e r n must compare f a v o r a b l y w i t h t h e computer g e n e r a t e d p a t t e r n f o r t h e model. R e g a r d l e s s o f t h e s o u r c e o f t h e model, a c c u r a t e atom p o s i t i o n s a r e r e q u i r e d i n order t o c a l c u l a t e accurate u n i t c e l l values, which a r e t h e s t a r t i n g p o i n t f o r g e n e r a t i n g t h e PXD p a t t e r n . I n t h e c a s e o f z e o l i t e f r a m e w o r k a t o m s , s u c h d a t a c a n be o b t a i n e d from distance l e a s t squares (DLS) r e f i n e m e n t o f t h e m o d e l s t r u c t u r e ( 2 4 ) . The c o m p a t i b i l i t y o f t h e u n i t c e l l v a l u e s o f t h e p r o p o s e d framework w i t h t h e o b s e r v e d e x p e r i m e n t a l v a l u e s , i s a good i n d i c a t o r o f model v a l i d i t y . W e i g h t e d mean r e s i d u a l v a l u e s l e s s t h a n 2% a r e c o n s i d e r e d i n d i c a t i o n s o f good a g r e e m e n t s w i t h u n i t c e l l a n d symmetry c o n s t r a i n t s ( 2 5 ) - a minimum r e q u i r e m e n t f o r a v a l i d s t r u c t u r e m o d e l . F i g u r e - o f m e r i t f o r ECR-1 models a r e l o w e r t h a n t h i s t h r e s h o l d . Once t h e r e f i n e d atom c o o r d i n a t e s are available, c a l c u l a t i o n o f t h e powder p a t t e r n i s s t r a i g h t - f o r e w o r d using POW-10 (21) . However, a p a t t e r n s o c a l c u l a t e d o n l y contains c o n t r i b u t i o n s f r o m framework atoms - u s u a l l y t h e S i 0 2 f o r m and does n o t i n c l u d e c o n t r i b u t i o n s f r o m c a t i o n s a n d w a t e r

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

28.

VAUGHAN ETAL.

Characterization of the New Zeolite ECR-1

315

FIGURE 8: M o d e l s h o w i n g t h e ECR-1 c o n n e c t i v i t y between 10.5A s h e e t s o f m o r d e n i t e (MOR) and 15. 5A s h e e t s o f mazz i t e (MAZ). The two p o s s i b l e s t r u c t u r e s a r e r e l a t e d by a s h i f t o f a/2 i n t h e marked p l a n e s n o r m a l t o t h e page.

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

316

CHARACTERIZATION AND CATALYST DEVELOPMENT

7-j

DEGREES

FIGURE 9: A comparison o f t h e experimental x-ray d i f f r a c t i o n p a t t e r n f o r c a l c i n e d ammonium E C R - 1 ( a ) , w i t h t h e c a l c u l a t e d p a t t e r n s f o r Model 1 (b) ( 5 - r i n g c o n n e c t i v i t y ) and Model 2 ( c ) ( 4 & 6 - r i n g c o n n e c t i v i t y ) i n t h e r a n g e 12° t o 14° 20.

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

28.

VAUGHAN ET AL.

