Charge Transfer Dynamics between Photoexcited ... - ACS Publications

Andrew D. La Croix, Andrew O'Hara, Kemar R. Reid, Noah J. Orfield, Sokrates T. Pantelides, Sandra J. Rosenthal, and Janet E. Macdonald . Design of a H...
0 downloads 0 Views 1MB Size
Subscriber access provided by UNIV OF MICHIGAN

Communication

Charge Transfer Dynamics Between Photoexcited CdS Nanorods and Mononuclear Ru Water-Oxidation Catalysts Huan-Wei Tseng, Molly B. Wilker, Niels H. Damrauer, and Gordana Dukovic J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/ja400178g • Publication Date (Web): 13 Feb 2013 Downloaded from http://pubs.acs.org on February 17, 2013

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 5

Charge Transfer Dynamics Between Photoexcited CdS Nanorods and Mononuclear Ru Water-Oxidation Catalysts Huan-­‐Wei  Tseng,‡  Molly  B.  Wilker,‡  Niels  H.  Damrauer,*  and  Gordana  Dukovic*   Department  of  Chemistry  and  Biochemistry,  University  of  Colorado  Boulder,  Boulder,  Colorado  80309,  USA     Supporting  Information  Placeholder ABSTRACT:   We   describe   the   charge   transfer   interactions   between   photoexcited   CdS   nanorods   and   a   mononuclear   + water   oxidation   catalyst   derived   from   the   [Ru(bpy)(tpy)Cl]   parent   structure.   Upon   excitation,   hole   transfer   from   CdS   2+ 3+ oxidizes  the  catalyst  (Ru →Ru )  on  a  100  ps  –  1  ns  timescale.   This   is   followed   by   10   –   100   ns   electron   transfer   (ET)   that   3+   reduces  the  Ru center.  The  relatively  slow  ET  dynamics  may   provide  opportunities  for  accumulation  of  the  multiple  holes   at  the  catalyst,  which  is  necessary  for  water  oxidation.      

Using   solar   photons   to   drive   fuel-­‐generating   reactions,   such  as  splitting  water  into  H2  and  O2,  will  allow  for  storage   1 of   solar   energy   necessary   for   on-­‐demand   availability.   In-­‐ spired  by  natural  photosynthesis,  our  interest  is  in  exploring   artificial  systems  that  feature  light  absorbers  directly  coupled   2 to  redox  catalysts.  Colloidal  semiconductor  nanocrystals  are   attractive  light  harvesters  because  they  have  tunable  absorp-­‐ 5 7 -­‐1 -­‐1 tion   spectra   and   high   molar   absorptivities   (10 -­‐10   M cm ).   + Their  coupling  with  H  reduction  catalysts  has  been  recently   2,3 4,5 reviewed   and   new   studies   continue   to   be   reported.   The   resulting   hybrid   structures   are   capable   of   light-­‐driven   H2   generation  with  the  use  of  sacrificial  electron  donors.  Water   oxidation,   the   other   half   reaction   of   water   splitting,   is   a   mechanistically  complicated  process  involving  the  transfer  of   multiple  electrons  and  protons  and  the  formation  of  an  O-­‐O   6 bond.  Over  the  last  three  decades,  there  has  been  significant   progress  in  the  discovery  of  ruthenium  complexes  that  cata-­‐ 7-­‐13 lyze   water   oxidation.   Consistent   with   the   complexity   of   this   reaction,   the   molecular   catalysts   operate   at   turnover   frequencies   (TOFs)   that   are   considerably   lower   than   TOFs   + 2,7 for   H   reduction.   For   this   reason,   successful   delivery   of   photoexcited   holes   to   the   catalyst   is   particularly   critical.     Understanding  the  competition  between  charge  transfer  and   photophysical   carrier   deactivation   pathways,   such   as   elec-­‐ tron-­‐hole  recombination,  is  of  paramount  importance  for  the   design  of  nanocrystal-­‐based  water-­‐splitting  systems.     Herein,  we  describe  the  charge  transfer  dynamics  between   photoexcited   CdS   nanorods   (NRs)   and   a   mononuclear   water-­‐ oxidation   catalyst   [Ru(deeb)(tpy)Cl](PF6)   (deeb   =   diethyl   2,2’-­‐bipyridine-­‐4,4’-­‐dicarboxylate,  tpy  =  2,2’:6’,2”-­‐terpyridine)   in   methanol.   We   refer   to   the   catalyst   as   complex   1   (Fig   1b).   The   interaction   between   the   two   species   results   in   concen-­‐ tration-­‐dependent  quenching  of  CdS  NR  photoluminescence  

(PL)   and   has   a   marked   impact   on   CdS   excited   state   dynam-­‐ ics,   as   measured   by   transient   absorption   (TA)   spectroscopy.     We   find   that   there   are   two   distinct   charge   transfer   steps   in   the   hybrid   nanocrystal-­‐catalyst   system:   hole   transfer   (HT)   followed  by  electron  transfer  (ET),  both  from  the  photoexcit-­‐ ed   CdS   NR   to   complex   1,   with   the   overall   result   being   elec-­‐ tron-­‐hole  recombination  at  the  metal  center.  The  HT  occurs   on   the   timescale   of   100   ps   –   1   ns,   while   the   subsequent   ET   occurs   in   10-­‐100   ns.   The  relatively  slow  rate  of   recombination   exposes   opportunities   for   diverting   the   photoexcited   CdS   electrons  via  auxiliary  electron  transfer  processes.    

6-8

90

6'8
H!>

>"#B5C

%#$

DE .(#5 +,-.+/0 +,-.+/0+1+!+5"6"&7

!"#$ $

"$

"$

&

"$

'

HIBE+JED;K+5C37

"$

(

"$

%

"$

@9 )

#$%"&'

1RUPDOL]HG¨$



1RUPDOL]HG¨$ +

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

!$#%

1. h+-transfer

,ABCDEF+!

!"#$

$

"$

&

'

( % )*

& "$$ HIBE+JED;K+5C37

'

( % )*

"$$$

Figure  3.  (a)  TA  decay  kinetics  at  470  nm  for  CdS  NRs  in  the  presence  and  absence  of  1  (λpump  =  400  nm).  The  results  point  to   electron  transfer  that  has  an  onset  that  is  delayed  by  250  ps.  (b)  Proposed  charge  transfer  steps  between  photoexcited  CdS  and  1.   (c)  TA  decay  kinetics  at  470  nm  for  CdS  NRs  alone,  and  in  the  presence  of:  complex  1,  the  hole  scavenger  ascorbate  (Asc),  the   electron  acceptor  methylene  blue  (MB),  and  both  1  and  Asc.  As  described  in  the  text,  these  kinetic  traces  are  consistent  with  the   3 charge  transfer  steps  shown  in  (b).  

ACS Paragon Plus Environment

Journal of the American Chemical Society 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

which   are   typically