8 Oxidation Reaction Engineering
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
A.
CAPPELLI
Montedison Fibre R&D, Milan, and Istituto di Chimica Industriale, Politecnico di Milano, Italy
This review
presents
of oxidation
a selection
reactions.
The
of work on various
papers
reviewed
into four sections: (a) vapor phase oxidation air, (b) liquid oxidation
phase oxidation
with
hydroperoxides,
of homogeneous (and
with oxygen,
catalytic
most important)
and
section
tion When
is paid
to
the data
chemical
automotive
munication
exhaust
engineering,
between
researchers
from
or
phase
heterogeneization
are examined
are evaluated
reaction
with oxygen
The papers of the first
process type and certain basic aspects. about the state of the art of oxidation
divided
(c) liquid
(d)
processes.
aspects
are
according
Information
reactors.
Special
treatment the
is
point
it is concluded
to given atten-
processes. of view that
and process engineers
of
comneeds
improvement.
' " p h e f o l l o w i n g r e v i e w is a r e p r e s e n t a t i v e selection of w o r k o n v a r i o u s aspects
of o x i d a t i o n reactions p u b l i s h e d i n 1972, 1973, a n d 1974.
T h r e e g e n e r a l sections a r e discussed w h i c h c o r r e s p o n d to a n a t u r a l d i v i s i o n o f t h e subject matter. T h e s e a r e : ( a ) v a p o r phase o x i d a t i o n w i t h o x y g e n o r a i r , ( b ) l i q u i d phase o x i d a t i o n w i t h o x y g e n , a n d ( c ) l i q u i d phase oxidation w i t h hydroperoxides.
A f o u r t h section, o n t h e hetero-
g e n e i z a t i o n of h o m o g e n e o u s processes, i n w h i c h t h e p r e p a r a t i o n of s u p p o r t e d h o m o g e n e o u s catalysts is treated, is discussed separately.
Special
emphasis is g i v e n to a u t o m o t i v e exhaust. Vapor Phase Oxidation
with Oxygen or Air
T h e d i s c u s s i o n focuses o n heterogeneous c a t a l y t i c processes, w h i c h are b y f a r t h e most i m p o r t a n t ones. P a p e r s a r e r e v i e w e d a c c o r d i n g to different aspects w h i c h are o f p a r t i c u l a r interest i n this area. F i r s t c o n s i d e r e d are t h e types of processes, w h i c h i n c l u d e t h e o x i d a t i o n of o r g a n i c 212
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8.
and
Oxidation
CAPPELLI
Reaction
some inorganic molecules.
and/or active
p h y s i c a l aspects centers,
Engineering Secondly,
213
some of the b a s i c
chemical
of o x i d a t i o n , s u c h as m e c h a n i s m s , n a t u r e
r e a c t i o n patterns, effects of
operating
conditions
catalyst m o d i f i c a t i o n s , a n d role of d i f f u s i o n are c o n s i d e r e d .
of and
F i n a l l y , some
i n f o r m a t i o n a b o u t the present state of the art i n the field of o x i d a t i o n reactors, b o t h o n a l a b o r a t o r y a n d i n d u s t r i a l scale, is g i v e n . I n the papers e x a m i n e d the o x i d a t i o n of olefins,
Types of Processes.
aromatics, N H , S 0 , a n d C O have been studied.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
3
2
W i t h r e g a r d to
the
o x i d a t i o n of olefins, the reactions s t u d i e d are l i s t e d i n T a b l e I , a p p r o x i m a t e l y a c c o r d i n g to t h e i r degree of o x i d a t i o n . DEHYDRODIMERIZATION.
T r i m m et al. ( 1 ) a t t e m p t to i d e n t i f y a c a t a -
lyst for t h e p o l y m e r i z a t i o n a n d s u b s e q u e n t c y c l i z a t i o n of olefins u n d e r o x i d a t i v e c o n d i t i o n s , u s i n g the o x i d a t i o n of p r o p e n e
to b e n z e n e as a n
i l l u s t r a t i o n . A s u r v e y of possible c o m p o u n d s s h o w e d t h a t i n d i u m o x i d e c o u l d b e a s u i t a b l e catalyst.
T h e o x i d e w a s tested e x p e r i m e n t a l l y a n d
f o u n d to b e a selective catalyst for t h e o x i d a t i o n of p r o p e n e to b e n z e n e . 1,5-Hexadiene and
acrolein were produced
i n the e a r l y stages of
r e a c t i o n , a n d the d i e n e o x i d i z e d f u r t h e r to p r o d u c e benzene.
the
T h e kinetics
of the r e a c t i o n w e r e e x a m i n e d i n some d e t a i l , a n d a tentative m e c h a n i s m was advanced. T h e note b y P a r e r a et al.
( 2 ) reports the analogous
o x i d a t i o n of
i s o b u t e n e to 2 , 5 - d i m e t h y l - l , 5 - h e x a d i e n e a n d p - x y l e n e over i n d i u m oxide. T h e kinetics were examined, and a mechanism was proposed. OXIDATIVE DEHYDROGENATION.
Sterrett et al. ( 3 )
s t u d y of the o x i d a t i v e d e h y d r o g e n a t i o n z i n c c h r o m i u m — i r o n catalyst.
present a k i n e t i c
of b u t e n e to b u t a d i e n e over
a
T h e d a t a o n w h i c h t h e k i n e t i c m o d e l is
b a s e d w e r e o b t a i n e d u s i n g a set of s t a t i s t i c a l l y d e s i g n e d
experiments.
S e l e c t i v i t y to b u t a d i e n e r e m a i n e d h i g h t h r o u g h o u t the r u n s . T h e f o r m a t i o n of b u t a d i e n e w a s fit to a s e m i e m p i r i c a l rate expression b y a n o n - l i n e a r , least-square, c u r v e - f i t t i n g t e c h n i q u e . In
the
study reported
phosphorus-tin
oxide
by
Pitzer
catalyst, a c t i v e
methods
(48)
a n d selective
of for
activating a the
d e h y d r o g e n a t i o n of butènes to b u t a d i e n e , w e r e i n v e s t i g a t e d .
oxidative Objectives
of a c t i v a t i o n i n c l u d e d s e v e r a l properties of the catalyst, a n d the a u t h o r a t t e m p t e d to a c c o m p l i s h these objectives b y h e a t i n g the finished catalyst i n steam, a i r , a n d n i t r o g e n . C a t a l y t i c a c t i v i t y w a s i m p r o v e d b y s t e a m i n g at e l e v a t e d
temperatures w h i l e h e a t i n g i n a i r a n d n i t r o g e n gave
improvement.
no
O n l y m a c r o p o r o s i t y s e e m e d to a c c o u n t for the increase i n
catalytic activity, and steaming
appeared
to
affect
the
bulk
of
the
catalyst i n s t e a d of a l t e r i n g o n l y the surface of t h e catalyst p a r t i c l e s . A L L Y L I C OXIDATION.
F i v e papers describe experiments c a r r i e d out
over m o l y b d a t e catalysts. I n the s t u d y b y W r a g g et al. (5)
the ammooxi-
d a t i o n of p r o p e n e a n d of a c r o l e i n w a s s t u d i e d over t w o
catalysts—one
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
214
CHEMICAL
REACTION ENGINEERING REVIEWS
T a b l e I.
V a p o r Phase
Catalyst
Process
i n d i u m oxide
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
z i n c - c h r o m i u m oxide p h o s p h o r u s - t i n oxide molybdate tungstate u r a n i u m - a n t i m o n i u m oxide m e r c u r i c chloride
i A l l y l i c oxidation
silver molybdate ( P d doped) v a n a d i u m pentoxide molybden-alumina O x i d a t i v e C - C cleavage
supported i r i d i u m
Complete combustion
p l a t i n u m - a l u m i n a spinels chromite
s i m i l a r to c o m m e r c i a l b i s m u t h m o l y b d a t e
catalysts a n d the other
con-
s i s t i n g of the k o e c h l i n i t e phase B i 0 - M o 0 . T h e rates, r e a c t i o n orders, 2
3
3
A r r h e n i u s parameters, a n d selectivities of the a m m o x i d a t i o n s w e r e s t u d i e d at a fixed t e m p e r a t u r e , a n d t e n t a t i v e m e c h a n i s m s h a v e b e e n M a n n a n d K o (6)
advanced.
r e p o r t the effect of several v a r i a b l e s o n c o n v e r s i o n a n d
y i e l d of the o x i d a t i o n of 2 - m e t h y l p r o p e n e to m e t h a c r o l e i n over a b i s m u t h molybdate mechanism.
catalyst.
A rate e q u a t i o n has b e e n e v a l u a t e d b a s e d
P a s q u o n et al.
on
a
investigated the catalytic behavior
of
some m o l y b d a t e catalysts i n the o x i d a t i o n of 1-butene to b u t a d i e n e
or
to m a l e i c a n h y d r i d e .
is
The
(7)
c a t a l y t i c a c t i o n of b i s m u t h m o l y b d a t e s
discussed b y S c h u i t ( 8 ) i n its c o n n e c t i o n w i t h the s o l i d s t r u c t u r e , m e t h o d of
p r e p a r a t i o n , kinetics of
reactants a n d p r o d u c t s .
the reaction catalyzed, and adsorption
the a m m o x i d a t i o n of p r o p e n e a n d a m m o n i a are p r o p o s e d . Keulks (9)
of
M e c h a n i s m s for the o x i d a t i o n of olefins a n d for Daniel and
r e p o r t p r e l i m i n a r y results of a n i n v e s t i g a t i o n o n a catalyst
containing B i , M o , and Fe.
