15 Chemically Derivatized Semiconductor Photoelectrodes
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
A Technique for the Stabilization of n-Type Semiconductors 1
MARK S. WRIGHTON , ANDREW B. BOCARSLY, JEFFREY M. BOLTS, MARK G. BRADLEY, ALAN B. FISCHER, NATHAN S. LEWIS, MICHAEL C. PALAZZOTTO, and ERICK G. WALTON Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
Pretreated Au, Pt, n-type Si, and n-type Ge can be deriva tized with trichlorosilylferrocene, (1,1'-ferrocenediyl)dichlorosilane, and 1,1'-bis(triethoxysilyl)ferrocene to yield elec troactive, surface-attached, oligomeric ferrocene material. Derivatized, n-type semiconductors exhibit photoeffects expected for such an electrode material; irradiated deriva tized n-type Si can be used to effect the oxidation of solution reductants by mediated electron transfer, unique proof for which comes from the semiconductor electrode that responds to two stimuli, light and potential. The sustained, mediated oxidation of Fe(CN) in aqueous solution in an uphill sense by irradiation of derivatized n-type Si is pos sible whereas a naked n-type Si undergoes decomposition to SiO at a rate too fast to allow sustained energy conver sion. This establishes the principle of manipulating inter facial charge-transfer kinetics for practical applications. 4-
6
x
S
emiconductor-based
p h o t o e l e c t r o c h e m i c a l cells h a v e p r o v e d t o g i v e
t h e h i g h e s t efficiency o p t i c a l t o c h e m i c a l ( 1 , 2 , 3 ) a n d e l e c t r i c a l ( 4 )
e n e r g y c o n v e r s i o n o f a n y w e t c h e m i c a l system. T h e h i g h e s t solar e n e r g y c o n v e r s i o n efficiency c l a i m e d ( 4 ) thus f a r is 1 2 % f o r a n n - t y p e G a A s 1
Author to whom inquiries are to be addressed. 0-8412-0474-8/80/33-184-269$06.75/0 © 1980 American Chemical Society Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
270
INTERFACIAL
PHOTOPROCESSES
b a s e d c e l l e m p l o y i n g a n a q u e o u s e l e c t r o l y t e s o l u t i o n of S e " . S u s t a i n e d n
2
c o n v e r s i o n of l i g h t to e l e c t r i c i t y i n a l i q u i d j u n c t i o n d e v i c e e m p l o y i n g a n o n - o x i d e n - t y p e s e m i c o n d u c t o r has d e p e n d e d o n t h e d i s c o v e r y of r e d u c t a n t s t h a t are c a p a b l e of c a p t u r i n g p h o t o g e n e r a t e d rate t h a t p r e c l u d e s p h o t o a n o d i c Photoanodic
decomposition
decomposition
of t h e
is e n e r g e t i c a l l y p o s s i b l e
(5-12)
holes at a
semiconductor. for
(13,14)
any
n - t y p e s e m i c o n d u c t o r i m m e r s e d i n a l i q u i d e l e c t r o l y t e exposed t o b a n d g a p , or greater, e n e r g y l i g h t . F o r a l l non-oxides s t u d i e d thus f a r , H 0 is 2
n o t o x i d i z e d i n t e r f a c i a l l y at a rate t h a t c o m p e t e s w i t h the o m n i p r e s e n t photoanodic
decomposition.
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
T h e t e c h n i q u e of n - t y p e s e m i c o n d u c t o r s t a b i l i z a t i o n b y a d d i n g r e d u c t a n t s to the s o l u t i o n does not a l l o w t h e e l e c t r o d e
to b e u s e d
to
d i r e c t l y d r i v e a n y other o x i d a t i o n r e a c t i o n other t h a n t h e o x i d a t i o n of t h e a d d i t i v e . B y w a y of contrast, the k i n e t i c a l l y i n e r t n - t y p e s e m i c o n d u c t i n g oxides s u c h as T i 0
c a n b e u s e d to effect a n u m b e r of
2
i n c l u d i n g o x i d a t i o n of H 0 (15-20) 2
a n d h a l i d e s (21,22).
oxidations
B u t t h e oxides
suffer f r o m e i t h e r h a v i n g s u c h a l a r g e b a n d gap t h a t o n l y short w a v e l e n g t h l i g h t is effective
or h a v i n g a set of e n e r g y
m a t c h e d to t h e r e d o x reactions of interest (23,24). cells d o n o t r e q u i r e r i g o r o u s p r o t e c t i o n f r o m 0
levels i m p r o p e r l y Inert
oxide-based
as d o cells e m p l o y i n g
2
h i g h l y r e d u c e d s t a b i l i z i n g reagents s u c h as S ", S e " , a n d T e * 2
2
(4,5-11).
2
N o n a q u e o u s e l e c t r o l y t e solutions m a y offer some advantages w i t h respect to b o t h energetics a n d k i n e t i c s at the i n t e r f a c e (12,13,25-28), solution conductivity compared
w i t h aqueous
potential difficulty. A l s o , i n nonaqueous from both 0
2
but lower
e l e c t r o l y t e systems is a
e l e c t r o l y t e systems
protection
a n d H 0 m a y b e r e q u i r e d f o r l o n g t e r m constant o p e r a t i o n . 2
I n this c h a p t e r w e o u t l i n e o u r results c o n c e r n i n g a n e w
technique
a i m e d at u l t i m a t e l y y i e l d i n g stable s e m i c o n d u c t o r - l i q u i d interfaces f o r optical energy transduction.
B a s i c a l l y , o u r a p p r o a c h is to
covalently
a t t a c h a r e d u c i n g reagent ( A ) to t h e surface of t h e s e m i c o n d u c t o r that the photogenerated hole r a p i d l y yields A , w h i c h i n turn +
s o m e s o l u t i o n r e d u c t a n t (B)
f o r m i n g B\ thus r e g e n e r a t i n g t h e
such
oxidizes surface
r e d u c t a n t . T h e c r u c i a l difference b e t w e e n a " n a k e d " a n d a " d e r i v a t i z e d " electrode is t h a t t h e net o x i d a t i o n , B -> B , is effected b y a h o l e l o c a l i z e d +
i n s e m i c o n d u c t o r e l e c t r o n i c levels i n t h e f o r m e r a n d b y a discrete m o l e c u l a r o x i d a n t i n t h e latter. W h i l e the p h o t o g e n e r a t e d is a sufficiently p o w e r f u l o x i d a n t t h a t t h e B - » B
+
h o l e i n e i t h e r case
r e a c t i o n is t h e r m o d y
n a m i c a l l y p o s s i b l e , t h e k i n e t i c s for net o x i d a t i o n of B to B w i l l b e d i f +
ferent i n t h e t w o cases.
A n important advantage
of the d e r i v a t i z e d
electrodes is t h a t t h e s t r u c t u r e of A c a n b e v e r y w e l l k n o w n , since A m a y b e a s m a l l m o l e c u l e . M a n i p u l a t i n g t h e n a t u r e of A , a n d h e n c e t h e n a t u r e of t h e surface e x p o s e d to t h e s o l u t i o n , m a y result i n m a j o r changes i n t h e k i n e t i c s of t h e net i n t e r f a c i a l c h a r g e - t r a n s f e r reactions.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
15.
WRIGHTON E T AL.
Derivatized
E l e c t r o a n a l y t i c a l (25-28)
Semiconductor
271
Photoelectrodes
a n d surface a n a l y s i s (29,30,81)
indicate
t h a t e l e c t r o n i c levels at t h e surface f a c i l i t a t e e l e c t r o n transfer to s o l u t i o n species.
S u c h surface states m a y c o n t r o l b o t h energetics a n d k i n e t i c s .
Derivatizing
electrode
surfaces
with
electroactive
molecules
can
v i e w e d as a d e s i g n e d i n t r o d u c t i o n of surface states t h a t c a n b e
be well
c h a r a c t e r i z e d f r o m t h e p o i n t of v i e w of s t r u c t u r e , k i n e t i c s , a n d energetics. D e r i v a t i z e d surfaces are i n t e r e s t i n g i n a d d i t i o n a l w a y s r e l a t e d to t h e s t a b i l i z a t i o n a n d efficient u t i l i z a t i o n of s e m i c o n d u c t o r - l i q u i d interfaces. F i r s t , d e r i v a t i z a t i o n of t h e surface w i t h m o l e c u l e s e n d o w s t h e surface w i t h m o l e c u l a r specific p r o p e r t i e s . A s a p r o t o t y p e , note t h a t d e r i v a t i z a Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
t i o n of a c o n v e n t i o n a l e l e c t r o d e surface w i t h a c h i r a l m o l e c u l e results i n a n a b i l i t y to p r o d u c e o p t i c a l l y a c t i v e e l e c t r o c h e m i c a l p r o d u c t s Second, the achievement
(4)
(32).
of a 1 2 % - e f f i c i e n t , n - t y p e G a A s - b a s e d
l i q u i d j u n c t i o n c e l l d e p e n d s o n a surface p r e t r e a t m e n t t h a t changes t h e i n t e r f a c e e l e c t r o n i c states so t h a t a h i g h e r o u t p u t v o l t a g e c a n b e o b t a i n e d . D e r i v a t i z a t i o n m a y y i e l d s i m i l a r effects, i n a d d i t i o n to a l l o w i n g d e s i g n e d m a n i p u l a t i o n of c h a r g e - t r a n s f e r k i n e t i c s . F i n a l l y , b y p h y s i c a l l y separat i n g t h e s e m i c o n d u c t o r surface f r o m t h e l i q u i d a n d / o r t a k i n g a d v a n t a g e of h y d r o p h o b i c - h y d r o p h i l i c b a r r i e r s to c h a r g e transfer a n d solvent acces s i b i l i t y , d e r i v a t i z a t i o n of surfaces w i t h p o l y m e r s ( e l e c t r o a c t i v e or n o t ) m a y a l l o w t h e d e s i g n of interfaces h a v i n g v e r y different p r o p e r t i e s . F o r e x a m p l e , m i c e l l e s h a v e d e m o n s t r a t e d (33)
efficient p h o t o i n d u c e d elec
t r o n transfer w i t h s l o w b a c k r e a c t i o n , b u t h a v e n o t b e e n p r a c t i c a l l y u s e f u l since t h e p h o t o s e p a r a t e d charges c o u l d n o t b e c o l l e c t e d .