Characterization of the New Zeolite ECR-1

317

m o l e c u l e s ( i n a n y c a s e t h e p o s i t i o n s o f t h e s e w o u l d n o t be known a t t h i s s t a g e o f t h e m o d e l l i n g ) . The a f f e c t o f t h e s e l a t t e r c o m p o n e n t s may s u b s t a n t i a l l y a l t e r t h e r e l a t i v e i n t e n s i t y v a l u e s o f the peaks i n t h e spectrum. I d e a l l y , t h e agreement between model and e x p e r i m e n t a l PXD p a t t e r n s c a n be o p t i m i z e d by u s i n g h i g h l y d e a l u m i n a t e d z e o l i t e samples t h a t are l a r g e l y c a t i o n and water f r e e . U n f o r t u n a t e l y , attempts t o h i g h l y d e a l u m i n a t e ECR-1 u s i n g c o n v e n t i o n a l t e c h n i q u e s were n o t s u c c e s s f u l a n d t h e b e s t a v a i l a b l e m a t e r i a l s were hydrogen e x c h a n g e d s a m p l e s . ( I n f a c t few l o w S i / A l r a t i o z e o l i t e s c a n be a s e f f e c t i v e l y d e a l u m i n a t e d a s c a n t h e open f a u j a s i t e s t r u c t u r e . ) A c o m p a r i s o n o f PXD p a t t e r n s f o r h y d r a t e d a n d d e h y d r a t e d ECR-1 show m a j o r i n t e n s i t y d i f f e r e n c e s , r e f l e c t i n g t h e p r o n o u n c e d e f f e c t o f w a t e r on t h e peak i n t e n s i t i e s . I n v i e w o f t h i s , o n e d o e s n o t e x p e c t good m a t c h i n g o f peak i n t e n s i t i e s , b u t t h e peak p o s i t i o n s do match i n t h e ECR-1 system. Despite these problems we h a v e sought t o d i f f e r e n t i a t e t h e t w o p o s s i b l e ECR-1 m o d e l s . DLS r e f i n e d c o o r d i n a t e s were u s e d t o c a l c u l a t e X - r a y powder p a t t e r n s f o r t h e t w o ECR-1 m o d e l s . T h e s e a r e v e r y s i m i l a r , b u t a d i f f e r e n c e i n t h e peak i n t e n s i t i e s i n t h e r e g i o n 12°-14° 20 i s a b a s i s f o r d i f f e r e n t i a t i n g t h e t w o s t r u c t u r e m o d e l s . As shown i n FIGURE 9, t h e e x p e r i m e n t a l p a t t e r n f o r a c a l c i n e d ammonium e x c h a n g e d ECR-1 i n t h i s r e g i o n matches t h e 4 - 6 - r i n g s h e e t i n t e r c o n n e c t i v i t y model p a t t e r n (Model 2) b e t t e r t h a n t h e 5 - r i n g c o n n e c t i v i t y model p a t t e r n (Model 1) a n d i s t h e b a s i s f o r f a v o r i n g M o d e l 2 a t t h i s t i m e (a m i x t u r e o f b o t h s t r u c t u r e s w o u l d p r o b a b l y g i v e an optimum m a t c h ) . O n l y a f u l l r e f i n e m e n t o f t h e s t r u c t u r e , i n c l u d i n g c o n t r i b u t i o n s from framework a n d non-framework atoms, w o u l d be e x p e c t e d t o g i v e good agreement i n b o t h l i n e p o s i t i o n a n d i n t e n s i t y d a t a , and d e f i n i t i v e l y r e s o l v e t h e s p e c i f i c ECR-1 model. Conclusions D e s p i t e many a d v a n c e s i n a n a l y t i c a l methods i n r e c e n t years, the s t r u c t u r a l c h a r a c t e r i z a t i o n o f materials that only o c c u r a s m i c r o c r y s t a l s l e s s t h a n a b o u t 30|l i n d i a m e t e r remains d i f f i c u l t and l a b o r i o u s . High r e s o l u t i o n e l e c t r o n m i c r o s c o p y i n t h e l a t t i c e i m a g i n g mode i s b y f a r t h e most powerful t o o l i n g i v i n g t h e d i r e c t evidence o f s t r u c t u r a l details essential f o rmodelling clues, a s h a s been demonstrated i n t h e cases o f recent z e o l i t e structure s o l u t i o n s o f t h e t a - l / Z S M - 2 3 (26) a n d b e t a ( 2 7 ) , i n a d d i t i o n t o ECR-1. X - r a y d i f f r a c t i o n methods p r o v i d e t h e e s s e n t i a l c o n f i r m a t o r y d a t a , and s o r p t i o n m o l e c u l a r p r o b i n g and v a r i o u s w e l l e s t a b l i s h e d s p e c t r o s c o p i c methods a r e u s e f u l a n c i l l a r y tools.