T h e authors h a v e f o u n d that the a c t i v i t y
a n d s e l e c t i v i t y of this catalyst are c o m p a r a b l e w i t h b i s m u t h for the o x i d a t i o n of p r o p e n e to a c r o l e i n . V i l l a et al. (10)
molybdate
report the results
of a n i n v e s t i g a t i o n o n t h e c a t a l y t i c b e h a v i o r of B i tungstates for o x i d a t i o n a n d a m m o x i d a t i o n of olefins ( p r o p e n e a n d 1-butene ). i n g to this s t u d y B i W 0 2
6
is the o n l y active a n d selective c o m p o u n d .
l a b o r a t o r y s t u d y b y G r a s s e l l i a n d S u r e s h (4)
the
AccordIn a
a u r a n i u m - a n t i m o n y oxide
catalyst, k n o w n to be p a r t i c u l a r l y efficient for s y n t h e s i z i n g a c r y l o n i t r i l e , w a s s t u d i e d to d e v e l o p a n u n d e r s t a n d i n g of s t r u c t u r a l features r e l a t e d to
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8.
Oxidation
CAPPELLi
Reaction
Engineering
215
O x i d a t i o n of Olefins Examples propene —> benzene
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
3 48
butene —> butadiene
5, 6, 7,8, 9 10 4 16
propene —» a c r o l e i n
11,29, 30, 31 7,12,13 15
ethylene —» ethylene oxide butene —» m a l e i c a n h y d r i d e ethylene - » acetaldehyde propene -> acetone
25
propene - »
17,18 19
hydrocarbons and C O - » C 0
butene - » butadiene propene —» a c r y l o n i t r i l e , a c r y l i c a c i d
acetaldehyde 2
c a t a l y t i c a c t i v i t y . A m e c h a n i s m for the o x i d a t i o n a n d a m m o x i d a t i o n of p r o p e n e is p r o p o s e d i n v o l v i n g a l l y l i c i n t e r m e d i a t e s .
A r a i et
presents a k i n e t i c s t u d y of the o x i d a t i o n of isobutene to
ah
(16)
methacrolein
over m e r c u r i c c h l o r i d e s u p p o r t e d o n a c t i v e c h a r c o a l . T h e k i n e t i c s of the o x i d a t i o n w e r e d e t e r m i n e d , a n d r e a c t i o n rates of other olefins w e r e also measured. O X Y G E N I N S E R T I O N . M e t c a l f et al. (11) c a t a l y z e d ethylene o x i d a t i o n .
s t u d i e d the k i n e t i c s of s i l v e r -
T h e behavior
i n v e s t i g a t e d , a n d the k i n e t i c d a t a w e r e
fitted
of v a r i o u s i n h i b i t o r s w a s to L a n g m u i r - H i n s e l w o o d
rate expressions, a l t h o u g h some inconsistencies w e r e n o t e d . s k y et al. ( 2 9 ) , C a r b e r r y et al. (30)
a n d F o r z a t t i et al. (31)
Marcinkowalso r e p o r t
studies o n ethylene o x i d a t i o n o v e r A g s u p p o r t e d catalysts. T r i f i r o et al. (12)
present a s t u d y of the o x i d a t i o n of 1-butene to
m a l e i c a n h y d r i d e over a M n - M o 0
6
b a s e d catalyst. A m o n o c e n t e r o x i d a -
t i o n m e c h a n i s m , a c c o u n t i n g for t h e f o r m a t i o n of C O , C 0 , a n d m a l e i c 2
a n h y d r i d e , is p r o p o s e d . (7)
I n the a b o v e m e n t i o n e d p a p e r b y P a s q u o n et al.
o n the c a t a l y t i c b e h a v i o r of some m o l y b d a t e
catalysts a tentative
m e c h a n i s m of f o r m a t i o n of m a l e i c a n h y d r i d e f r o m 1-butene o v e r F e M 0 O 4 is a d v a n c e d .
A k i m o t o et al. (13)
r e p o r t t h e results of a n i n v e s t i -
g a t i o n o n s u p p o r t e d m o l y b d e n a catalysts for t h e o x i d a t i o n of b u t a d i e n e . E v n i n et al. (14)
d e s c r i b e w o r k o n the d e v e l o p m e n t of a heterogeneous
c a t a l y t i c system, consisting of p a l l a d i u m - d o p e d v a n a d i u m p e n t o x i d e a n d a t h i r d c o m p o n e n t , w h i c h is c a p a b l e of o x i d i z i n g ethylene d i r e c t l y to acetaldehyde
w i t h h i g h specificity, a c t i v i t y , a n d s t a b i l i t y .
T h e results
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
216
CHEMICAL
REACTION ENGINEERING REVIEWS
of a n i n v e s t i g a t i o n o n the c a t a l y t i c a c t i v i t y of a M0O3 · A 1 0 2
system for
3
the o x i d a t i o n of p r o p e n e are r e p o r t e d b y G i o r d a n o et al. (15),
and a
tentative m e c h a n i s m is a d v a n c e d . O X I D A T I V E C - C C L E A V A G E . C a n t a n d H a l l ( 2 5 ) c o m p a r e d the o x i d a t i o n reactions of
ethylene, p r o p y l e n e ,
1-butene, cis-2-butene,
trans-2-
b u t e n e , isobutene, a n d t h e t w o 2-pentenes over s u p p o r t e d I r catalysts. T h e most i m p o r t a n t o x i d a t i o n p r o d u c t s w e r e acetic a c i d f r o m ethylene, Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
propene,
the 2-butenes,
a n d the 2-pentenes,
and propionic acid and
acetone f r o m 1-butene a n d isobutene, r e s p e c t i v e l y . P o s s i b l e m e c h a n i s m s are discussed. COMPLETE COMBUSTION. of
carbon
monoxide
catalyst w e r e d e t e r m i n e d . and
I n a s t u d y b y V o l t z et al. (17)
and propene
oxidation on
the k i n e t i c s
a platinum-alumina
C o m p l e x k i n e t i c equations w e r e f o r m u l a t e d ,
some rate constants a n d a c t i v a t i o n energies w e r e c a l c u l a t e d .
o x i d a t i o n k i n e t i c s w e r e u s e d to d e s c r i b e the p e r f o r m a n c e c a t a l y t i c converters i n a u t o m o t i v e emission c o n t r o l systems.
The
of p l a t i n u m The oxida-
t i o n of p r o p e n e over C r ( I I I ) a n d F e ( I I I ) spinels has b e e n i n v e s t i g a t e d b y Z a n d e r i g h i et al.
A non-selective o x i d a t i o n to C 0
(18).
s e r v e d , a n d a tentative m e c h a n i s m was a d v a n c e d . (19)
f o u r types of « - C r 0 2
3
2
was
ob-
I n a study b y Yao
m i c r o c r y s t a l s w e r e p r e p a r e d a n d u s e d as
catalysts for the o x i d a t i o n of C H , C H , C H , C H , a n d C O . R e a c t i o n 2
4
3
6
2
6
3
8
rates w e r e m e a s u r e d , a n d some m e c h a n i s m s w e r e a d v a n c e d . Chemical Kinetic and Physical Aspects. Some of the r e v i e w e d papers are discussed a c c o r d i n g to the f o l l o w i n g aspects: proposed mechanisms nature of active sites r e a c t i o n patterns effects of o p e r a t i n g c o n d i t i o n s effect of catalyst modifications a n d a d d i t i o n of p r o m o t e r s or i n h i b i t o r s role of diffusion PROPOSED M E C H A N I S M S .
K i n e t i c s a n d m e c h a n i s m of g a s - s o l i d c a t a -
l y t i c oxidations are g e n e r a l l y e x p l a i n e d o n the basis of r e d o x or L a n g m u i r - H i n s h e l w o o d m e c h a n i s m s or e v e n t u a l l y of a t h i r d m e c h a n i s m , w h i c h can
b e c o n s i d e r e d as c o m b i n a t i o n of the other t w o .
The mechanism
a c c o r d i n g to w h i c h the substance to b e o x i d i z e d reduces t h e catalyst, w h i c h is r e o x i d i z e d b y o x y g e n f r o m the f e e d , is k n o w n as r e d o x m e c h a n i s m . T h i s c a n be a s s u m e d to take p l a c e i n t w o stages: C - o x + molecule —» C - r e d + o x i d i z e d molecule C-red + 0
2
-> C - o x
(2)
T h i s m e c h a n i s m has b e e n tested either d i r e c t l y o n the basis of o b t a i n e d b y p u l s e m i c r o r e a c t o r s (4, 12, 20, 24),
(1)
data
i n w h i c h stage 1 a n d
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8.