The
d e r i v a t i z e d e l e c t r o d e surfaces m a y a l l o w t h e e x p l o i t a t i o n of s u c h effects. I n o u r studies t o date w e h a v e b e e n m a i n l y c o n c e r n e d w i t h d e r i v a t i z i n g s m a l l b a n d g a p m a t e r i a l s w i t h t h e a i m of m a n i p u l a t i n g c h a r g e transfer k i n e t i c s t o p r e v e n t p h o t o a n o d i c d e c o m p o s i t i o n of t h e s e m i c o n d u c t o r . O t h e r w o r k e r s h a v e u n d e r t a k e n t h e d e r i v a t i z a t i o n of i n e r t , b u t w i d e b a n d g a p , oxides s u c h as S n 0 a n d T i 0 2
2
w i t h visible-light-absorbing
d y e m o l e c u l e s (34-^37). T h e p a r t i c u l a r e m p h a s i s i n these systems has b e e n to sensitize t h e w i d e b a n d g a p oxides to v i s i b l e l i g h t f o r t h e H 0 2
s p l i t t i n g r e a c t i o n , b u t t h e o x i d i z e d f o r m of d y e m o l e c u l e s p r o d u c e d b y o p t i c a l e x c i t a t i o n o n t h e surface is g e n e r a l l y i n c a p a b l e of e v o l v i n g
0
2
f r o m H 0 . F u r t h e r , i n one pass of t h e l i g h t , t h i n l a y e r s of d y e m o l e c u l e s 2
are i n c a p a b l e of a b s o r b i n g a l a r g e f r a c t i o n of t h e i n c i d e n t i r r a d i a t i o n . I t is also n o t c l e a r w h e t h e r t h e efficiency of g e n e r a t i o n of s e p a r a t e d e l e c t r o n - h o l e p a i r s w i l l b e h i g h , o w i n g to t h e fact t h a t t h e e l e c t r o n - h o l e p a i r s are g e n e r a t e d i n t h e d y e m o l e c u l e a n d t r a n s f e r of a n e l e c t r o n t o t h e c o n d u c t i o n b a n d of t h e s e m i c o n d u c t o r m a y n o t b e c o m p l e t e l y effi cient. I n o u r e x p e r i m e n t s t h u s f a r t h e a i m has b e e n to d e r i v a t i z e elec trodes w i t h a r e d o x c o u p l e A*/A
t h a t is t r a n s p a r e n t to v i s i b l e l i g h t so
t h a t l i g h t a b s o r p t i o n results i n e l e c t r o n - h o l e p a i r g e n e r a t i o n i n a r e g i o n
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
272
INTERFACIAL
of h i g h field n e a r t h e surface of t h e s e m i c o n d u c t o r .
PHOTOPROCESSES
T h e systems w h i c h
h a v e r e c e i v e d d e t a i l e d s t u d y a t this p o i n t a r e n - t y p e G e (38) 40) h a v i n g b a n d gaps of 0.7 a n d 1.1 e V (41),
a n d S i (39,
respectively, derivatized (OEt)
SiCl
a
Fe
2
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
(EtO)sSi III
II w i t h t h e h y d r o l y t i c a l l y u n s t a b l e ferrocenes (l,r-ferrocenediyl)dichlorosilane
trichlorosilylferrocene
(I),
(II), a n d l , l - f o w ( t r i e t h o x y s i l y l ) f e r r o /
cene (III). F o r purposes of c o m p a r i s o n i n terms of e l e c t r o c h e m i c a l b e h a v i o r , A u (42)
a n d P t (43,44)
electrodes h a v e b e e n d e r i v a t i z e d w i t h
I, II, a n d III a n d c h a r a c t e r i z e d b y e l e c t r o a n a l y t i c a l t e c h n i q u e s . Working
Hypotheses
We
set o u t t o i l l u s t r a t e t h e p r i n c i p l e s of p h o t o e l e c t r o a c t i v i t y
of
s u r f a c e - a t t a c h e d r e d o x c o u p l e s w h e r e t h e surface is a n n - t y p e s e m i c o n ductor.
O u r w o r k i n g hypotheses center a b o u t t h e m o d e l f o r t h e ener
getics of t h e n - t y p e s e m i c o n d u c t o r - l i q u i d i n t e r f a c e (44).
F i g u r e 1 shows
a c o m p a r i s o n of t h e i n t e r f a c i a l energetics f o r a n a k e d n - t y p e
semicon
d u c t o r a n d f o r t h e same s e m i c o n d u c t o r d e r i v a t i z e d w i t h a r e d o x c o u p l e , A*/A,
where E
BG
is t h e s e m i c o n d u c t o r b a n d g a p , E is t h e f e r m i l e v e l , o r t
e l e c t r o c h e m i c a l p o t e n t i a l of t h e s e m i c o n d u c t o r , E edox (A*/A)
a n d E dox
r
re
are t h e e l e c t r o c h e m c i a l p o t e n t i a l s of a t t a c h e d a n d s o l u t i o n c o u
(B /B) +
ples, respectively, a n d £ B a n d E B are the valence-band a n d conductionV
C
b a n d p o s i t i o n s , r e s p e c t i v e l y , o n a n e l e c t r o c h e m i c a l p o t e n t i a l scale.
We
assume here a n i d e a l s i t u a t i o n w h e r e there a r e n o surface states b e t w e e n E B and E V
C
B
a n d t h e p o s i t i o n of E
V
B
a n d E B is i n d e p e n d e n t of w h e t h e r C
o r n o t t h e A / A c o u p l e is a t t a c h e d . A t c h a r g e - t r a n s f e r e q u i l i b r i u m i n t h e +
dark, E , E F
redox
and E d
(A /A),
r e
0 X
(B /B) +
m u s t a l l b e t h e same, b u t
u p o n illumination at open-circuit w i t h photons w i t h potentials than E E
F
B
B
G t h e v a l u e of E
t
, and |E
r e d 0
T h e v a l u e of E
— E
x (B /B) +
R E D O X
approaches
(A /A) +
F B
the so-called
flat-band
| represents t h e m a x i m u m
c a n be no more positive than E
greater
potential,
photovoltage. V
B
, a n d repre
sents t h e m a x i m u m o x i d i z i n g p o w e r t h a t c a n b e a c h i e v e d u n d e r i l l u m i n a t i o n . T h e p o s i t i o n of E
r e d
o x (A*/A)
is d i s c u s s e d i n m o r e d e t a i l b e l o w . A s
is o f t e n f o u n d , w e assume t h a t t h e n - t y p e s e m i c o n d u c t o r
e l e c t r o d e is
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Figure
I.
LIQUID
_ J(B/_Bj_ -E^/A) VB
COUNTERELECTRODE
H§J3l. -E(A /A)
LIQUID
"VB
.
XB
LOAD
LIQUID
E(B /B) ^"E(A /A) VB
CB
COUNTERELECTRODE
(b) ILLUMINATED OPEN-CIRCUIT
SEMICONDUCTOR
i Valence Band
BG
Conduction Band
External Circuit
+
Interface energetics for an n-type semiconductor derivatized immersed in a solution of B / B
+
COUNTERELECTRODE
with the redox couple A / A and
(c) ENERGETICS FOR ILLUMINATED CELL IN OPERATION
J~ SEMICONDUCTOR
Valence Band
BG
induction Band
(a) DARK EQUILIBRIUM or ILLUMINATED SHORT-CIRCUIT
SEMICONDUCTOR
Valence Band
"BG
Conduction Band
CB
External Circuit
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
3
8-
o
3
ft.
>
W H
o a
3
01
274
INTERFACIAL
PHOTOPROCESSES
b l o c k i n g to o x i d a t i o n r e a c t i o n s i n t h e d a r k , e v e n f o r t h e s u r f a c e - a t t a c h e d c o u p l e . O w i n g t o t h e b a r r i e r t o e l e c t r o n transfer, r e d u c t i o n s at t h e n - t y p e s e m i c o n d u c t o r are s l u g g i s h f o r E
more positive than E
t
t h e v a l u e of E
m a y be more negative than E
t
r e d 0
x.
F
B
, even though
This rectifying junc
t i o n is s i m i l a r t o a S c h o t t k y b a r r i e r w h e r e t h e l i q u i d p l a y s t h e r o l e of a metal having E
t
E
=
( B / B ) . I n this i d e a l m o d e l , the m a x i m u m out +
r e d o x
p u t s f o r t h e n a k e d a n d d e r i v a t i z e d electrodes
a r e t h e same.
A t short
c i r c u i t u n d e r i l l u m i n a t i o n , t h e i n t e r f a c i a l energetics are t h e same as i n t h e d a r k at c h a r g e t r a n s f e r e q u i l i b r i u m , f o r fast e q u i l i b r a t i o n of A / A +
with B / B . +
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
W h e n a c t u a l l y o p e r a t i n g , t h e o b j e c t i v e is to m a x i m i z e t h e v a l u e of q u a n t u m y i e l d for e l e c t r o n Eredox ( B / B ) | , w h e r e
E
+
t
flow
() t i m e s t h e o u t p u t v o l t a g e | E — e
f
is m o r e n e g a t i v e t h a n E
on
(B*/B)
redox
the
e l e c t r o c h e m i c a l scale. S i n c e t h e r e m u s t b e s o m e a m o u n t of b a n d b e n d i n g t o separate e l e c t r o n - h o l e p a i r s a n d to p r e v e n t b a c k e l e c t r o n t r a n s f e r , E must be somewhat more positive than E
F
B
. N e t B —» B
+
f
c o n v e r s i o n is i n
competition w i t h direct electron-hole recombination i n the semiconductor a n d b a c k e l e c t r o n transfer to r e d u c e B b a c k to B . S e m i c o n d u c t o r - l i q u i d +
i n t e r f a c e d i a g r a m s f o r a c e l l i n o p e r a t i o n are i n c l u d e d i n F i g u r e 1. t h e d e r i v a t i z e d e l e c t r o d e , t h e v a l u e of E must be situated between E
red
ox ( A / A )
For
during operation
+
( B / B ) a n d E B , b u t the position w i l l +
r e d o x
V
d e p e n d o n t h e rate of e q u i l i b r a t i o n w i t h t h e B / B c o u p l e r e l a t i v e t o t h e +
rate of o x i d a t i o n b y p h o t o g e n e r a t e d holes. tion A
+
I t is d e s i r a b l e t h a t t h e r e a c
- f B - » B p r o c e e d s at a rate faster t h a n t h a t f o r t h e h o l e o x i d a t i o n +
of B f o r t h e n a k e d s e m i c o n d u c t o r case.