LITERATURE CITED 1. 2.

Eisenberger, P . M . , Newsam, J.M., Leonowicz, M . E . and Vaughan, D . E . W . , Nature, (1984), 309, 45-47. Baerlocher, C h . , Z e o l i t e s , (1986), 6, 325-333.

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

318 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.

CHARACTERIZATION AND CATALYST DEVELOPMENT

McCusker,L.B.,Jour.Applied Crystallogr.,(1988),21, 305. Thomas,J.M. and Vaughan,D.E.W., J.Phys.Chem.Solids, in press. Rudolf, P.R., Saldarriaga-Molina, C. and Clearfield, A . , J.Phys.Chem., (1986), 90, 6122-6125. Davis, M . E . , Saldarriaga, C., Montes, C., Garces, J . and Crowder, C., Nature, (1988), 331, 698-9. Leonowicz, M.E. and Vaughan, D.E.W., Nature, (1987), 329, 819- 821. Vaughan, D.E.W. and Strohmaier, K . G . , Proc.7th.Intl. Zeolite. Conf. (Tokyo), Ed. Murakami,Y. et a l , Kodansha/Elsevier Press(Tokyo), (1986), 207-214. Vaughan, D.E.W. and Strohmaier, K.G.,Amer.Chem. Soc. Symp.Ser., Ed.Occelli,M. and Robson,H.E.,(1988),in press. Gottardi, G. and G a l l i , E . , "Natural Zeolites", Springer- Verlag(Berlin), (1985), 163. Vaughan, D.E.W., US Patent 4,714,601, (1987). Vaughan, D.E.W., US Patent 4,554,146, (1985). Jacobs, P . A . , Beyer, H.K. and Valyon, J., Zeolites, (1981), 1, 161-168. Kerr, I . S . , Nature, (1963),197, 1194-5. Sherman, J . D . and Bennett, J . M . , Proc.3rd.Intl.Zeolite Conf., Adv. Chem. Ser. 121,Ed. W.M.Maier and J.B.Uytterhoeven, (1973), 52-65. Thomas, J . M . , Millward,G.R., Ramdas, S. and Audier, M . , Amer. Chem. Soc. Symp.Ser. #218, Ed.G.Stuckey, (1983) , 181-198. Millward, R.M., Ramdas,S. and Thomas, J . M . , Proc.Roy.Soc., (1985), A399, 57-71. Barrer, R.M. and V i l l i g e r , H, Z e i t . K r i s t a l l o g r . , (1969), 121, 352-370. G a l l i , E., Cryst.Struct.Comm., (1974), 3, 339-344. Barrer, R.M. and V i l l i g e r , H . , J.Chem.Soc.Chem.Comm., (1969), 659-660. Smith, D.K., Nichols, M.C. and Zolensky, M.E.,"POWD 10...", Dept. Geosciences, Pennsylvania State Univ., Pa., USA, (1983). Smith, J . V . , Chem.Rev., (1988), 88, 149-182 . Smith, J . V . , personal communication. Baerlocher, C h . , Hepp, A. and Meier, W.M., Monogr."DLS76..", Dept. Kristallogr. & Petrogr., ETH, Zurich, Switzerland. Meier, W.M., Proc.3rd.Intl.Zeolite Conf.,Amer.Chem.Soc. Adv.Chem.Ser. 121, Ed. W.M.Maier and J.B.Uytterhoeven, (1973), 39-51. B a r r i , S . A . I . , Smith,G.W., White,D. and Young,D., Nature, (1984),312, 533. Treacy,M.M.J, and Newsam,J.M., Nature, (1988), 332, 249-251.

Received July 1, 1989

Bradley et al.; Characterization and Catalyst Development ACS Symposium Series; American Chemical Society: Washington, DC, 1989.