CAppELLi
Oxidation
Reaction
stage 2 w e r e separated, or b y
217
Engineering
fitting
the e x p e r i m e n t a l d a t a f r o m f l o w
reactors to k i n e t i c equations d e r i v e d f r o m the m e c h a n i s m (1, 21, 22,
23).
A c c o r d i n g to L a n g m u i r - H i n s h e l w o o d m e c h a n i s m the substance to
be
o x i d i z e d a n d o x y g e n r e a c t together i n t h e a d s o r b e d state. I n this case also, either o x i d a t i o n runs d o n e i n p u l s e m i c r o r e a c t o r s w e r e u s e d to test t h e p r o p o s e d m e c h a n i s m (12,
18, 26),
or the constants of the k i n e t i c
equations b a s e d o n this m e c h a n i s m w e r e e s t i m a t e d b y the least-squares Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
method
(1,6,11).
F i n a l l y the t h i r d m e c h a n i s m , w h i c h has b e e n tested i n t h e o x i d a t i o n of butènes to m a l e i c a n h y d r i d e ( 3, 12, 26 ) c a n b e a s s u m e d to take p l a c e i n three stages, w h i c h m a y b e w r i t t e n as: C - o x - f butènes C-red + 0 C-red — 0
2
C - r e d - j - butadiene + H 0
(1)
2
2
-> C - r e d -
0
2
-> C - o x
(2)
+ butadiene -> m a l e i c a n h y d r i d e - f C O , C 0
(3)
2
T a b l e s I I , I I I , a n d I V s h o w some reactions for w h i c h the v a r i o u s m e c h a nisms w e r e tested.
Table II.
Redox Mechanism
Process
Reference
O x i d a t i o n of butene to butadiene over v a r i o u s oxide c a t a l y s t s O x i d a t i o n of propene to a c r o l e i n over B i - M o oxide c a t a l y s t s O x i d a t i o n of propene to a c r y l o n i t r i l e over U - S b oxide c a t a l y s t s O x i d a t i o n of anthracene to a n t h r a q u i n o n e over C o - M o oxide catalyst O x i d a t i o n of anthracene to a n t h r a q u i n o n e over V oxide c a t a l y s t O x i d a t i o n of m e t h a n o l to f o r m a l d e h y d e o v e r M o 0 — F e ( M o 0 ) catalyst O x i d a t i o n of propene to benzene over I n oxide c a t a l y s t O x i d a t i o n of butènes to m a l e i c a n h y d r i d e over M n M o 0 catalyst 3
4
20 21 4 22 23
2
24 1
3
4
Table III.
12
Langmuir-Hinshelwood Mechanism
Process O x i d a t i o n of 2 - m e t h y l p r o p e n e to m e t h a c r o l e i n over B i - m o l y b date c a t a l y s t O x i d a t i o n of ethylene to ethylene oxide over A g c a t a l y s t O x i d a t i o n of propene to C 0 over C r ( I I I ) a n d F e ( I I I ) spinels O x i d a t i o n of propene to benzene over I n oxide c a t a l y s t O x i d a t i o n of butènes to m a l e i c a n h y d r i d e over M n M o 0 catalyst
Reference
2
6 11 18 1
4
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
12,26
218
CHEMICAL
Table IV.
REACTION ENGINEERING REVIEWS
Mixed Mechanism Reference
Process O x i d a t i o n of butènes to m a l e i c a n h y d r i d e over M n M o 0 - b a s e d catalyst O x i d a t i o n of butene to b u t a d i e n e over ferrite c a t a l y s t 4
N A T U R E O F A C T I V E SITES.
26 3
H y p o t h e s e s r e l a t i v e to the c h e m i c a l n a t u r e
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
of a c t i v e sites h a v e b e e n a d v a n c e d . I n the case of ethylene o x i d a t i o n over A g catalyst, m a n y authors agree that a d s o r b e d forms of p e r o x i d i c m o l e c u lar o x y g e n are r e s p o n s i b l e for t h e f o r m a t i o n of e t h y l e n e o x i d e (27, C0
2
f o r m a t i o n has b e e n a t t r i b u t e d to a t o m i c forms of a d s o r b e d
28).
oxygen
( 2 7 , 2 8 ) . F o r the a l l y l i c o x i d a t i o n of olefins a n d f o r t h e selective o x i d a t i o n of m e t h a n o l to f o r m a l d e h y d e , l a t t i c e o x y g e n ( M e = 0 t y p e ) is p r o p o s e d as the a c t i v e o x i d i z i n g site (4, 7, 10, 12). e r e d are U - S b oxides (4), (10).
T h e c a t a l y t i c systems c o n s i d -
m o l y b d a t e s ( 7 , 12),
a n d b i s m u t h tungstates
I n t h e o x i d a t i o n of butènes a n d b u t a d i e n e to m a l e i c a n h y d r i d e
o v e r m o l y b d e n a catalysts, the active sites are a s s u m e d to b e f o r m s of o x y g e n o n M o ( V ) o r M o ( I V ) (12,13).
adsorbed
F i n a l l y , for t h e c o m p l e t e
c o m b u s t i o n of olefins over v a r i o u s catalysts, a d s o r b e d forms of a t o m i c a n d m o l e c u l a r o x y g e n h a v e b e e n suggested
(12,
In Table V
17, 18).
the
a b o v e m e n t i o n e d hypotheses are s u m m a r i z e d . REACTION PATTERNS.
E x c e p t for t o t a l o x i d a t i o n reactions, i n a l l other
cases t h e i n t e r e s t i n g p r o d u c t s are i n t e r m e d i a t e s .
It c a n b e
expected,
therefore, t h a t p a r t i a l o x i d a t i o n p r o d u c t s are t h e r e s u l t of successive or p a r a l l e l reactions, a n d f r o m the d a t a i n l i t e r a t u r e there is e n o u g h e v i d e n c e t h a t b o t h m e c h a n i s m s c a n b e assumed. A n e x a m p l e , c o n c e r n i n g t h e o x i d a t i o n of butènes, is g i v e n i n F i g u r e 1. A p a r t i c u l a r case is the f o r m a t i o n of a c r y l o n i t r i l e a n d m a l e i c a n h y d r i d e since these p r o d u c t s seem to be successive to other stable i n t e r m e d i a t e s — a c r o l e i n a n d b u t a d i e n e , r e s p e c t i v e l y . T h i s s h o u l d b e t r u e at least i n t h e f o r m a t i o n of m a l e i c a n h y d r i d e , w h e r e t h e c o n c l u s i o n is that Table V .
Nature
Catalyst
Reaction O x i d a t i o n of ethylene to ethylene oxide
Ag
O x i d a t i o n of propene to a c r y l o n i t r i l e O x i d a t i o n of 1-butene to b u t a d i e n e O x i d a t i o n a n d a m m o x i d a t i o n of olefins O x i d a t i o n of butènes to m a l e i c a n h y d r i d e O x i d a t i o n of b u t a d i e n e to m a l e i c a n h y d r i d e C o m p l e t e o x i d a t i o n of propene
U - S b oxide Fe 0 -Mo0 Bi W0 MnMo0 Mo0 Pt C r ( I I I ) and F e ( I I I ) spinels
C o m p l e t e o x i d a t i o n of propene
2
3
2
3
6
4
3
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8.
Oxidation
CAPPELLi
Reaction
b u t a d i e n e is the i n t e r m e d i a t e (47);
219
Engineering
h o w e v e r , some controversy s t i l l exists
for t h e f o r m a t i o n of a c r y l o n i t r i l e . F i g u r e 2 gives a r e a c t i o n scheme, a n d s o m e values of c a l c u l a t e d k i n e t i c constants are g i v e n i n T a b l e V I . EFFECTS O F O P E R A T I N G CONDITIONS.
F r o m some p a p e r s e x a m i n e d i n
this r e v i e w i t is possible to d e r i v e i n f o r m a t i o n a b o u t the r o l e of o p e r a t i n g c o n d i t i o n s s u c h as contact t i m e , t e m p e r a t u r e , p a r t i a l pressure of o x y g e n , o n y i e l d s , selectivities, types of p r o d u c t s , etc. T h e p a p e r b y Trifîrô et al. Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
(12)
o n t h e o x i d a t i o n of butènes gives a t a b l e s h o w i n g the influence of
p e r c e n t oxygen, t e m p e r a t u r e , a n d contact t i m e o n t h e types of reactions o c c u r r i n g . W h e n t h e a m o u n t of o x y g e n is i n c r e a s e d f r o m 0 to 2 0 % , t h e t e m p e r a t u r e is i n c r e a s e d f r o m 350° to 480 ° C , a n d t h e contact t i m e is i n c r e a s e d f r o m 0.27 to 2 sec, the f o l l o w i n g s e q u e n c e of c a t a l y t i c a c t i o n c a n be obtained: i s o m e r i z a t i o n - » o x i d a t i v e d e h y d r o g e n a t i o n -> o x i d a t i o n w i t h i n s e r t i o n of 0 -> cleavage of C - C bonds a n d complete o x i dation 2
In
a n other p a p e r b y Trifîrô et al.
influence of 0
2
o n the same subject the
(26)
p a r t i a l pressure o n y i e l d s a n d selectivities is r e p o r t e d .