B u t the ultimate advantages a n d
u t i l i t y d o n o t n e c e s s a r i l y d e p e n d o n t h i s p r o p e r t y , since m o l e c u l a r s p e c i ficity,
f o r e x a m p l e , n e e d n o t i n v o l v e fast rates.
Rationale
for
Choice of Systems Studied
S e v e r a l factors
governed
o u r c h o i c e of i n i t i a l systems
F i r s t , studies i n t h i s l a b o r a t o r y (12)
for
study.
e s t a b l i s h e d t h a t f e r r o c e n e is c a p a b l e
of c a p t u r i n g p h o t o g e n e r a t e d holes a t n - t y p e S i a t a rate t h a t w o u l d p r e c l u d e p h o t o a n o d i c surface r e a c t i o n t o p r o d u c e i n s u l a t i n g SiO^. l a y e r s i n a n o n a q u e o u s e l e c t r o l y t e s o l u t i o n . F u r t h e r , t h e surface of S i bears f u n c t i o n a l g r o u p s t h a t a l l o w c o v a l e n t a t t a c h m e n t of substances s u c h as I, II, A
surface—OH +
R^RaSi—CI
surface—OH +
R R R Si—0R
surface—0—SiRiR R + 2
3
HC1
(1)
A 1
2
3
4
-> s u r f a c e — 0 — S i R i R R + 2
3
R 0H 4
(2)
o r III b y t h e g e n e r a l r e a c t i o n i n d i c a t e d i n E q u a t i o n s 1 o r 2. S u c h surface d e r i v a t i z a t i o n c h e m i s t r y has a m p l e p r e c e d e n c e i n a n u m b e r of areas ( 4 5 , 46,47)
i n c l u d i n g d e r i v a t i z a t i o n of
reversible
electrodes
(48,49,50).
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
15.
WRIGHTON E T AL.
Derivatized
Semiconductor
Photoelectrodes
275
T h u s , w e have c o m b i n e d the general chemistry represented i n E q u a t i o n s 1 a n d 2 w i t h t h e finding t h a t f e r r o c e n e n e u t r a l i z e s holes at S i at a fast rate ( 1 2 ) .
W e also b e g a n w i t h t h e k n o w l e d g e t h a t s i m p l e d e r i v a t i v e s
of f e r r o c e n e a n d f e r r o c e n e i t s e l f d o n o t h a v e s u b s t a n t i a l l y different r e d o x properties
(kinetics a n d energetics)
(51).
Examining derivatized G e
(38)
w a s a n o u t g r o w t h of t h e w o r k o n S i (49,40),
(42)
a n d P t (42,43)
a n d the work on A u
surfaces w a s u n d e r t a k e n t o e s t a b l i s h s o m e p o i n t s
of reference w i t h respect to energetics a n d k i n e t i c s of e l e c t r o n t r a n s f e r of a t t a c h e d f o r m s of f e r r o c e n e
f r o m r e a c t i o n of I, II, o r III w i t h
the
f u n c t i o n a l i z e d surface.
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
T h e systems t h a t are d i s c u s s e d h e r e a r e p r o t o t y p i c ; a n u m b e r
of
different systems c a n n o w b e e n v i s i o n e d a n d w o r k is u n d e r w a y to e l a b o rate t h e c o n c e p t s d e s c r i b e d h e r e i n . O u r a i m has b e e n to i l l u s t r a t e s o m e n e w t e c h n i q u e s f o r p o t e n t i a l u t i l i z a t i o n , c o n v e r s i o n , a n d storage of o p t i cal
energy.
Results
and
Discussion R e a c t i o n of p r e t r e a t e d
Derivatized A u and Pt Electrodes (42,43). (anodized)
A u or P t e l e c t r o d e surfaces w i t h isooctane s o l u t i o n s of I , II,
or III at r o o m t e m p e r a t u r e results i n t h e a t t a c h m e n t of material.
electroactive
T h i s is d e t e r m i n e d b y c y c l i c v o l t a m m e t r y of t h e d e r i v a t i z e d
electrodes i n n o n a q u e o u s e l e c t r o l y t e solutions c o n t a i n i n g n o d e l i b e r a t e l y a d d e d electroactive materials. Some representative electroanalytical data (42,43)
are i n c l u d e d i n T a b l e I, a n d t h e c y c l i c v o l t a m m e t r i c scans i n
F i g u r e 2 are t y p i c a l . T h e e s s e n t i a l findings a r e as f o l l o w s : t h e e l e c t r o a c t i v e m a t e r i a l is l i k e l y o l i g o m e r i c , e s s e n t i a l l y r e v e r s i b l y e l e c t r o a c t i v e , a n d p e r s i s t e n t l y a t t a c h e d ; i n m o s t respects, t h e p r o p e r t i e s of t h e d e r i v a t i z e d surfaces are as e x p e c t e d Table I.
(52)
for a surface-attached, reversible,
Anodic Peak Positions for Derivatized Electrodes
Electrode Material
Derivatizing Reagent
Pt° Pt Pt° Au° n-type Ge* n-type Ge* n-type S i * n-type S i *
I II III II I II I II
a
EiPA CV vs.
0.53 0.51 0.60 0.47 -0.3 -0.3 -0.1 -0.05
(avg. (avg. (avg. (avg.
of of of of
SCE)
7 electrodes) 10 electrodes) 7 electrodes) 20 electrodes)
" M e t a l electrodes are for C H C N / 0 . 1 M [ n - B u N ] C 1 0 electrolyte solution. Cyclic voltammetry reveals reversible behavior. F o r semiconductor electrodes the most negative photoanodic peaks are given for E t O H / O . l M " n - B u N ] C 1 0 electrolyte solution. 3
4
4
b
4
4
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
INTERFACIAL
276
PHOTOPROCESSES
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
T
I
I
I
I
I
I
-0.2
Q0
+0.2
+0.4
+0.6
Potential, V vs
i
I
+0.8
SCE
Figure 2. Cyclic voltammograms for Au derivatized with 11 as a function of scan rate in 0.1 M [n-Bu N]Cl0 in CH CN at 298 K. Coverage of electroactive material is 6.2 X 10~ mol/cm . The inset shows a plot of peak anodic current against scan rate. 4
4
S
9
2
o n e - e l e c t r o n r e d o x c o u p l e . C y c l i c v o l t a m m e t r y reveals t h a t e l e c t r o a c t i v e surfaces r e m a i n e s s e n t i a l l y u n c h a n g e d f o r e i g h t w e e k s of shelf storage a n d c a n be c y c l e d between oxidized a n d reduced f o r m thousands t i m e s w i t h o u t d e t e r i o r a t i o n . F o r t y p i c a l electrodes t h e E°
of
for the at
t a c h e d m a t e r i a l is w i t h i n 100 m V of t h e v a l u e ( 5 1 ) f o r E ° ( f e r r i c e n i u m / f e r r o c e n e ) i n s o l u t i o n , as has b e e n g e n e r a l l y f o u n d f o r o t h e r d e r i v a t i z e d
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
15.
WRIGHTON E T AL.
electrodes.
Derivatized
Semiconductor
277
Photoelectrodes
G e n e r a l l y t h e p e a k c u r r e n t is d i r e c t l y p r o p o r t i o n a l t o s c a n
rate, at least u p t o 200 m V / s e c . T h o u g h t h e s e p a r a t i o n of t h e a n o d i c a n d c a t h o d i c c u r r e n t p e a k s g e n e r a l l y increases at fast s c a n rates, t h e p e a k - t o p e a k s e p a r a t i o n c a n b e n e a r l y z e r o a n d w e l l b e l o w 60 m V f o r s c a n rates as h i g h as 500 m V / s e c . T h e r e is at least one p r o p e r t y of t h e d e r i v a t i z e d P t a n d A u electrodes t h a t is n o t i n a c c o r d w i t h t h e n o t i o n of a r e v e r s i b l e , o n e - e l e c t r o n r e d o x c o u p l e b o u n d to t h e surface of a r e v e r s i b l e e l e c t r o d e — t h e f u l l w i d t h of t h e c y c l i c v o l t a m m e t r i c w a v e s at h a l f h e i g h t is t y p i c a l l y i n t h e r a n g e of 2 0 0 - 3 0 0 m V r a t h e r t h a n t h e 90 m V t h e o r e t i c a l l y e x p e c t e d ( 5 2 ) .
Values
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
n e a r t h e t h e o r e t i c a l v a l u e of 90 m V h a v e b e e n o b t a i n e d i n other systems; i n p a r t i c u l a r , p o l y v i n y l f e r r o c e n e o n P t gives c y c l i c v o l t a m m e t r i c w a v e s t h a t are c o n s i d e r a b l y s h a r p e r ( 5 3 ) t h a n those w e h a v e f o u n d for d e r i v a t i z a t i o n of A u a n d P t w i t h I, II, a n d II. P t a n d A u electrodes d e r i v a t i z e d w i t h II h a v e b e e n s u b j e c t e d analysis b y e l e c t r o n s p e c t r o s c o p y (54);
to
these results a n d those f r o m t h e
e l e c t r o a n a l y t i c a l c h a r a c t e r i z a t i o n are i n a c c o r d w i t h a surface t h a t has o l i g o m e r s of t h e e l e c t r o a c t i v e ferrocene u n i t s l i n k e d b y - S i - O - S i - b o n d s . T h e e l e c t r o n spectroscopy of d e r i v a t i z e d surfaces a n d e l e m e n t a l analyses of substances f o r m e d b y e x p o s i n g II to a i r a n d m o i s t u r e i n d i c a t e t h a t t h e ferrocene u n i t s d o not r e m a i n c o m p l e t e l y i n t a c t u p o n r e a c t i o n . T h e d a t a i n d i c a t e loss of i r o n f r o m t h e m a t e r i a l , a fact n o t i n c o n s i s t e n t w i t h k n o w n s u s c e p t i b i l i t y of ferrocenes t o d e c o m p o s i t i o n i n n o n a q u e o u s solutions c o n taining nucleophiles (55).