I n a p a p e r b y T r i m m a n d D o e r r ( 1 ) o n the o x i d a t i o n of p r o p e n e to b e n z e n e over i n d i u m oxides the y i e l d of m a j o r p r o d u c t s w a s e x a m i n e d as a f u n c t i o n of contact t i m e a n d of o x y g e n a n d f u e l concentrations.
They
showed that: T h e y i e l d of b e n z e n e passes t h r o u g h a w e l l - d e f i n e d m a x i m u m at a c e r t a i n v a l u e of the contact t i m e . T h e m a j o r products—i.e., h e x a d i e n e a n d b e n z e n e — i n c r e a s e a n d pass t h r o u g h a m a x i m u m as the c o n c e n t r a t i o n of o x y g e n is i n c r e a s e d . T h e y i e l d of C 0
2
increases l i n e a r l y w i t h o x y g e n c o n c e n t r a t i o n .
T h e y i e l d of h e x a d i e n e increases w i t h p r o p e n e c o n c e n t r a t i o n w h i l e the y i e l d of b e n z e n e passes t h r o u g h a m a x i m u m a n d the y i e l d of C 0 passes t h r o u g h a m i n i m u m . 2
T h e effect of t e m p e r a t u r e o n t h e r e a c t i o n was m o r e
complex—the
amounts of h e x a d i e n e a n d b e n z e n e p r o d u c e d a p p e a r e d to be i n v e r s e l y of A c t i v e Sites Reference
Active
Sites
4 7 10 12 13 17
peroxide m o l e c u l a r o x y g e n ( f o r m a t i o n of ethylene oxide) a t o m i c o x y g e n ( f o r m a t i o n of C 0 ) lattice oxygen lattice oxygen lattice oxygen lattice oxygen oxygen [ o n M o ( V ) or M o ( I V ) ] atomic and molecular oxygen
18
atomic and molecular oxygen
27,28
2
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
220
CHEMICAL
REACTION ENGINEERING REVIEWS
CO
But-l-ene
C0
2
Furan
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
Acrolein n-Butyraldehyde Buta-l,3-diene
cïs-But-2-ene
Figure 1.
Acetaldehyde
Oxidation of butènes
Acrylonitrile ' Acrolein M e t h y l Cyanide
CO
Ethylene
co
2
Acetaldehyde " Figure 2.
Ammoxidation
of propene and acrolein
r e l a t e d . F r o m t h e a b o v e m e n t i o n e d papers it is possible to d e d u c e that the r a t e of t o t a l o x i d a t i o n increases as the p a r t i a l pressure of o x y g e n is increased. A different effect of the p a r t i a l pressure of o x y g e n w a s d e s c r i b e d i n a s t u d y b y M e t c a l f et al. (11)
on silver-catalyzed ethylene oxidation.
T h e rates of b o t h e t h y l e n e o x i d e a n d c a r b o n d i o x i d e f o r m a t i o n passed t h r o u g h m a x i m a w i t h i n c r e a s i n g o x y g e n pressure a n d t h e n
decreased.
T h i s b e h a v i o r was b y means of i n h i b i t i n g effects of the r e a c t i o n p r o d u c t s . EFFECTS
OF CATALYST
OR INHIBITORS.
MODIFICATIONS
A N D ADDITION
OF PROMOTERS
F o r ethylene o x i d a t i o n over silver catalysts some authors
( 27, 28 ) r e p o r t that the effect of c h l o r i n e is to i n h i b i t dissociative a d s o r p t i o n of o x y g e n a n d thus to increase t h e s e l e c t i v i t y of e t h y l e n e e p o x i d a t i o n since d i a t o m i c o x y g e n
o n s i l v e r is r e s p o n s i b l e for
the
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
selective
8.
CAPPELLi
Oxidation
Reaction
221
Engineering
o x i d a t i o n of e t h y l e n e to ethylene oxide.
T h e r o l e of C a a n d B a i n the
same r e a c t i o n is c o n t r o v e r s i a l ; some authors (32)
c o n t e n d t h a t the p r e s -
ence of C a increases s e l e c t i v i t y w h i l e others ( 33, 34 ) b e l i e v e the a d d i t i o n of B a a n d C a influences o n l y a c t i v i t y . In the o x i d a t i o n of 1-butene over F e 0 - M o 0 , P a s q u o n et al. 2
3
(7)
3
s t u d i e d the effect of gaseous o x y g e n a n d T e o n selectivity. T h e y f o u n d that at the lowest o x y g e n concentrations b u t a d i e n e a n d 2-butenes are the Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
m a i n p r o d u c t s ; w h e n the c o n c e n t r a t i o n of o x y g e n is i n c r e a s e d , b u t a d i e n e and
butènes decrease, a n d m a l e i c a n h y d r i d e f o r m a t i o n reaches a m a x i -
mum.
I t was also o b s e r v e d t h a t a d d i t i o n of T e increases t h e s e l e c t i v i t y
in butadiene. ROLE O F DIFFUSION.
T h r e e papers (14, 42, 43)
d e a l w i t h effects of
diffusion o n c a t a l y z e d o x i d a t i o n reactions. F o r the o x i d a t i o n of ethylene to a c e t a l d e h y d e over P d s u p p o r t e d catalysts, E v n i n et al. (14)
report
that the l o w values d e t e r m i n e d for the a p p a r e n t a c t i v a t i o n energies for e t h y l e n e c o n v e r s i o n a n d a c e t a l d e h y d e f o r m a t i o n are a n i n d i c a t i o n of diffusional
rather than kinetic control.
The
presence
of
diffusional
l i m i t a t i o n s is c o n f i r m e d b y experiments i n w h i c h the r a t e w a s s h o w n to d e p e n d o n the p a r t i a l pressure of the n i t r o g e n c a r r i e r gas. In and
a s t u d y o n a m m o n i a o x i d a t i o n over p l a t i n u m , r e p o r t e d b y P i g n e t
S c h m i d t (42),
a strong influence of mass transfer was observed.
Near
the s t o i c h i o m e t r i c c o m p o s i t i o n ( 2 1 % N H i n a i r ) a n d a b o v e , s e l e c t i v i t y 3
for N O d r o p p e d to z e r o , i n contrast to the r e a c t i o n i n the k i n e t i c r e g i m e w h e r e significant N O p r o d u c t i o n was o b s e r v e d i n excess N H
3
a n d at
temperatures a b o v e 1200 ° C F i n a l l y , i n a s t u d y r e p o r t e d b y K a d l e c et al. (43) fusivities of air a n d S 0
2
the effective d i f -
i n four i n d u s t r i a l v a n a d i u m p e n t o x i d e catalysts
for s u l f u r d i o x i d e o x i d a t i o n w e r e m e a s u r e d at the steady state.
With
models for the effective d i f f u s i v i t y a n d the k i n e t i c s of the c a t a l y t i c o x i d a t i o n of S 0 , a n o p t i m u m a p p a r e n t d e n s i t y of the catalyst m a y b e deter2
m i n e d w h i c h gives the m a x i m u m r a t e of r e a c t i o n p e r u n i t v o l u m e
of
catalyst. Types of Reactors.
LABORATORY
SCALE.
O n the l a b o r a t o r y scale
p u l s e m i c r o r e a c t o r s h a v e b e e n u s e d l a r g e l y to d i s t i n g u i s h b e t w e e n r e d o x and
L a n g m u i r - H i n s h e l w o o d m e c h a n i s m s . I n these studies o x i d a t i o n runs
of o r g a n i c molecules w e r e d o n e w i t h a n d w i t h o u t o x y g e n i n the gas p h a s e (4, 7, 12, 18, 20, 24). (7, 12)
I n the o x i d a t i o n of butènes to m a l e i c a n h y d r i d e
a C a r b e r r y s s t i r r e d - t a n k flow reactor was chosen since heat a n d
mass gradients c a u s e d b y transfer p h e n o m e n a are absent i n this t y p e of reactor. C o n v e n t i o n a l t y p e flow reactors w e r e u s e d i n most other cases. I N D U S T R I A L S C A L E . L i t e r a t u r e reports of e x p e r i m e n t a l w o r k i n o x i d a d a t i o n reactors are scarce, thus m a k i n g i t difficult to v e r i f y the m a t h e m a t i c a l m o d e l s a v a i l a b l e . T h e reactors w h i c h d o m i n a t e i n this area are
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
222
CHEMICAL
REACTION ENGINEERING
Table V I .
Κ
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
Reaction Propene a m moxidation Propene oxidation Acrolein a m moxidation Acrolein oxidation
κ,
REVIEWS
Kinetic
κ
Κ'
Κ" 2
Κ
2
2
3
5.2
4.8
0.16
0.16
—
0
0.1
8.0
—
5.85
—
0
0.06
2.0
—
—
—
0
—
—
170.0 97.0
t h e c o n v e n t i o n a l types—i.e., t u b u l a r reactors, m u t i p l e t u b e
reactors,
m u l t i l a y e r reactors, a n d fluidized b e d reactors. A n e w t y p e of reactor for gas phase c a t a l y t i c r e c y c l e reactions w a s r e c e n t l y p a t e n t e d b y et al. (49).