Nonetheless, the cyclic voltammetry demands
t h e presence of e l e c t r o a c t i v e m a t e r i a l p e r s i s t e n t l y a t t a c h e d to t h e surface. T h e loss of i r o n a n d t h e v a r i o u s p o s s i b l e o l i g o m e r i c structures l i k e l y cause the rather b r o a d cyclic voltammetric waves on A u a n d Pt. W e
have
a d o p t e d t h e i n t e r p r e t a t i o n t h a t t h e r e is a v a r i e t y of ferrocene u n i t s o n t h e surface, essentially i n d e p e n d e n t of surface c o v e r a g e , e a c h w i t h its o w n E ° . Derivatized w-Type Si (39,40).
R e a c t i o n of s i n g l e c r y s t a l S i a n d
G e surfaces w i t h I, II, a n d III results i n t h e persistent a t t a c h m e n t of e l e c t r o a c t i v e m a t e r i a l . T a b l e I i n c l u d e s some e l e c t r o a n a l y t i c a l d a t a f o r these d e r i v a t i z e d surfaces.
F i g u r e s 3, 4, a n d 5 s h o w a r e p r e s e n t a t i v e
e l e c t r o a n a l y t i c a l c h a r a c t e r i z a t i o n of a d e r i v a t i z e d n - t y p e S i e l e c t r o d e ; F i g u r e 6 shows t h e c o m p a r a b l e d a t a f o r a n a k e d n - t y p e S i e l e c t r o d e i n t h e same e l e c t r o l y t e s o l u t i o n . T h e c y c l i c v o l t a m m o g r a m s of t h e n a k e d elec trode i n the electrolyte solution illustrate the p r o b l e m w i t h n-type photo a n o d e s ; t h e p h o t o a n o d i c c u r r e n t c o r r e s p o n d s to t h e g r o w t h of a n i n s u l a t i n g l a y e r of o x i d e m a t e r i a l ( S i O * ) t h a t c a n n o t b e r e d u c e d o v e r t h e p o t e n t i a l r a n g e s c a n n e d . I t is this r e a c t i o n t h a t m u s t b e s u p p r e s s e d i n t h e use of n - t y p e S i as a p h o t o a n o d e .
T h e solvent i n F i g u r e 6 is C H C N 3
a n d t h e source of t h e o x i d e o x y g e n is t r a c e H 0 i n s o l u t i o n . A l s o , n a k e d 2
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
INTERFACIAL
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
278
Potential , V vs
PHOTOPROCESSES
SCE
Figure 3. Cyclic voltammograms for derivatized n-type Si showing tative effects of light intensity. "Mono-Claw" is reagent I.
quali
S i bears a n o x i d e l a y e r of some thickness t h a t a p p a r e n t l y does n o t p r e c l u d e e l e c t r o n transfer. U n d e r t h e c o n d i t i o n s s h o w n , less t h a n 10" C / c m 2
2
effectively passivates the surface to the flow of p h o t o a n o d i c c u r r e n t . C o n s e q u e n t l y , p r o t e c t i o n of n - t y p e
S i f r o m surface p h o t o a n o d i c
reaction
d e p e n d s o n e x t r e m e l y c o m p e t i t i v e h o l e c a p t u r e processes. F o r e x a m p l e , a s s u m i n g t h a t a m b i e n t solar i n t e n s i t y w o u l d y i e l d a b o u t 40 m A / c m c u r r e n t d e n s i t y , a h o l e c a p t u r e process t h a t w a s o n l y 9 9 . 9 9 %
2
of
efficient
c o u l d s t i l l l e a d t o S i O * f o r m a t i o n at a rate t h a t w o u l d r e n d e r t h e c e l l u s e less i n a p p r o x i m a t e l y 1 h o u r . T h e c y c l i c v o l t a m m e t r y d a t a i n c l u d e d i n F i g u r e s 3, 4, a n d 5 c a n b e r e p e a t e d a n u m b e r of times w i t h o u t significant v a r i a t i o n i n t h e essential p r o p e r t i e s , e v i d e n c i n g p r o t e c t i o n f r o m gross o x i d e g r o w t h f o u n d f o r t h e n a k e d electrode u n d e r t h e same c o n d i t i o n s . W e w i l l a m p l i f y this p o i n t below. D e r i v a t i z e d n - t y p e S i e x h i b i t s l i t t l e or n o a n o d i c c u r r e n t i n t h e d a r k , b u t i l l u m i n a t i o n w i t h l i g h t of greater t h a n £ G results i n t h e B
flow
of
a n o d i c c u r r e n t . T h e c a t h o d i c r e t u r n p e a k is o b s e r v e d w h e t h e r the l i g h t is o n o r not, b u t the c a t h o d i c c u r r e n t p e a k p o s i t i o n is l i g h t d e p e n d e n t , since t h e net c u r r e n t flow w h e n t h e l i g h t is o n is t h e s u m of d a r k c a t h o d i c p l u s p h o t o a n o d i c c u r r e n t . A t a sufficiently h i g h l i g h t i n t e n s i t y , t h e p e a k a n o d i c c u r r e n t is d i r e c t l y p r o p o r t i o n a l to s c a n rate, as e x p e c t e d f o r
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
a
Derivatized
WRIGHTON E T A L .
15.
Semiconductor
Photoelectrodes
279
surface-attached redox couple, whereas the peak current varies w i t h the s q u a r e root of t h e s c a n rate f o r a n a k e d S i e l e c t r o d e i l l u m i n a t e d i n a n o n a q u e o u s e l e c t r o l y t e s o l u t i o n c o n t a i n i n g ferrocene. T h e peak potentials c a n be substantially more negative than E ° (ferricenium/ferrocene)
f o r i l l u m i n a t e d n - t y p e S i , i n contrast t o t h e
s i t u a t i o n f o r P t o r A u . T h e p e a k p o t e n t i a l s c o r r e s p o n d c l o s e l y t o those f o r n a k e d n - t y p e S i i n a n o n a q u e o u s e l e c t r o l y t e s o l u t i o n of ferrocene. T h e extent t o w h i c h t h e s u r f a c e - a t t a c h e d ferrocene
material can be
o x i d i z e d a t a p o t e n t i a l m o r e n e g a t i v e t h a n o n a r e v e r s i b l e e l e c t r o d e is a m e a s u r e of t h e o u t p u t v o l t a g e f o r a c e l l u s i n g s u c h a p h o t o e l e c t r o d e .
If
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
t h e p h o t o a n o d i c c u r r e n t p e a k is s y m m e t r i c a l , t h e p e a k p o t e n t i a l r e p r e sents t h e p o t e n t i a l a t w h i c h t h e s u r f a c e - a t t a c h e d m a t e r i a l is 5 0 % o x i d i z e d a n d is thus t h e e l e c t r o d e p o t e n t i a l , E , at w h i c h Eredox f o r t h e f
s u r f a c e - a t t a c h e d species is e q u a l t o t h e f o r m a l p o t e n t i a l , E ° . W e h a v e o b s e r v e d p h o t o a n o d i c p e a k p o t e n t i a l s f o r d e r i v a t i z e d n - t y p e S i as n e g a t i v e as a p p r o x i m a t e l y —0.1 V vs. S C E , b u t t h e v a l u e is t y p i c a l l y a r o u n d + 0 . 1 V vs. S C E . A n o d i c peak potentials for derivatized P t a n d A u are i n t h e r a n g e + 0 . 4 - 0 . 6 V vs. S C E . T h u s , t h e o u t p u t v o l t a g e f o r d e r i v a t i z e d n - t y p e S i p h o t o e l e c t r o d e s is i n t h e r a n g e 3 0 0 - 7 0 0 m V , a s s u m i n g t h a t t h e t h e r m o d y n a m i c s f o r t h e v a r i o u s s u r f a c e - a t t a c h e d substances a r e i n d e p e n d e n t of t h e surface. T h i s a s s u m p t i o n s h o u l d b e v a l i d w i t h i n 100 m V (56).
i
1
1
r
n-Type Si lOOmV/sec
-0.4
0.0 Potential, V vs SCE
+0.4
Figure 4. As in Figure 3 except light is turned off at the anodic limit (+ 0.6 V) to show that the cathodic peak does not require illumination; ( ) result obtained when the light is left on for the entire scan.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
280
INTERFACIAL
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
i
i
r
Potential, Figure 5.
PHOTOPROCESSES
V vs SCE
Scan rate dependence of cyclic voltammograms for same elec trode and electrolyte solution as in Figures 3 and 4.
1
1
1
n - Type S i , lOOmV/sec 632.8nm Illumination C H C N , 0.1 M C n - B u N ] C I 0 3
4
i
i
1st Scan
4
/ /
T IO/XA
y
1
^^^^L
2nd Scan 3rd Scan
t o - O
i -0.8
i -0.4
i 0.0 Potential, V vs
I
I
+0.4 SCE
+0.8
Figure 6. Cyclic voltammograms for naked n-type Si in same electro lyte and under same illumination conditions as for derivatized electrode in Figure 5. Note the lack of a cathodic wave and the declining photo anodic current on the successive scans reflecting SiO growth. a
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
15.
WRIGHTON E T AL.
Photoelectrodes
281
T h e energetics e s t a b l i s h e d a b o v e c o r r e s p o n d w e l l w i t h those
found
Derivatized
Semiconductor
for a n a k e d n-type S i exposed to a nonaqueous ferricenium/ferrocene.
e l e c t r o l y t e s o l u t i o n of
A t least f o r t h i s s e m i c o n d u c t o r
t h e n , t h e c o v a l e n t a t t a c h m e n t of t h e e l e c t r o a c t i v e
photoelectrode,
m a t e r i a l does
not
s i g n i f i c a n t l y a l t e r t h e i n t e r f a c e energetics, as is g e n e r a l l y t r u e f o r r e v e r s i b l e e l e c t r o d e systems ( 5 6 ) .