Collina
T h i s r e a c t o r is s k e t c h e d i n F i g u r e 3 a n d consists essentially
of a n injector, f o l l o w e d b y a single r a d i a l - f l u x l a y e r of catalyst, a n d s u r r o u n d e d b y a n a n n u l a r e m p t y space t h r o u g h w h i c h the r e a c t e d gases flow
b a c k f r o m t h e catalyst l a y e r to the injector, e x c h a n g i n g h e a t w i t h
f e e d gas i n a heat exchanger.
T h e c o n v e r s i o n p e r pass is k e p t v e r y l o w ,
a n d i t is therefore easy to c o n t r o l t e m p e r a t u r e increases.
T h e pressure
d r o p is l o w e r t h a n i n c o n v e n t i o n a l reactors, a n d i t is possible to r e a c h h i g h capacities. T h e reactor is s u i t a b l e for o x i d a t i o n reactions s u c h as t h e o x i d a t i o n of m e t h a n o l to f o r m a l d e h y d e , e t h y l e n e to ethylene o x i d e , p r o p e n e to a c r o l e i n a n d a c r y l i c a c i d , a n d butènes to m a l e i c a n h y d r i d e . B o t h p l a n t a n d o p e r a t i n g costs for these processes seem c o m p e t i t i v e w i t h conventional plants. Papers Presented in This Section. F o u r of the papers d i s c u s s e d i n t h e last session of the T h i r d
International Symposium on C h e m i c a l
Reaction Engineering ( A D V A N C E S I N C H E M I S T R Y SERIES N O . 1 3 3 ) belong
to this section o n gas phase c a t a l y t i c o x i d a t i o n . T w o papers c o n c e r n the o x i d a t i o n of o-xylene to p h t h a l i c a n h y d r i d e over v a n a d i u m catalysts. T h e other t w o r e p o r t studies o n t h e - o x i d a t i o n of c a r b o n m o n o x i d e i n a u t o m o t i v e exhausts. OXIDATION
OF O-XYLENE
OVER
VANADIUM
CATALYSTS.
Calderbank
( 5 0 ) s t u d i e d the k i n e t i c s of p h t h a l i c a n h y d r i d e f o r m a t i o n i n the o x i d a t i o n of o-xylene over a c o m m e r c i a l v a n a d i u m catalyst. T h e e x p e r i m e n t a l runs w e r e c a r r i e d out i n a s p i n n i n g catalyst-basket reactor, a n d the k i n e t i c s w e r e d e t e r m i n e d for the d i s a p p e a r a n c e of o-xylene a n d of the p a r t i a l oxidation products o-tolualdehyde and phthalide. T h e kinetics predict o b s e r v e d t e m p e r a t u r e profiles i n large t u b u l a r reactors. W a i n w r i g h t a n d H o f f m a n ( 51 ) also s t u d i e d the k i n e t i c s of o-xylene o x i d a t i o n over a v a n a d i u m - o n - s i l i c a catalyst o n the basis of e x p e r i m e n t a l d a t a o b t a i n e d i n a l a b o r a t o r y - s c a l e fixed b e d reactor a n d i n a p i l o t - s c a l e t r a n s p o r t e d b e d reactor. T h e k i n e t i c rate expression, w h i c h is l i m i t e d to
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8.
Oxidation
CAPPELLi
Reaction
Engineering
223
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
Constants K±
K±
K4"
K±"
K
K
7
Kg
Kq
25.8
—
—
0
0.9
0
1.77
—
—
165.0
1
3
0
28
22
—
—
—
—
—
7
42
—
48
—
0
390
Kg
5
o-xylene d i s a p p e a r a n c e , is b a s e d o n a r e d o x m e c h a n i s m . T h e o p e r a t i o n of the t r a n s p o r t e d b e d reactor has b e e n p r e d i c t e d w i t h g o o d a c c u r a c y , a n d some considerations a b o u t selectivities, m e c h a n i s m s , a n d p h y s i c a l p h e n o m e n a , together w i t h suggestions for f u r t h e r r e s e a r c h , are i n c l u d e d . A g r e e m e n t b e t w e e n t h e results r e p o r t e d i n these t w o papers seems to b e f a i r l y g o o d . F o r e x a m p l e the rate expression suggested b y W a i n w r i g h t a n d H o f f m a n n contains a p a r a m e t e r Θ, w h i c h becomes e q u a l to 1 w i t h a f u l l y o x i d i z e d catalyst, i n agreement w i t h t h e d i s a p p e a r a n c e k i n e t i c s of o-xylene p r o p o s e d b y C a l d e r b a n k , w h i c h are first o r d e r u p to n e a r l y 1 m o l e % of x y l e n e c o n c e n t r a t i o n . T h e observations r e g a r d i n g t h e a c t i v a t i o n e n e r g y are also s i m i l a r i n b o t h papers.
T h e a c t i v a t i o n energy
de
creased as the r e a c t i o n t e m p e r a t u r e i n c r e a s e d , b e c o m i n g a b o u t a t h i r d of that at l o w e r temperatures. T h e o p e r a t i o n t e m p e r a t u r e r a n g e , h o w e v e r , is c o n s i d e r a b l y
lower
i n W a i n w r i g h t and Hoffman's
study,
possibly
b e c a u s e of the different catalysts used. OXIDATION
OF CARBON
MONOXIDE
IN AUTOMOTIVE
EXHAUSTS.
The
c a t a l y t i c o x i d a t i o n of c a r b o n m o n o x i d e has b e e n s t u d i e d extensively w i t h m a n y catalysts.
N o b l e catalysts h a v e r e c e i v e d
considerable attention
d u r i n g the last s e v e r a l years f o r use i n a u t o m o t i v e emission c o n t r o l sys tems. A k i n e t i c m o d e l of C O a n d C H 3
6
oxidation on a pelleted p l a t i n u m -
a l u m i n a catalyst was p r e p a r e d a n d i n c o r p o r a t e d into a p r e v i o u s l y d e v e l o p e d converter m o d e l , w h i c h has b e e n u s e d to p r e d i c t a n d o p t i m i z e the p e r f o r m a n c e of v a r i o u s types of p l a t i n u m catalysts ( i n c l u d i n g m o n o l i t h i c t y p e s ) ; this m a t h e m a t i c a l converter m o d e l was d e s c r i b e d b y K u o et al. (52,53). T h e o x i d a t i o n of C O over p l a t i n u m catalysts has b e e n s t u d i e d f o r m a n y years, b u t t h e conclusions
r e g a r d i n g the m e c h a n i s m s a n d rate
equations are s o m e w h a t c o n f l i c t i n g (54, 55, 56, 5 7 ) . S h i s h u ( 5 8 ) m a d e a c o m p r e h e n s i v e i n v e s t i g a t i o n of C O o x i d a t i o n o n a m o n o l i t h i c p l a t i n u m catalyst i n a d i f f e r e n t i a l flow reactor a n d d e v e l o p e d Harned
(59)
r a t e equations.
p r e p a r e d a m a t h e m a t i c a l m o d e l for c a t a l y t i c converters
u s e d for the o x i d a t i o n of C O a n d h y d r o c a r b o n s , a n d T a y l o r ( 6 0 )
ob
t a i n e d a m o d e l of the o x i d a t i o n k i n e t i c s for p l a t i n u m catalysts. C O o x i d a -
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
224
CHEMICAL
REACTION
t i o n has b e e n s t u d i e d w i t h other catalysts also.
ENGINEERING REVIEWS
L a i d l e r (61)
reported
some studies d o n e w i t h catalysts s u c h as q u a r t z glass, r o c k c r y s t a l , p l a t i n u m , a n d c o p p e r oxide. S c h w a b a n d G o s s n e r (62) a n d s i l v e r - p a l l a d i u m alloys. P a r r a v a n o (63)
u s e d silver, p a l l a d i u m ,
r e p o r t e d t h e use of n i c k e l
o x i d e , to w h i c h f o r e i g n ions h a d b e e n a d d e d . α - A l u m i n a pellets w i t h 0.5 wt %
p a l l a d i u m a n d x - r a y i r r a d i a t e d a l u m i n a h a v e also b e e n
as catalysts (64,
proposed
65).
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
A t present, exhaust t r e a t m e n t devices, s u c h as c a t a l y t i c converters s h o w p r o m i s e i n r e d u c i n g C O emissions to the l o w levels r e q u i r e d b y the restrictions i m p o s e d i n m a n y countries. T h e catalysts to be u s e d b y auto m a n u f a c t u r e r s i n the next years g e n e r a l l y c o n t a i n p l a t i n u m , w h i c h is, h o w e v e r , expensive a n d e a s i l y p o i s o n e d . T h u s , there is a n e e d for c h e a p e r catalysts w i t h g o o d p e r f o r m a n c e a n d of r e l i a b l e c a t a l y t i c converter m o d e l s . T h e p a p e r s d i c u s s e d b e l o w d e a l w i t h these t w o p r o b l e m s . K a l m a n et al. (66)
e v a l u a t e d t h e p e r f o r m a n c e of c r y s t a l l i n e c o p p e r -
s u b s t i t u t e d z i r c o n i u m p h o s p h a t e i n the c a t a l y t i c o x i d a t i o n of C O .
A
r e a c t i o n rate expression was o b t a i n e d b y a p p l y i n g the i n t e g r a l m e t h o d of analysis to t h e e x p e r i m e n t a l d a t a . E v e n t h o u g h a d i r e c t c o m p a r i s o n of t h e p e r f o r m a n c e of this catalyst w i t h other catalysts is difficult o w i n g to the l a c k of l i t e r a t u r e d a t a o b t a i n e d u n d e r s i m i l a r c o n d i t i o n s , i t seems that copper-substituted
α-zirconium phosphate
is
at least
comparable
in
a c t i v i t y w i t h other catalysts a n d merits f u r t h e r i n v e s t i g a t i o n . Y o u n g a n d F i n l a y s o n (67)
p r o p o s e t w o m a t h e m a t i c a l m o d e l s for a
p a r t i c u l a r t y p e of c a t a l y t i c c o n v e r t e r — t h e m o n o l i t h converter. T w o types of c a t a l y t i c c o n v e r t e r s — p a c k e d beds a n d m o n o l i t h s — h a v e b e e n p r o p o s e d f o r the o x i d a t i o n of C O a n d h y d r o c a r b o n s i n a u t o m o b i l e exhausts.
As
m e n t i o n e d above, K u o has d e v e l o p e d a m o d e l for the m o n o l i t h converter, a n d m a t h e m a t i c a l m o d e l s h a v e b e e n p r o p o s e d a n d s o l v e d also for p a c k e d b e d converters (52,
59, 68, 69).
T h e m o n o l i t h c o n v e r t e r consists of a n
a r r a y of ducts o r cells t h r o u g h w h i c h the exhaust gas flows
axially.
B e c a u s e of a s m a l l e r v o l u m e t r i c heat c a p a c i t y , m o n o l i t h i c converters w a r m u p m o r e q u i c k l y t h a n p a c k e d b e d devices, b u t h a v e
problems
caused b y t h e r m a l expansion. T h e mathematical models developed illus trate i m p o r t a n t features of t h e t h e r m a l b e h a v i o r of t h e m o n o l i t h c o n verter.
T h e r e a c t i o n rate expression u s e d was f o u n d i n the l i t e r a t u r e ,
a n d some assumptions w e r e m a d e to o b t a i n s u i t a b l e m o d e l s , t a k i n g i n t o a c c o u n t h e a t a n d mass transfer across the c e l l cross-section.
T h e two
p r o p o s e d m o d e l s differ b e c a u s e i n one of t h e m heat a n d mass transfer coefficients d e f i n e d i n the u s u a l w a y are u s e d . S u i t a b l e s o l u t i o n m e t h o d s h a v e b e e n u s e d for b o t h m o d e l s , a n d b o t h t r a n s i e n t a n d steady-state c a l c u l a t i o n s f o r t y p i c a l cases are i l l u s t r a t e d i n some
figures.
T h e study
seems to be v e r y a c c u r a t e a n d gives u s e f u l a d v i c e for d e s i g n i n g this t y p e of converter.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
8.
CAPPELLi
Oxidation
Figure 3.
Liquid
Phase Oxidation
I n this g r o u p
Reaction
Engineering
225
Reactor for catalytic gas phase reactions
with
Oxygen
of processes b o t h h o m o g e n e o u s a n d heterogeneous
c a t a l y z e d reactions are presented.
T h e l i q u i d - p h a s e o x i d a t i o n of o r g a n i c
c o m p o u n d s w i t h a i r or o x y g e n is c o m p l e x , a n d the m e c h a n i s m s are f u r t h e r c o m p l i c a t e d b y mass transfer processes. W h e n o x y g e n transfer b e c o m e s the r a t e - l i m i t i n g step, the rate of the o v e r a l l process is n o longer c o n t r o l l e d b y the c h e m i c a l m e c h a n i s m s . A p a p e r b y H o b b s et al. o n mass transfer r a t e - l i m i t a t i o n effects i n l i q u i d phase o x i d a t i o n (45)
indicates that p h y s i c a l a n d c h e m i c a l effects
are t h e o r e t i c a l l y separable, a n d t h e i r r e l a t i v e c o n t r i b u t i o n s c a n b e e s t i m a t e d . A s a n e x a m p l e , the l i q u i d phase o x i d a t i o n of m e t h y l e t h y l ketone i n acetic a c i d solvent is c o n s i d e r e d . I n the s t u d y r e p o r t e d b y G u r u m u r t h y a n d G o v i n d a r a o (46) e q u a t i o n is d e v e l o p e d for the l i q u i d p h a s e o x i d a t i o n of
a rate
propionaldehyde
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
226
CHEMICAL
REACTION ENGINEERING REVIEWS
w i t h o x y g e n i n t h e presence of manganese p r o p i o n a t e catalyst, de W i l t a n d V a n d e r B a a n (44)
present a k i n e t i c m o d e l for the p l a t i n u m c a t a l y z e d
o x i d a t i o n of glucose to k - g l u c o n a t e w i t h o x y g e n i n aqueous a l k a l i n e s o l u tions. T h e experiments w e r e d o n e b a t c h w i s e i n a reactor e q u i p p e d w i t h a h i g h - s p e e d stirrer to m i n i m i z e the i n f l u e n c e of o x y g e n transport f r o m the gaseous to t h e l i q u i d phase. T h e reactions s t u d i e d are l i s t e d i n T a b l e V I I .
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
Table VII.
L i q u i d Phase Oxidation with Oxygen
Process
Catalyst
O x i d a t i o n of p r o p i o n a l d e h y d e O x i d a t i o n of glucose O x i d a t i o n of m e t h y l e t h y l ketone A l a g y et al. (70)
Reference
Mn-propionate platinum cobaltous acetate
Jfi 44 4$
d e s c r i b e a s t u d y o n the l i q u i d phase o x i d a t i o n of
c y c l o h e x a n e w i t h oxygen. A m a t h e m a t i c a l m o d e l has b e e n d e v e l o p e d o n the basis of k i n e t i c d a t a c o n c e r n i n g c y c l o h e x a n e
o x i d a t i o n a n d mass-
transfer i n f o r m a t i o n d e r i v e d f r o m experiments o n c y c l o d o d e c a n e
oxida
t i o n . T h e e x p e r i m e n t a l runs w e r e d o n e i n s e m i c o n t i n u o u s , m e c h a n i c a l l y stirred equipment.
O n the p i l o t scale a 150-liter c y l i n d r i c a l r e a c t o r w a s
u s e d , i n w h i c h s t i r r i n g was a c h i e v e d b y i n j e c t i n g gas at the b o t t o m of the c o l u m n a n d b y i n t r o d u c i n g t a n g e n t i a l l y at the top a l i q u i d stream d e r i v e d f r o m t h e b o t t o m of the c o l u m n . T h e k i n e t i c m o d e l has seven p a r a m e t e r s w h i c h h a v e b e e n d e t e r m i n e d b y a n o n - l i n e a r regression m e t h o d .
The
agreement b e t w e e n c a l c u l a t e d a n d e x p e r i m e n t a l d a t a seems g o o d , t a k i n g i n t o a c c o u n t t h a t the r e a c t i o n is c o m p l e x a n d b o t h c h e m i c a l a n d p h y s i c a l p h e n o m e n a a r e i m p o r t a n t . A s i m p l i f i e d m o d e l has also b e e n p r e p a r e d b y i n c o r p o r a t i n g c e r t a i n assumptions i n the o r i g i n a l m o d e l . Liquid Phase Epoxidation
of Olefins with
F o u r papers (35, 86, 37, 38)
r e p o r t studies o n l i q u i d p h a s e e p o x i d a -
t i o n of olefins w i t h h y d r o p e r o x i d e s .
N
N
C = C ^
/
+
Hydroperoxides
T h e reaction is:
R O O H
+
R
0
H
a n d is c a t a l y z e d b y m a n y t r a n s i t i o n a l m e t a l catalysts. T h e k i n e t i c e q u a t i o n , w h i c h has b e e n o b t a i n e d f o r different m o l y b d e n u m catalysts is of the type: V ^= Κ
^olefin
^hydroperoxide
Ccatalysts
a n d is c a t a l y z e d b y m a n y t r a n s i t i o n m e t a l catalysts. T h e k i n e t i c e q u a -
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8.