T h e p o t e n t i a l onset f o r p h o t o a n o d i c c u r r e n t
at t h e h i g h e s t l i g h t i n t e n s i t y is a reasonable a p p r o x i m a t i o n of E
F
B
; we
o f t e n find t h a t t h e c a t h o d i c c u r r e n t p e a k i n t h e d a r k is s u b s t a n t i a l l y more positive than E
F
B
. T h i s o b s e r v a t i o n i n other systems
(25,26,27)
has b e e n t a k e n to i n d i c a t e t h a t t h e r e are i n t e r f a c e or surface states of t h e
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
s e m i c o n d u c t o r t h a t c a n b e filled w i t h electrons at a p o t e n t i a l m o r e p o s i tive than E
F
B
. W e a d o p t t h i s i n t e r p r e t a t i o n a n d note t h a t t h e c r u c i a l
i n t e r f a c e states seem to b e present for b o t h n a k e d a n d d e r i v a t i z e d S i . This
finding
is consistent w i t h t h e c o n c l u s i o n t h a t s u c h i n t e r f a c e states
are l i k e l y associated w i t h t h e S i O j . l a y e r t h a t is i n v a r i a b l y present o n S i a n d o n w h i c h t h e d e r i v a t i z i n g l a y e r is b u i l t . I d e a l l y , s u c h i n t e r f a c e states c o u l d b e m a n i p u l a t e d to p r e c l u d e r e d u c t i o n of f e r r i c e n i u m at p o t e n t i a l s more positive than E
F
B
; photoanodic a n d cathodic peaks w o u l d be situ
a t e d m o r e or less s y m m e t r i c a l l y a b o u t E
F
B
. T h e i m p o r t a n c e of a n o x i d e
l a y e r b e t w e e n n - t y p e G a A s a n d A u is e v i d e n t i n a S c h o t t k y b a r r i e r solar c e l l , w h e r e significant changes i n solar efficiency w e r e f o u n d w i t h v a r i a tion i n the oxide layer ( 5 7 ) . T h e shape of t h e c y c l i c v o l t a m m e t r i c w a v e s f o r d e r i v a t i z e d S i is q u i t e v a r i a b l e , d e p e n d i n g o n t h e exact p r o c e d u r e for d e r i v a t i z a t i o n , s c a n rate, a n d l i g h t i n t e n s i t y . P e a k w i d t h s at h a l f h e i g h t as n a r r o w as 110 m V h a v e b e e n o b s e r v e d , b u t m o r e t y p i c a l v a l u e s are i n a r a n g e s i m i l a r t o that for derivatized P t a n d A u .
T h e peak potentials vary w i t h
scan
rate, d e p e n d i n g o n c o v e r a g e a n d l i g h t i n t e n s i t y ; h i g h e r coverages a n d l o w e r l i g h t i n t e n s i t y y i e l d p h o t o a n o d i c c u r r e n t peaks t h a t are m o r e a n o d i c at t h e faster scan rates. T h e d a r k c u r r e n t - p o t e n t i a l p r o p e r t i e s are also quite variable, depending on the preparation procedure; generally there is n o significant d a r k a n o d i c c u r r e n t for p o t e n t i a l s m o r e n e g a t i v e t h a n about
+0.6 V .
S o m e d e r i v a t i z e d electrodes
have been prepared that
e x h i b i t n o d a r k o x i d a t i o n c u r r e n t at p o t e n t i a l s as p o s i t i v e as + 1 0 . 0 V vs. S C E . B u t t y p i c a l l y , s u r f a c e - a t t a c h e d ferrocenes c a n b e o x i d i z e d i n t h e d a r k at p o t e n t i a l s of a r o u n d + 1 . 0 V vs. S C E , s t i l l s u b s t a n t i a l l y m o r e a n o d i c t h a n for P t or A u . C l e a r l y , d e r i v a t i z a t i o n of n - t y p e S i c a n p r o t e c t t h e surface f r o m s i g nificant p h o t o a n o d i c
SiO
x
formation.
T h i s c o n c l u s i o n is b a s e d o n t h e
o b s e r v a t i o n t h a t t h e c y c l i c v o l t a m m e t r i c w a v e s for the i l l u m i n a t e d d e r i v a t i z e d surface are essentially u n c h a n g e d for m a n y scans. I f the S i O * l a y e r were g r o w i n g significantly the photoanodic peak w o u l d be more anodic w i t h the t h i c k e r o x i d e l a y e r , w h i l e t h e c a t h o d i c p e a k w o u l d b e negative.
T h e s e changes
are o b s e r v e d
for p r o l o n g e d
more
c y c l i n g a n d are
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
282
INTERFACIAL
PHOTOPROCESSES
p a r t i c u l a r l y gross at v e r y a n o d i c p o t e n t i a l s u n d e r i l l u m i n a t i o n .
These
observations suggest t h a t t h e o x i d e g r o w t h rate is, n o t u n e x p e c t e d l y , a f u n c t i o n of b o t h l i g h t i n t e n s i t y a n d p o t e n t i a l . T h e i m p o r t a n t finding is t h a t s u b s t a n t i a l l y m o r e t h a n 10" C / c m 2
2
of p h o t o a n o d i c c u r r e n t c a n pass
t h r o u g h t h e d e r i v a t i z e d e l e c t r o d e i n t e r f a c e w i t h o u t p a s s i v a t i n g t h e elec t r o d e . L e s s t h a n 10" C / c m 2
2
passivates t h e n a k e d electrode.
Protection f r o m S i O * g r o w t h d u r i n g c e l l operation w i l l be discussed b e l o w , b u t t h e r a t i o n a l e f o r t h e d u r a b i l i t y of the d e r i v a t i z e d surface w i l l b e m e n t i o n e d here. P h o t o g e n e r a t e d holes i n the v a l e n c e b a n d of S i are t r a n s f e r r e d r a p i d l y t o the s u r f a c e - a t t a c h e d ferrocene centers. T h e rate of
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
transfer to t h e ferrocenes is a p p a r e n t l y fast e n o u g h t o p r e c l u d e p r o m p t o x i d e f o r m a t i o n . W h e n t h e l i g h t i n t e n s i t y is l o w e n o u g h a n d the c o v e r a g e of ferrocene great e n o u g h t h i s r a p i d h o l e transfer t o f o r m f e r r i c e n i u m centers c a n b e r e g a r d e d as essentially i r r e v e r s i b l e , since E more positive than E
r e d o x
V
B is m u c h
f o r t h e a t t a c h e d species w h e n there is l o w
f r a c t i o n a l c o n v e r s i o n of ferrocene to f e r r i c e n i u m . B u t f o r situations w h e r e Eredox f o r the s u r f a c e - a t t a c h e d species is p o s i t i v e e n o u g h , there m a y b e a significant steady-state h o l e c o n c e n t r a t i o n o n the S i . F o r this s i t u a t i o n w e c o n c l u d e t h a t o x i d e g r o w t h is k i n e t i c a l l y i n h i b i t e d b y the i n a c c e s s i b i l i t y of the holes to attack b y H 0 . T h u s , t h e o l i g o m e r i c ferrocene l a y e r 2
p h y s i c a l l y protects t h e u n d e r l y i n g S i / S i O * surface, as w e l l as p r o v i d i n g a s y s t e m t h a t c a n r a p i d l y a c c e p t p h o t o g e n e r a t e d holes. I n the l i m i t of v e r y l a r g e , p o l y m e r i c coverages or at sufficiently l o w l i g h t i n t e n s i t y , t h e d e r i v a t i z e d n - t y p e S i electrode behaves l i k e a n a k e d e l e c t r o d e exposed to a n e l e c t r o l y t e s o l u t i o n t h a t c o n t a i n s a r e d u c t a n t c a p a b l e of i r r e v e r s i b l y a n d r a p i d l y c a p t u r i n g every p h o t o g e n e r a t e d h o l e . F o r l o w coverages of s u r f a c e - a t t a c h e d m a t e r i a l w e t y p i c a l l y o b s e r v e " b r e a k i n " changes i n t h e c y c l i c v o l t a m m e t r y t h a t c o r r e s p o n d to o x i d e g r o w t h a n d p a s s i v a t i o n i n areas of t h e surface w h e r e t h e r e is n o , o r l o w , c o v e r a g e . T h e first f e w scans s h o w l a r g e p h o t o a n o d i c c u r r e n t s , b u t t h e r e is n o s i m i l a r a m o u n t of c a t h o d i c c u r r e n t ; t h e a m o u n t of s u c h p h o t o a n o d i c c u r r e n t d e c l i n e s w i t h e a c h successive scan u n t i l the c u r r e n t - v o l t a g e p r o p erties b e c o m e essentially constant a n d t h e i n t e g r a t e d p h o t o a n o d i c
and
c a t h o d i c c u r r e n t s are e q u a l . T h e l a r g e p h o t o a n o d i c c u r r e n t l i k e l y c o r r e sponds t o SiO
x
g r o w t h o n n o n d e r i v a t i z e d areas of t h e electrode surface.
T h e f r a c t i o n of t h e surface t h a t is n o n d e r i v a t i z e d is, of course, v a r i a b l e b u t c a n b e i n s i g n i f i c a n t as d e t e r m i n e d b y t h e r e l a t i v e c u r r e n t d e n s i t y at n a k e d a n d d e r i v a t i z e d electrodes.
T h e oxide that grows on the n o n
d e r i v a t i z e d e l e c t r o d e areas does n o t s i g n i f i c a n t l y a l t e r t h e p r o p e r t i e s of t h e a t t a c h e d e l e c t r o a c t i v e m a t e r i a l ; t h e a m o u n t of m a t e r i a l a n d t h e p e a k p o t e n t i a l s are r e l a t i v e l y constant d u r i n g t h e b r e a k - i n of a g o o d e l e c t r o d e as d e t e r m i n e d b y t h e p o s i t i o n a n d a r e a u n d e r the c a t h o d i c peak. P e r s i s t e n t a t t a c h m e n t of e l e c t r o a c t i v e
material a n d constancy
of
energetics f o r t h e d e r i v a t i z e d n - t y p e S i h a v e b e e n i l l u s t r a t e d i n s e v e r a l
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
15.
WRIGHTON E T AL.