Oxidation
CAPPELLi
Reaction
227
Engineering
e q u i l i b r i u m f o r m a t i o n of a c a t a l y s t - h y d r o p e r o x i d e c o m p l e x ; the
second
step is the r a t e - d e t e r m i n i n g r e a c t i o n of the c o m p l e x w i t h the olefin to f o r m the epoxide, c o p r o d u c t a l c o h o l , a n d the m o l y b d e n u m catalyst. B a k e r et al. (35)
present k i n e t i c d a t a o n the e p o x i d a t i o n of 1-octene
b y c u m e n e a n d tert-butyl
h y d r o p e r o x i d e i n the presence of m o l y b d e n u m
h e x a c a r b o n y l as catalyst. T h e o b s e r v e d k i n e t i c b e h a v i o r is c o m p a t i b l e w i t h the p r e v i o u s l y p r o p o s e d
g e n e r a l m e c h a n i s m for the
epoxidation
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
reaction. I n the s t u d y r e p o r t e d b y S h e l d o n a n d V a n D o o m (36)
cyclohexene
a n d 1-octene, u s e d as m o d e l olefins of different r e a c t i v i t y , w e r e e p o x i d i z e d i n the l i q u i d p h a s e w i t h tert-butyl
h y d r o p e r o x i d e i n t h e presence of v a r i -
ous t r a n s i t i o n m e t a l catalysts. I t is c o n c l u d e d that a n active e p o x i d a t i o n catalyst s h o u l d be b o t h a w e a k o x i d a n t a n d a f a i r l y strong L e w i s a c i d . T h e s e r e q u i r e m e n t s are best m e t b y c o m p o u n d s of c e r t a i n metals i n h i g h o x i d a t i o n states [ M o ( V I ) , W ( V I ) , T i ( I V ) ] . I n the p a p e r b y S u et al. (37)
o n v a n a d i u m a n d m o l y b d e n u m chelates
as catalysts i n the e p o x i d a t i o n of c y c l o a l k e n e s , rate l a w s for t h e v a n a d i u m c a t a l y z e d systems are consistent w i t h r e a c t i o n via r a t e - d e t e r m i n i n g attack of olefin o n a v a n a d i u m ( V ) - h y d r o p e r o x i d e
complex.
Arguments
are
p r e s e n t e d to s u p p o r t the v i e w that the m o l y b d e n u m - c a t a l y z e d e p o x i d a t i o n , l i k e those i n v o l v i n g v a n a d i u m , p r o c e e d s b y r e a c t i o n of olefins w i t h a metal-hydroperoxide complex. I n a s t u d y b y Trifîrô et al. (38) c y c l o h e x e n e b y tert-butyl
o n the l i q u i d phase e p o x i d a t i o n of
h y d r o p e r o x i d e o n a M o - b a s e d catalyst, a rate
l a w is g i v e n , a n d the presence
of a c a t a l y s t - h y d r o p e r o x i d e r e v e r s i b l e
c o m p l e x as the a c t i v e species i n t h e e p o x i d a t i o n is a d v a n c e d o n the basis of a s p e c t r o s c o p i c s t u d y . T h e reactions i n v e s t i g a t e d are l i s t e d i n T a b l e VIII. Heterogeneization
of Homogenous Catalytic
Processes
S o m e studies h a v e b e e n r e p o r t e d o n t h e t r a n s f o r m a t i o n of
homo-
geneous processes i n t o heterogeneous
ones b y s u p p o r t i n g the catalysts.
T h i s is the case of a heterogeneous
catalyst system w h i c h has
been
d e v e l o p e d for the v a p o r p h a s e o x i d a t i o n of e t h y l e n e to a c e t a l d e h y d e
(14).
T h e catalyst consists of p a l l a d i u m - d o p e d v a n a d i u m p e n t o x i d e a n d u s u a l l y a third component
s u c h as T i , R u , P t , or Ir. A catalyst consisting of
m e r c u r i c c h l o r i d e s u p p o r t e d o n active c h a r c o a l w a s u s e d b y A r a i et al. (16)
for the a l l y l i c o x i d a t i o n of olefins. T h e o x i d a t i o n over m e r c u r i c i o n
catalyst occurs at a t e m p e r a t u r e w h i c h is l o w e r t h a n t h a t necessary over b i s m u t h m o l y b d a t e catalyst. F i n a l l y , catalysts p r e p a r e d b y s u p p o r t i n g M o ( V I ) o n S i 0 h a v e b e e n p r o p o s e d b y F o r z a t t i et al. (40) 2
f o r the e p o x i -
d a t i o n of olefins w i t h h y d r o p e r o x i d e s .
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
228
CHEMICAL
Evaluation
of the Literature
REACTION ENGINEERING REVIEWS
Data
T h i s section focuses o n those aspects of interest to c h e m i c a l r e a c t i o n engineers i n m o d e l i n g reactions a n d i n d e s i g n i n g i n d u s t r i a l reactors.
The
f o r e g o i n g w i l l h a v e g i v e n the reader a n a p p r e c i a t i o n not o n l y of w h a t has b e e n d o n e b u t of the c r i t e r i a w h i c h are g e n e r a l l y f o l l o w e d b y the authors active i n this area. T h e points e x a m i n e d u n d e r c h e m i c a l k i n e t i c a n d p h y s i c a l aspects, for e x a m p l e , are t y p i c a l of these k i n d s of papers a n d Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
a c c o u n t for t h e f a c t t h a t t h e interests of the authors are f u n d a m e n t a l l y chemical.
M o s t papers d e a l w i t h m i c r o s c o p i c m e c h a n i s m s , a n d several
specific c h e m i c a l systems are u s e d to i l l u s t r a t e these m e c h a n i s m s ,
but
g e n e r a l i z e d r e a c t i o n m o d e l s are s e l d o m g i v e n . O f t e n , d e t a i l e d a n d elegant studies c o n c e r n i n g the c a t a l y t i c c h e m i s t r y of the reactions are c a r r i e d o u t b u t u s e f u l m o d e l s for reactor d e s i g n are not a t t e m p t e d . T h e r a n g e of catalysts c o n s i d e r e d is extensive, b u t some differ i n i r r e l e v a n t details. D i s c u s s i o n of the details of surface b o n d s c a n b e f o u n d i n m a n y papers, a n d p a r a m e t r i c effects of o p e r a t i n g c o n d i t i o n s o n a c t i v i t y a n d s e l e c t i v i t y are often discussed, b u t m o s t l y o n the l a b o r a t o r y scale. the other h a n d , i t is n o t easy to find k i n e t i c studies d o n e to
On
provide
r e l i a b l e d a t a to p r e d i c t reactor p e r f o r m a n c e , a n d systematic t e c h n i q u e s i n c h e m i c a l k i n e t i c s i n v e s t i g a t i o n are not often
applied.
T h e use
of
statistically d e s i g n e d experiments, f o r e x a m p l e , is m e n t i o n e d i n o n l y a
Table VIII.
L i q u i d Phase Epoxidation with Hydroperoxides Catalyst
Process E p o x i d a t i o n of 1-octene b y cumene a n d i e r i - b u t y l hydroperoxide E p o x i d a t i o n of 1-octene a n d cyclohexene b y tert-butyl hydroperoxide E p o x i d a t i o n of c y c l o a l k e n e s b y tertbutyl h y d r o p e r o x i d e E p o x i d a t i o n of cyclohexene b y tertbutyl h y d r o p e r o x i d e
Reference
Mo-hexacarbonile
35
t r a n s i t i o n metals
36
V a n d M o chelates
37
M o based
38
f e w papers, a n d i t does not seem that a d v a n c e d p a r a m e t e r e s t i m a t i o n t e c h n i q u e s are often u s e d also i f a c e r t a i n i m p r o v e m e n t f r o m t h i s p o i n t of v i e w c a n b e n o t i c e d . T h e r e is l a c k of i n f o r m a t i o n c o n c e r n i n g studies c a r r i e d out s e q u e n t i a l l y o n the l a b o r a t o r y , p i l o t , a n d c o m m e r c i a l scale. I n this c o n n e c t i o n most of the papers c o m e f r o m universities r a t h e r t h a n f r o m i n d u s t r i e s , a n d t h e p o s s i b i l i t y of o b t a i n i n g v a l u a b l e i n f o r m a t i o n o n process k i n e t i c s f r o m c o m m e r c i a l scale reactors is g e n e r a l l y d i s r e g a r d e d , at least f o r p u b l i c a t i o n purposes.
Nevertheless, s o m e authors seem to b e
m o r e a n d m o r e conscious of t h e necessity of p r o v i d i n g u s e f u l d a t a for
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8.
CAPPELLi
Oxidation
Reaction
229
Engineering
d e s i g n purposes; i n those fields w h i c h are m o r e s t r o n g l y c o n n e c t e d solving practical problems
(as, for example,
i n automative
with
emission
control), reliable models are available. Conclusions T h e s i t u a t i o n i n this area has some p o s i t i v e aspects b u t is n o t e n t i r e l y satisfactory f r o m t h e p o i n t o f v i e w o f a c h e m i c a l engineer. T h e q u a l i t y o f Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
papers f o u n d i n l i t e r a t u r e is g e n e r a l l y g o o d , b u t most studies are b a s e d o n l a b o r a t o r y scale experiments, a n d scale-up rules are s e l d o m g i v e n . I n this area s o m e authors still " p l a y w i t h m e c h a n i s m s " a n d c a r r y o u t e x p e r i ments w i t h different catalysts a n d u n d e r different o p e r a t i n g c o n d i t i o n s w i t h o u t a r r i v i n g at conclusions of a n y sort. H o w e v e r , a definite i m p r o v e m e n t has b e e n e v i d e n c e d i n t h e last f e w years; i n most cases n o w a t least k i n e t i c m o d e l s , u s e f u l f r o m a n e n g i n e e r i n g p o i n t o f v i e w , are p r o p o s e d as a result o f a r e s e a r c h s t u d y . N e v e r t h e l e s s , t h e c o m m u n i c a t i o n b e t w e e n those w h o p r o p o s e m o d e l s a n d those w h o s h o u l d use t h e m does n o t seem e n t i r e l y satisfactory. T h e b r i d g e b e t w e e n researchers a n d those i n v o l v e d i n d e s i g n a n d o p e r a t i o n of reactors, that Professor F r o m e n t m e n t i o n e d at the e n d o f a r e v i e w d u r i n g t h e first I n t e r n a t i o n a l S y m p o s i u m o n C h e m i c a l R e a c t i o n E n g i n e e r i n g , is s t i l l a w e a k b r i d g e o f boats, a n d n o t e v e n t h e o b s e r v a t i o n t h a t t h e R o m a n s w e r e a b l e to u n i f y t h e w e s t e r n w o r l d u s i n g this t y p e o f b r i d g e c a n reassure us e n t i r e l y i n t h e 1970's.