Derivatized
Semiconductor
Photoelectrodes
283
w a y s . F i r s t , d e r i v a t i z e d electrodes h a v e g o o d shelf l i f e ; t h e y h a v e b e e n stored for weeks a n d have still exhibited photoelectroactivity associated w i t h a n a t t a c h e d ferrocene d e r i v a t i v e . S e c o n d , i l l u m i n a t e d , d e r i v a t i z e d electrodes c a n b e c y c l e d a t l O O m V / s e c b e t w e e n p o t e n t i a l l i m i t s c o r r e s p o n d i n g t o c y c l i c a l o x i d a t i o n a n d r e d u c t i o n of t h e a t t a c h e d m a t e r i a l . T h e a t t a c h e d e l e c t r o a c t i v e m a t e r i a l is lost s l o w l y ( h u n d r e d s of c y c l e s ) , e v i d e n c e d b y d e c l i n i n g i n t e g r a t e d p e a k areas, w i t h o u t s i g n i f i c a n t s h i f t i n t h e p e a k p o s i t i o n s . G e n e r a l l y , t h o u g h , t h e effect of p r o l o n g e d u s e i s a shift of the photoanodic peak to more positive potentials a n d of t h e c a t h o d i c p e a k t o m o r e n e g a t i v e p o t e n t i a l s . T h e p e a k s h i f t i n g is p r o b a b l y
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
a c o n s e q u e n c e o f t h e g r o w t h of some u n d e r m i n i n g S i O * l a y e r , w h i l e t h e s i m p l e loss of e l e c t r o a c t i v e m a t e r i a l is l i k e l y d u e t o d e c o m p o s i t i o n o f t h e ferricenium form.
T h e d u r a b i l i t y of t h e surface is also i l l u s t r a t e d b y
c h o p p i n g the excitation b e a m w h i l e h o l d i n g the d e r i v a t i z e d electrode at a potential where photoanodic current a n d dark cathodic current occur. F i g u r e 7 illustrates t h e results f o r a c h o p p i n g f r e q u e n c y o f a b o u t 1 H z . W h i l e m u c h information can be gleaned from such data, the main point h e r e is t h a t response of t h e d e r i v a t i z e d e l e c t r o d e is e s s e n t i a l l y t h e same f o r a l a r g e n u m b e r o f cycles w h e r e there is e s s e n t i a l l y c o m p l e t e o x i d a t i o n of a l l s u r f a c e - a t t a c h e d e l e c t r o a c t i v e m a t e r i a l w h e n t h e l i g h t is t u r n e d o n . A l l d i s c u s s i o n thus f a r has c o n c e r n e d results f o r d e r i v a t i z e d S i c h a r a c t e r i z e d i n n o n a q u e o u s solutions. T h e d e r i v a t i z e d electrodes are d u r a b l e i n a q u e o u s e l e c t r o l y t e solutions as w e l l , since persistent c y c l i c v o l t a m m e t r i c w a v e s c a n b e o b s e r v e d i n aqueous e l e c t r o l y t e solutions. A l k a l i n e
i
J
\ -0.8
1
I
1
I
-0.4
r 0.5^A
i
i
.Light
N_ight J I 0.0 +0.4 Potential, V vs SCE L
12
r
L
16 Time, sec
Figure 7. Cyclic voltammograms for n-type Si derivatized with 11 (top) and current at + 0.35 V vs. SCE against time while chopping the illumination source at ~1 Hz in CH CN solution of 0.1M [n-Bu^JClO^. 3
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
284
INTERFACIAL
PHOTOPROCESSES
1 1
r
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
l
Figure 8. Cyclic voltammograms for naked n-type Ge in the presence of 2 X 10~'M ferrocene (top) and for n-type Ge derivatized with I in absence of any electroactive solu tion species. Electrolyte solution is CH CN/0.1M [n-Bu N]ClQ . 3
4
4
-0.2
0.0
+0.2
Potential, V vs
+0.4 SCE
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
+0.6
15.
WRIGHTON E T AL.
Derivatized
Semiconductor
285
Photoelectrodes
solutions are a v o i d e d o w i n g to t h e k n o w n s e n s i t i v i t y of f e r r i c e n i u m t o basic media (55). electrode
T h e persistent p h o t o e l e c t r o a c t i v i t y of t h e d e r i v a t i z e d
i n aqueous
s o l u t i o n is p a r t i c u l a r l y n o t e w o r t h y since H 0
is
2
v e r y l i k e l y t h e source of the o x y g e n i n S i O * f o r m a t i o n . Derivatized » - T y p e Ge ( 3 7 ) .
n-Type G e can be derivatized i n a
m a n n e r s i m i l a r to t h a t f o r n - t y p e S i . B u t u n l i k e S i , t h e d e r i v a t i z e d n - t y p e G e surfaces t h a t w e h a v e s t u d i e d e x h i b i t sufficient d a r k currents t h a t g o o d c y c l i c v o l t a m m e t r i c w a v e s for a t t a c h e d ferrocene c a n b e
observed
i n t h e d a r k . I l l u m i n a t i o n results i n a m o r e n e g a t i v e a n o d i c c u r r e n t onset, a n d t h e p e a k of t h e p h o t o a n o d i c w a v e c a n b e s h i f t e d b y u p to a r o u n d Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
200 m V , r e p r e s e n t i n g t h e m a x i m u m o u t p u t p h o t o v o l t a g e derivatized n-type G e .
attainable for
T h i s v a l u e accords w e l l w i t h t h e v a l u e of E
F
B
f o u n d f r o m the m a x i m u m o p e n - c i r c u i t p h o t o v o l t a g e f o r a n a k e d n - t y p e G e e l e c t r o d e e x p o s e d to a s o l u t i o n of f e r r i c e n i u m / f e r r o c e n e .
F u r t h e r , the
n a k e d n - t y p e G e exhibits d a r k a n o d i c c u r r e n t i n the presence of ferrocene w i t h a c y c l i c v o l t a m m e t r i c p e a k n e a r l y the same as t h a t f o r t h e d e r i v a t i z e d electrode ( F i g u r e 8 ) . T h u s , as for S i , d e r i v a t i z a t i o n does not a p p e a r to a p p r e c i a b l y a l t e r i n t e r f a c e energetics or k i n e t i c s f o r ferrocene
oxida
t i o n a n d the d u r a b i l i t y of d e r i v a t i z e d n - t y p e G e is s i m i l a r to t h a t f o r n-type S i . T h e o b s e r v a t i o n of significant d a r k a n o d i c c u r r e n t at n - t y p e G e l i k e l y reflects the presence of a h i g h d e n s i t y of surface states at t h e G e / G e O * i n t e r f a c e t h a t are n o t i n f l u e n c e d b y the a t t a c h m e n t of ferrocene d e r i v a tives t o t h e surface oxide. W h i l e ferrocene i n s o l u t i o n protects n - t y p e G e f r o m deleterious o x i d e f o r m a t i o n , the l o w o u t p u t v o l t a g e p r e c l u d e s a n efficient o p t i c a l e n e r g y c o n v e r s i o n d e v i c e ; w e h a v e a c c o r d i n g l y
concen
t r a t e d m o r e effort o n the use of d e r i v a t i z e d n - t y p e S i t o i l l u s t r a t e t h e p o t e n t i a l u t i l i t y of m o l e c u l a r l y m o d i f i e d photoelectrodes
i n energy
con
v e r s i o n experiments. Proof of Mediated Electron Transfer Using Derivatized if-Type Si. O n e of t h e u n i q u e features of a d e r i v a t i z e d s e m i c o n d u c t o r
photoelectrode,
c o m p a r e d w i t h a d e r i v a t i z e d m e t a l electrode, is t h a t t h e r a t i o of o x i d i z e d to reduced material depends on b o t h light a n d potential. B y definition, t h e r a t i o of o x i d i z e d t o r e d u c e d m a t e r i a l o n t h e surface of a r e v e r s i b l e electrode d e p e n d s
o n l y o n p o t e n t i a l . T h e t w o - s t i m u l i response
of
the
s e m i c o n d u c t o r d e p e n d s o n its r e c t i f y i n g p r o p e r t y a n d a l l o w s us to o b t a i n d i r e c t e v i d e n c e for m e d i a t e d o x i d a t i o n of s o l u t i o n r e d u c t a n t s . B y m e d i a t e d w e m e a n t h a t t h e o x i d a t i o n of t h e s o l u t i o n species p r o c e e d s e l e c t r o n transfer t o a h o l e l o c a l i z e d o n t h e s u r f a c e - a t t a c h e d
by
molecule.
I n t h e case of t h e s e m i c o n d u c t o r , t h e h o l e is g e n e r a t e d b y p h o t o e x c i t a t i o n a n d transferred f r o m the valence b a n d to the surface-attached
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
species.
286
INTERFACIAL
PHOTOPROCESSES
M e d i a t e d o x i d a t i o n is i n contrast to a d i r e c t e l e c t r o n transfer t o a h o l e l o c a l i z e d o n t h e e l e c t r o d e s u r f a c e ; w h e n t h e e l e c t r o d e is d e r i v a t i z e d e i t h e r m e c h a n i s m f o r n e t o x i d a t i o n of t h e s o l u t i o n species m a y y i e l d a rate t h a t is different t h a n for a n a k e d electrode. A p r i o r i , a t r u e m e d i a t e d e l e c t r o n transfer m e c h a n i s m w o u l d s e e m i n g l y y i e l d a surface
having
greater m o l e c u l a r specificity, p a r t i c u l a r l y i f t h e m e d i a t e d o x i d a t i o n o c c u r s b y w h a t w o u l d b e analogous t o a n i n n e r - s p h e r e e l e c t r o n transfer m e c h a n i s m i n v o l v i n g p r i o r c o m p l e x a t i o n of t h e s o l u t i o n r e d u c t a n t a n d t h e s u r face r e d o x reagent. F i g u r e 9 shows electroanalytical proof
for m e d i a t e d o x i d a t i o n of
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
s o l u t i o n ferrocene b y d e r i v a t i z e d n - t y p e S i . T h e k e y p o i n t s are as f o l l o w s . F i r s t , i l l u m i n a t i o n of the d e r i v a t i z e d n - t y p e S i i n the electrolyte s o l u t i o n i n t h e absence of f e r r o c e n e y i e l d s the u s u a l c y c l i c v o l t a m m o g r a m t h a t is i n d e p e n d e n t of w h e t h e r or n o t the e l e c t r o l y t e s o l u t i o n is s t i r r e d , since t h e e l e c t r o a c t i v e m a t e r i a l is a t t a c h e d to t h e e l e c t r o d e surface. t h e a d d i t i o n of f e r r o c e n e t o the s o l u t i o n results i n e n h a n c e d
Second,
photoanodic
c u r r e n t s u c h t h a t d i f f u s i o n l i m i t e d c u r r e n t is o b t a i n e d i n q u i e t s o l u t i o n , w h i l e a h o l e ( l i g h t i n t e n s i t y ) l i m i t e d c u r r e n t is r e a c h e d w h e n the s o l u t i o n is s t i r r e d . A n d t h i r d , w h e n the l i g h t is s w i t c h e d off at the a n o d i c l i m i t a n d t h e e l e c t r o l y t e is s t i r r e d , t h e r e is l i t t l e d e t e c t a b l e
surface-
a t t a c h e d o x i d i z e d m a t e r i a l since there is l i t t l e observable, c a t h o d i c c u r rent. T h a t is, w h e n the l i g h t is s w i t c h e d off at t h e a n o d i c l i m i t ,
hole
g e n e r a t i o n ceases a n d t h e r e d u c t a n t i n s o l u t i o n reacts w i t h t h e s u r f a c e a t t a c h e d o x i d a n t at a rate t h a t is fast c o m p a r e d w i t h t h e r e t u r n scan t i m e i n t h e d a r k . A t sufficiently fast scan rates a n d l o w c o n c e n t r a t i o n of s o l u t i o n r e d u c t a n t a c a t h o d i c r e t u r n p e a k for t h e s u r f a c e - a t t a c h e d o x i d a n t is observed.
I n p r i n c i p l e , s u c h d a t a w i l l a l l o w m e a s u r e m e n t of h e t e r o g e n e
ous e l e c t r o n transfer rates b e t w e e n t h e s o l u t i o n r e d u c t a n t a n d a t t a c h e d o x i d a n t . M e a s u r i n g t h e c o n s u m p t i o n of a t t a c h e d o x i d a n t i n t h i s m a n n e r o n a r e v e r s i b l e e l e c t r o d e is i m p o s s i b l e , since w h e n a n a t t a c h e d o x i d a n t reacts w i t h a s o l u t i o n r e d u c t a n t t h e r a t i o of s u r f a c e - a t t a c h e d o x i d i z e d t o r e d u c e d m a t e r i a l is i n s t a n t a n e o u s l y r e - e s t a b l i s h e d to a v a l u e t h a t d e p e n d s only on the electrode potential. P r o o f of m e d i a t e d o x i d a t i o n of s o l u t i o n r e d u c t a n t s other t h a n f e r r o cene has b e e n o b t a i n e d . I n p a r t i c u l a r , d e r i v a t i z e d n - t y p e S i c a n b e u s e d t o effect t h e p h o t o e l e c t r o c h e m i c a l o x i d a t i o n of F e ( C N ) electrolyte solution ( F i g u r e 10).
6
4
" i n an aqueous
U s i n g the derivatized electrode i n the
a q u e o u s e l e c t r o l y t e s o l u t i o n is i n t e r e s t i n g f o r several reasons:
efficient
d i r e c t o x i d a t i o n of a n y t h i n g i n H 0 u s i n g n a k e d n - t y p e S i is u n l i k e l y 2
o w i n g t o t h e S i O * p r o b l e m ; f e r r o c e n e c o u l d not b e u s e d as a s o l u t i o n m e d i a t o r , since i t is i n s o l u b l e i n H 0 ; a n d a n a q u e o u s e l e c t r o l y t e s o l u t i o n 2
has h i g h e r c o n d u c t i v i t y t h a n n o n a q u e o u s systems.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Derivatized
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
WRIGHTON E T AL.
Semiconductor
Photoelectrodes
287
Figure 9. (a) Cyclic voltammograms for n-type Si derivatized with II in stirred EtOH/O.lM [n-Bu N]ClO solutions; ( ) light switched off at + 0.25 V vs. SCE. (b) Cyclic vol tammetry for electrode in (a) in same electrolyte solution but containing 5 X 10~ M ferrocene: ( ) quiet solution with illumination for entire scan; ( ) quiet solution light switched off at + 0.25 V; ( ; stirred solution light switched off at + 0.25 V. k
4
-0.6
-0.4 -0.2 0.0 *0.2 El tetrode Potential, V vs SCE
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
k
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
288
INTERFACIAL
-0.8
-0.4 Potential,
0.0 V vs SCE
PHOTOPROCESSES
0.4
Figure 10. Cyclic voltammograms at 100 mV/sec of n-type Si derivatized with 11 in aqueous electrolytes. The electrode is illuminated with a tungsten halogen source during the anodic scans; the cathodic, return scans are in the dark, (a) Cyclic voltammograms in quiet solutions: ( ) 0.1M NaClO /H 0 showing surface waves at + 0.3 V (photooxidation) and - 0.1 V (reduction); ( ) with 9 X 10~ M K Fe(CN) added. (b) The effect of stirring on cyclic voltammogram in 9 X 10~ M K Fe(CN) electrolyte. Note the reverse scan current scale is expanded by 10 times the forward scan scale, (c) Repeat of (a); ( ) after completing (b). k
2
4
h
6
4
h
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
6
15.
WRIGHTON E T A L .
Derivatized
Semiconductor
Photoelectrodes
289
Use of Derivatized » - T y p e Si in a F u l l Cell Configuration; E q u i librium Current-Potential Curves.
I n sufficiently d r y E t O H e l e c t r o l y t e
solutions containing ferricenium/ferrocene w e have been able to sustain the conversion of light to electricity i n a cell like that d e p i c t e d i n Scheme I u s i n g a n a k e d n-type S i photoelectrode.
A c o m p a r i s o n of t h e e q u i
l i b r i u m c u r r e n t - p o t e n t i a l p r o p e r t i e s of a n a k e d a n d d e r i v a t i z e d e l e c t r o d e a r e g i v e n i n F i g u r e 11 f o r s u c h a c e l l . T h e p o t e n t i a l is g i v e n r e l a t i v e t o t h e S C E b u t t h e p h o t o c u r r e n t at E
r e d o x
c a n b e t a k e n as t h e u s u a l s h o r t r e d o x
reflects
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
circuit value; current at any potential more negative than E
-0.6 -0.4
-0.2
+ 0.2 +0.4
+0.2 +0.4 +0.6 -0.6 - 0 . 4 - Q 2 P O T E N T I A L . V vs S C E
+0.6
Figure 11. Current-voltage curves at 2 mV/sec for n - S i photoelectrode in stirred EtOH solution of 5 X 10~ M ferrocene, 2.9 X 10 M ferricenium as the PF ~ salt and 0.1 M [n-Bu N]ClO . Uniform irradiation with 632.8-nm light at the indicated power. Solution E - = + 0.32 V vs. SCE. (a) Naked electrode freshly etched with HF; (b) same electrode after derivatization with II. 2
6
3
h
h
red0
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
290
INTERFACIAL
PHOTOPROCESSES
c o n v e r s i o n o f l i g h t t o e l e c t r i c i t y . F r o m d a t a l i k e t h a t i n F i g u r e 11 w e c o n c l u d e t h a t t h e d e r i v a t i z e d e l e c t r o d e is c e r t a i n l y n o w o r s e , a n d p e r h a p s a l i t t l e better, t h a n t h e n a k e d e l e c t r o d e i n t e r m s o f efficiency. E a c h e l e c t r o d e suffers f r o m l o w o u t p u t voltages a t l o w l i g h t i n t e n s i t y a n d f r o m p o o r fill factors a n d q u a n t u m efficiencies a t t h e h i g h e r intensities. I m p o r t a n t l y , t h e d e r i v a t i z e d e l e c t r o d e surfaces r e m a i n i n t a c t ( c o v e r a g e a n d p e a k p o s i t i o n s ) d u r i n g t h e e x p e r i m e n t a t i o n r e p r e s e n t e d i n F i g u r e 11, as d e t e r m i n e d b y c y c l i c v o l t a m m e t r y b e f o r e a n d after r e c o r d i n g t h e d a t a i n F i g u r e 11. A s s u m i n g t h a t a l l o f t h e p h o t o c u r r e n t o c c u r s b y m e d i a t i o n , w e c l a i m t h a t e a c h a t t a c h e d r e d o x c e n t e r c a n c o n s e r v a t i v e l y pass m o r e t h a n 1 0 electrons w i t h o u t d e t e r i o r a t i o n of p r o p e r t i e s . Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
4
F i g u r e 12 shows t h e p h o t o c u r r e n t a g a i n s t t i m e f o r a n a k e d a n d a d e r i v a t i z e d n - t y p e S i p h o t o e l e c t r o d e i n a n aqueous s o l u t i o n of F e ( C N )
6
4
".
T h e i m p r o v e m e n t i n t h e c o n s t a n c y of t h e o u t p u t p a r a m e t e r s i n t h e d e r i v a t i z e d case is o b v i o u s . E q u i l i b r i u m c u r r e n t - p o t e n t i a l c u r v e s are s h o w n i n F i g u r e 13; s u c h curves a r e n o t o b t a i n a b l e f o r t h e n a k e d e l e c t r o d e , s i n c e t h e f o r m a t i o n of S i O * is t o o r a p i d . T h e o p t i c a l - t o - e l e c t r i c a l e n e r g y c o n v e r s i o n efficiency is s t i l l l o w i n t h e a q u e o u s e l e c t r o l y t e s o l u t i o n , b u t it s h o u l d be emphasized that t h e derivatized electrode allows sustained energy conversion whereas the n a k e d electrode undergoes decomposition
40-
3
TIME , MINUTES Figure 12. Plots of photocurrent against time for a single n - S i electrode illuminated with 632.8-nm light at ~ 6 mW. Photoelectrode held at + 0.2 V vs. SCE in stirred solutions. Supporting electrolyte is 0.1 M NaClOt in doubly distilled, deionized H 0. (A) Run 1, HF-etched naked electrode in supporting electrolyte only; (O) Run 2, naked electrode reetched with HF, in supporting electrolyte plus 4 X 1 0 " M Fe(CN) ~; (•) Run 3, electrode derivatized with II in same solution as Run 2. 2
3
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
4
6
15.
WRIGHTON E T AL.