Literature Cited 1. Trimm, D. L., Doerr, L. Α., J. Catalysis (1972) 26, 1. 2. Parera, N. S., Trimm, D. L., J. Catalysis (1973) 30, 485. 3. Sterrett, J. S., Hollvried, H. G., Ind. Eng. Chem., Process Design Develop. (1974) 13, 54. 4. Grasselli, R. K., Suresh, D. D., J. Catalysis (1972) 25, 273. 5. Wragg, R. D., Ashmore, P. G., Hockey, J. Α., J. Catalysis (1973) 31, 293. 6. Mann, R. S., Ko, D. W., J. Catalysis (1973) 30, 276. 7. Pasquon, I., Trifirò, F., Caputo, G., Chim. Ind. (1973) 55, 168. 8. Schuit, G. C. Α., paper presented at the Conference on The Chemistry and Uses of Molybdenum, University of Reading, England, Sept. 1973. 9. Daniel, C., Keulks, G. W., J. Catalysis (1973) 29, 475. 10. Villa, P. L., Caputo, G., Sala, F., Trifirò, F., J. Catalysis (1973) 31, 200. 11. Metcalf, P. L., Harriot, P., Ind. Eng. Chem., Process Design Develop. (1972) 11, 478. 12. Trifirò, F., Banfi, C., Caputo, G., Forzatti, P., Pasquon, I.,J.Catalysis (1973) 30, 393. 13. Akimoto, M., Echigoya, E., J. Catalysis (1973) 29, 191. 14. Evnin, A. B., Rabo, J. Α., Kasai, P. H., J. Catalysis (1973) 30, 109. 15. Giordano, N., Vaghi, Α., Bart, J. C. J., Castellani, Α., Symposium on the Mechanisms of Hydrocarbon Reactions, Siojok, June 1973. 16. Arai, H., Uehara, K., Kinoshita, S., Kunugi, T., Ind. Eng. Chem., Prod. Res. Develop. (1972) 11, 308. 17. Voltz, S. E., Morgan, C. R., Liederman, D., Jacob, S. M., Ind. Eng. Chem., Prod. Res. Develop. (1973) 12, 294.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
230 18. 19. 20. 21.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49.
CHEMICAL REACTION ENGINEERING REVIEWS
Zanderighi, L., Faedda, M. P., Carrá, S., J. Catalysis, in press. Yao, Y. Y., J. Catalysis (1973) 28, 39. Niwa, M., Murakami, Y., J. Catalysis (1972) 27, 26. Gernan, K., Grzybowska, B., Haber, J., Bull. Acad. Polonaise Sci. (1973) 21, 5. Subramanian, P., Murthy, M. S., Chem. Eng. Sci. (1974) 29, 25. Subramanian, P., Murthy, M. S., Ind. Eng. Chem., Process Design Develop. (1972) 11, 242. Liberti, L., Pernicone, N., Soattini, S., J. Catalysis (1972) 27, 52. Cant, N. W., Hall, W. K., J. Catalysis (1972) 27 ,70. Trifirò, F., Caputo, G., Villa, P. L., J. Less Common Metals (1974) 36, 305. Kilty, P. Α., Rol, N. C., Sachtler, W. M. H., Proc. Intern. Congr. Catalysis, 5th, Miami Beach, V. S. D. Elsevier (1972) 64, 929. Spath, H. T., Proc. Congr. Catalysis, 5th, Miami Beach, V. S. D. Elsevier (1972) 65, 945. Marcinkowsky, A. E., Berty, J. M., J. Catalysis (1973) 29, 494. Carberry, J. J., Kuczynski, G. C., Martinez, E., J. Catalysis (1972) 26, 246. Forzatti, P., Martinez, E., Kuczynski, G. C., Carberry, J.J.,J.Catalysis (1973) 28, 455. Forzatti, P., Klimasara, Α., Kuczynski, G. G., Carberry, J. J., J. Catalysis (1973) 19, 169. Spath, H. T., Tomazic, G. S., Würm, H., Torkar, K., J. Catalysis (1972) 26, 18. Spath, H. T., Torkar, K., J. Catalysis (1972) 26, 163. Baker, T. N., Mains, G. J., Sheng, M. N., Zatacek, J. G., J. Org. Chem. (1973) 38, 1145. Sheldon, R. Α., Van Doorn, J. Α., J. Catalysis (1973) 31, 427. Su, C. C., Reed, J. W., Gould, E. S., Inorg. Chem. (1973) 12, 337. Trifirò, F., Forzatti, P., Preite, S., Pasquon, I., J. Less Common Metals (1974) 36, 319. Fujimoto, K., Negami, Y., Takahashi, T., Kunugi, T., Ind. Eng. Chem., Prod. Res. Develop. (1972) 11, 303. Forzatti, P., Trifirò, F., Pasquon, I., Chim. Ind. (1974) 56, 259. Walsh, M. Α., Katzer, J. R., Ind. Eng. Chem., Process Design Develop. (1973) 12, 477. Pignet, T., Schmidt, L. D., Chem. Eng. Sci. (1974) 29, 1123. Kadler, B., Hudgins, R. R., Silveston, P. L., Chem. Eng. Sci. (1973) 28, 935. De Wilt, H . G. J., Van Der Baan, H . S., Ind. Eng. Chem., Prod. Res. Develop. (1972) 11, 374. Hobbs, C. C., Drew, Ε. Η., Van't Hoff, Η. Α., Mesich, F. G., Onorem, J., Ind. Eng. Chem., Prod. Res. Develop. (1972) 11, 220. Gurumurthy, C. C., Govindarao, V. M. H., Ind. Eng. Chem., Fundamentals (1974) 13, 9. Dente, M., Ranzi, E., Quiroga, S. P., Biardi, G., Chim. Ind. (1973) 55, 563. Pitzer, E. W., Ind. Eng. Chem., Prod. Res. Develop. (1972) 11, 299. Collina, Α., Malfatti, E., Cappelli, Α., Italian Patent 955,507 corresponding to German Patent Application 2,324,164.
50. Calderbank, P. H., ADVAN. C H E M . SER. (1974) 133, 646.
51. Wainwright, M. S., Hoffmann, T. W., ADVAN. CHEM. SER. (1974) 133, 669. 52. Kuo, J. C. W., Horgan, C. R., Lassen, H. G., SAE Automotive Eng. Congr., Detroit, Jan. 1972, paper 710289. 53. Kuo, J. C. W., Prater, C. D., Osterhout, D. P., Snyder, P. W., Wej, J., Int. Automobile Tech. Congr. FISITA, 14th, London, June 1972, paper 2/14. 54. Langmuir,.I., Trans. Faraday Soc. (1922) 17, 621. 55. Sklyarov, Α. V., Tretyakov, I. I., Shad, B. R., Roginski, S. Z., Dokl. Phys. Chem. (1969) 189, 829.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
CAPPELLi
56. 57. 58. 59.
Su, E. C., Shishu, R. C., private communication, 1972. Soloveva, L. S., RussianJ.Phys. Chem. (1960) 34, 586. Shishu, R. C., Ph.D. Dissertation, University of Detroit (1972). Harned, J . L., SAE Nat. Automotive Eng. Congr., Detroit, May 1972, paper 720520. Taylor, K. C., unpublished results (1971). Laidler, J. K., Catalysis (1954) 1, 16. Schwab, G. M., Gossner, I. Α., Phys. Chem.,N.F.(1958) 16, 39. Parravano, G., J. Am. Chem. Soc. (1953) 75, 1448. Taibl, D. B., Simons, J. B., Carberry, J. J., Ind. Eng. Chem., Fundamentals (1966) 5, 171. Coekelbergs, R., Collin, R., Cruez, Α., Decot, J., Degols, L.,Timmerman, L., J. Catalysis (1967) 7, 85. Kalman, T. J., Duovkovic, M., Clearfield, Α., ADVAN. CHEM. SER. (1974) 133, 654. Young, L. C., Finlayson, Β. Α., ADVAN. CHEM. SER. (1974) 133, 629. Ferguson, Ν. B., Finlayson, D. Α., AIChE Meetg., Philadelphia, Nov. 1973. Wei, J., Chem. Eng. Progr., Monograph Ser. (1969) 6, 65. Alagy, J., Trambouze, P., Van Landeghem, H., ADVAN. CHEM. SER. (1974) 133, 644.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch008
60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70.
Oxidation Reaction Engineering
231
8.
RECEIVED December 4, 1974.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.