Derivatized
Semiconductor
Photoelectrodes
291
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
+ 180 —
Figure 13. Current-voltage curves for n-Si photoelectrode derivatized with II in stirred 0.1 M Fe(CN) ' 0.01M Fe(CN) *', in doubly distilled, deionized H O. n-Si illuminated at 632.8 nm at the indicated power. Solution E = + 0.13 V vs. SCE; scan rate 5 mV/sec. 4
6
6
g
-Q4
-0.2 0 +Q2 POTENTIAL, W l
+Q4 SCE
+Q6
redow
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
9
292
INTERFACIAL
at a rate t h a t p r e c l u d e s s u s t a i n e d c e l l o p e r a t i o n .
PHOTOPROCESSES
T h e s e results e s t a b l i s h
the p r i n c i p l e of m a n i p u l a t i n g interface properties
for practical appli
cations. Summary n-Type S i a n d G e semiconductors
a n d A u a n d P t metal electrodes
c a n b e d e r i v a t i z e d w i t h h y d r o l y t i c a l l y u n s t a b l e ferrocenes s u c h oligomeric
amounts
o f essentially r e v e r s i b l y e l e c t r o a c t i v e
persistently attached.
I n a l l cases i t appears t h a t a t t a c h m e n t leads t o
l i t t l e c h a n g e i n t h e energetics f o r e l e c t r o n transfer. Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
that
material are
Derivatized
n-type
S i has b e e n u s e d to p r o v i d e d i r e c t e v i d e n c e for m e d i a t e d e l e c t r o n transfer, t h e first s u c h e v i d e n c e f o r a n y d e r i v a t i z e d e l e c t r o d e . M o s t i m p o r t a n t l y , derivatized n-type S i can b e used to illustrate the m a n i p u l a t i o n of inter f a c i a l c h a r g e transfer k i n e t i c s i n s u c h a w a y t h a t t h e d e r i v a t i z e d e l e c t r o d e is u s e f u l i n e n e r g y c o n v e r s i o n a p p l i c a t i o n s u n d e r c o n d i t i o n s w h e r e t h e n a k e d e l e c t r o d e is not. Acknowledgments W e t h a n k t h e U n i t e d States D e p a r t m e n t o f E n e r g y , Office o f B a s i c E n e r g y Sciences f o r s u p p o r t o f this research.
M S W acknowledges sup
p o r t as a D r e y f u s T e a c h e r - S c h o l a r , 1 9 7 5 - 1 9 8 0 , N S L as a J o h n a n d F a n n i e H e r t z F o u n d a t i o n F e l l o w , 1977-present, Solar E n e r g y F e l l o w , Literature
a n d M G B as a n M . I . T .
Cabot
1978-present.
Cited
1. Wrighton, M. S.; Ellis, A. B.; Wolczanski, P. T.; Morse, D. L.; Abrahamson, H . B.: Ginley, D. S. J. Am. Chem. Soc. 1976, 98, 2774. 2. Watanabe, T.; Fujishima, A.; Honda, K. Bull. Chem. Soc. Jpn. 1976, 49, 355. 3. Mavroides, J. G.; Kafalas, J. A.; Kolesar, D. F. Appl. Phys. Lett. 1976, 28, 241. 4. Heller, A.; Parkinson, B. A.; Miller, B. Conf. Bee. IEEE Photovoltaic Spec. Conf. 1978, 13, 1253. 5. Ellis, A. B.; Kaiser, S. W.; Wrighton, M. S. J. Am. Chem. Soc. 1976, 98, 1635, 6418, 6855. 6. Ellis, A. B.; Kaiser, S. W.; Bolts, T. M.; Wrighton, M. S. J. Am. Chem. Soc. 1977, 99, 2839, 2848. 7. Hodes, G.; Manassen, J.; Cahen, D. Nature (London) 1976, 261, 403. 8. Ellis, A. B.; Bolts, J. M.; Wrighton, M. S. J. Electrochem. Soc. 1977, 124, 1603. 9. Miller, B.; Heller, A. Nature (London) 1976, 262, 680. 10. Chang, K. C.; Heller, A.; Schwartz, B.; Menezes, S.; Miller, B. Science 1977, 196, 1097. 11. Heller, A.; Chang, K. C.; Miller, B. J. Electrochem. Soc. 1977, 124, 697. 12. Legg, K. D.; Ellis, A. B.; Bolts, J. M.; Wrighton, M. S. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 4116.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
15.
13. 14. 15. 16. 17. 18. 19. 20.
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51.
WRIGHTON
ET
AL.
Derivatized
Semiconductor
Photoelectrodes
293
Bard, A. J.; Wrighton, M. S. J. Electrochem. Soc. 1977, 124, 1706. Gerischer, H. J. Electroanal. Chem. 1977, 82, 133. Fujishima, A.; Honda, K. Nature (London) 1972, 238, 37. Wrighton, M. S.; Ginley, D. S.; Wolczanski, P. T.; Ellis, A. B.; Morse, D. L.; Linz, A. Proc. Natl. Acad. Sci. U.S.A. 1975, 72, 1518. Nozik, A. J. Nature (London) 1975, 257, 383. Hardee, K. L.; Bard, A. J. J. Electrochem. Soc. 1975, 122, 739. Keeney, J.; Weinstein, D. H.; Haas, G. M. Nature (London) 1975, 257, 383. Fujishima, A. J.; Kohayakawa, K.; Honda, K. J. Electrochem. Soc. 1975, 122, 1487. Frank, S. N.; Bard, A. J. J. Am. Chem. Soc. 1977, 99, 4667. Fujishima, A.; Honda, K. J. Chem. Soc. Jpn. 1971, 74, 355. Bolts, J. M.; Wrighton, M. S. J. Phys. Chem. 1976, 80, 2641. Wrighton, M. S.; Wolczanski, P. T.; Ellis, A. B. J. Solid State Chem. 1977, 22, 17. Kohl, P. A.; Bard, A. J. J. Am. Chem. Soc. 1977, 99, 7531. Frank, S. N.; Bard, A. J. J. Am. Chem. Soc. 1975, 97, 7427. Laser, D.; Bard, A. J. J. Phys. Chem. 1976, 80, 459. Nakatani, K.; Matsudaira, S.; Tsubomura, H . J. Electrochem. Soc. 1978, 125, 406. Chung, Y. W.; Lo, W. J.; Somorjai, G. A. Surf. Sci. 1977, 64, 588. Ibid., 1978, 71, 199. Henrich, V. E.; Dresselhaus, G.; Zeiger, H. J. Phys. Rev. Lett. 1976, 36, 1335. Watkins, B. F.; Behling, J. R.; Kariv, E.; Miller, L. L. J. Am. Chem. Soc. 1975, 97, 3549 Razena, B.; Wong, M.; Thomas, J. K. J. Am. Chem. Soc. 1978, 100, 1679. Fujihira, M.; Ohishi, N.; Osa, T. Nature (London) 1977, 268, 226. Clark, W. D. K.; Sutin, N. J. Am. Chem. Soc. 1977, 99, 4676. Gerischer, H.; Willig, F. Top. Curr. Chem. 1976, 61, 33. Gleria, M.; Memming, R. Z. Phys. Chem. (Frankfurt am Main) 1975, 98, 303. Bolts, J. M.; Wrighton, M. S. J. Am. Chem. Soc. 1978, 100, 5257. Wrighton, M. S.; Austin, R. G.; Bocarsly, A. B.; Bolts, J. M.; Haas, O.; Legg, K. D.; Nadjo, L.; Palazzotto, M. C. J. Am. Chem. Soc. 1978, 100, 1602. Bolts, J. M.; Bocarsly, A.; Palazzotto, M. C.; Walton, E . G.; Lewis, N. S.; Wrighton, M.S. J. Amer. Chem. Soc., 1979, 101, 1378. Pankove, J. I. "Optical Processes in Semiconductors"; Dover Publications: 1971. Wrighton, M. S.; Palazzotto, M. C.; Bocarsly, A. B.; Bolts, J. M.; Fischer, A. B.; Nadjo, L. J. Am. Chem. Soc. 1978, 100, 7264. Wrighton, M. S.; Austin, R. G.; Bocarsly, A. B.; Bolts, J. M.; Haas, O.; Legg, K. D.; Nadjo, L.; Palazzotto, M. C. J. Electroanal. Chem. 1978, 87, 429. Gerischer, H. In "Physical Chemistry: An Advanced Treatise"; Eyring, H., Henderson, D., Jost, W., Eds.; Academic: New York, 1970; Vol. 9A, Chapter 5. Grushka, E . , Ed. "Bonded Stationary Phases in Chromatography"; Ann Arbor Science Pub.: Ann Arbor, MI, 1974. Weetall, H. H. Science 1969, 166, 615. Allum, K. G.; Hancock, R. D.; Howell, I. V.; McKenzie, S.; Pitkethly, R. C.; Robinson, P. J. J. Organomet. Chem. 1975, 87, 203. Lenhard, J. R.; Murray, R. W. J. Electroanal. Chem. 1977, 78, 195. Moses, P. R.; Murray, R. W. J. Electroanal. Chem. 1977, 77, 393. Moses, P. R.; Weir, L.; Murray, R. W.Anal.Chem. 1975, 47, 1882. Janz, G. J.; Tomkins, R. P. T. "Nonaqueous Electrolytes Handbook"; Aca demic: New York, 1973; Vol. II.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
294
INTERFACIAL
PHOTOPROCESSES
52. Laviron, E . J.Electroanal.Chem. 1972, 39, 1. 53. Merz, A.; Bard, A. J. J. Am. Chem. Soc. 1978, 100, 3222. 54. Fischer, A. B.; Wrighton, M. S.; Umana, M.; Murray, R. W. J. Amer. Chem. Soc. 1979, 101, 3442. 55. Becker, E.; Tsutsui, M., Eds. "Organometallic Reactions"; Wiley: New York, 1972; Vol. IV. 56. Lenhard, J. R.; Rocklin, R.; Abrun, H.; Willman, K.; Kuo, K.; Nowak, R.; Murray, R. W. J. Am. Chem. Soc. 1978, 100, 5213. 57. Stirn, R. J.; Yeh, Y. C. M. Appl. Phys. Lett. 1975, 27, 95.
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch015
RECEIVED October 2, 1978.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.