Chemiluminescence and Bioluminescence Lany J. Kricka Department of Pathology and Laboratory Medicine, Universily of Pennsylvania, Philadelphia, Pennsylvania 19104
The time period covered by this review is the Chemical Abstracts citation dates November 1992 to January 1,1995. Light emission produced in a chemical reaction from the decay of chemiexcited species to the electronic ground state is known as chemiluminescence (CL) . Light-emittingreactions are also found in nature in a diverse range of organisms, and this type of light emission is termed bioluminescence (BL). Numerous reviews and books describe recent progress and the range of analytical applications of CL and BL (Rl-RI5). In addition, a regular literature survey provides information on the fundamental and applied aspects of both CL and BL (R16, R17). This survey is limited to the analysis of human fluid and tissues. New Reagents. Most of the new reagents have been directed toward immunoassay applications [labels (RM-RZZ) , substrates (R23-R28), and enhancers (R29-R31)1, and much of this information is to be found in the patent literature. New enzymetriggerable khloroadamantyl1,2dioxetane aryl phosphate derivatives are used extensively in highly sensitive CL detection methods for alkaline phosphatase labels. The presence of the 5chloro group or additional substituents on the aryl ring improves the kinetics of light emission (faster) and reduces the nonenzymatic decomposition of the substrate, hence improving assay sensitivity. In the presence of certain polymers, light emission is advantageously modulated (R30). Further examples of enhancers for the CL horseradish peroxidase-catalyzed oxidation of luminol have been described, including various substituted arylboronic acids (e.g., Ciodophenylboronic acid) (R29). Fusion proteins produced from a construct of two genes provide a reproducible method of preparing enzyme conjugates for immunoassay. A protein A-firefly luciferase fusion protein has been engineered that retains the binding properties of protein A (binds to Fc region of IgG) and the enzyme activity of the luciferase. It has been tested in a BL immunoassay for human IgG (range 10-3-10-7 g/mL) (R32). New Analytical Reactions. Oxygen channeling reactions permit the formation of latex particle pairs to be monitored very sensitively (R33, R 3 4 . One population of particles contains a photosensitizer (e.g., tetra-nClo-phthalocyanine) that produces singlet oxygen upon irradiation; the second particle population contains a chemiluminescent compound that is activated by singlet oxygen (e.g., p- (N,N-dioctadecylcarboxamidomethoxy) benzal-9methylacridan). Antibodies are immobilized on the surface of the different types of particle, and in the presence of a specitic antigen, the two different particles are brought together to form a pair. Upon irradiation, singlet oxygen is produced, and channels from the photosensitizer particle to the particle containing the chemiluminescent compound and light emission occurs. This general assay principle was used to measure 4 am01 of thyroid-stimulating hormone in a 12-min assay (R33). A new CL assay for ,B-Dgalactosidase has been developed based on a 5-bromo-4chloro3-indolyl-/?-~-galactopyranoside substrate. The reaction was tested in an immunoassay for a-fetoprotein (R35). Cellular CL and Luminol- and Lucigenin-Enhanced CL. Studies of cellular CL still dominate the annual CL/BL literature (R16,R17). Luminol or lucigenin are the most popular enhancers of weak cellular CL but 7- (dimethylamino)naphthalene-1,2-dicarboxylic hydrazide (R36) and diazoluminomelanin have been used
instead (R37). Luminol- or lucigeninenhanced cellular CL is used to investigate a wide range of cellular interactions, including the role of granulocyte-derived reactive oxygen species in postischemic myocardial damage (R38),effect of soluble and particulate stimuli on monocytes and polymorphonuclear leukocytes (FMNL) (R39), monitoring PMNL function in diabetes mellitus (R40), activation of leukocytes in patients with peritonitis (R41),release of interleukin-8, interleukin-6, and tumor necrosis factor-a from granulocytes following exposure to infectious respiratory syncytial virus particles (R42),and monitoring the effect of exposure to sulfur dioxide and sulfte aerosols on neutrophil function (R43). Rapid Microbiology. Enumeration of cells via quantitation of ATP using the BL firefly luciferase-luciferin reaction is an established technique that continues to find applications, e.g., viability of blood for transfusion ( R 4 4 , quality control of erythrocytes and platelets in transfusion centers (R45), and study of platelet function in patients with nephrotic syndrome (R46) . Poly01 additives improve the stability of the firefly luciferase-luciferin ATP assay reagent (R47). An alternative CL assay for ATP uses a peroxide/NaOH/brilliant sulfoflavine reagent (detection limit M) (R48). Inorganic 1x M; linear range 1 x 10-5-5 x pyrophosphatase is an enzyme expressed in all cells, and a new BL assay for this enzyme provides an alternative to ATP measurements for cell enumeration (R49, R50). Test sample is added to a mixture containing inorganic pyrophosphate (PPi) adenosine 5'-phosphosulfate (APS), and ATP-sulfurylase. In the absence of cellular pyrophosphatase, the APS is converted to ATP and this is detected using the firefly luciferase reaction. If cells are present then the PPi is degraded and less ATP is formed in the ATPsulfurylase reaction. Application of the assay was exemplified using Escherichia coli (detect 1 x lo4 cells/mL) and Succhromyces cerevisiae (detect 2 x 104 cells/mL), and its scope has been extended to detection of cell lysis and cell-lysing activity (e.g., lysozyme activity). Drug Assays and Drug SusceptibilityTesting. CL quantitation of drugs derivatized with a fluorescent compound such as dansyl chloride or naphthalene-2,3-dicarboxaldehyde,and separated by HPLC, is effectively accomplished by means of the bis(2,4,&trichlorophenyl)oxalate-hydrogen peroxide reaction. Drugs of abuse such as metamphetamine and its metabolites can be detected in urine at concentrations as low as 1 x 10-14 mol (R52). Derivatization of drugs with 4,5diaminophthalhydrazidefor chemiluminometric HPLC analysis has been reviewed (R52). Drug susceptibility can be assessed by enumerating cells (BL ATP assay method) following culture in the presence of a particular drug or drug combination (R53, R 5 4 . CL and BL Detection Coupled to SeparationTechniques. Flow injection analysis PIA)in combination with an immobilized enzyme reactor is a practicable means of quantitating a range of clinically important substances in biological fluids. Bile acids can be measured using an immobilized 3-a-hydroxysteroid dehydrogenase reactor and the NADH formed detected with the 1-methoxy-5-methylphenazinium/isoluminol/microperoxidasereaction (R55). Similarly, urinary glucose (detection limit 1pM) (R56), urinary oxalate (34pM) (R57), blood glucose (0.05 pM) (RSS), serum 1,hnhydroglucitol (2 x M) (R59), and serum Analytical Chemistry, Vol. 67, No. 12, June 15, 1995
499R
3-hydroxybutyrate (0.1 pM) (R60)have been determined by C L FIA methods. A silicon glass micromachined FIA device, comprising a microcolumn containing glass beads coated with immobilized enzyme leading to a spiral detection chamber located beneath a photomultiplier tube, is representative of an important new direction in microminiature analysis and system integration. This device (15 mm x 20 mm) has an internal volume of 15 pL and analyzed samples for glucose and lactate (R61).In HPLC, CL is used to detect biogenic amines [postcolumn detection with 4nitrc-2- (3,6,%trioxadecyloxycarbonyl)phenyl oxalate], neurotransmitters (R62, R63) , and steroids (e.g., 3-~,5P-tetrahydroaldosterone/4,5diaminophthalhydrazide derivatization) (R64). BL detection has been coupled to continuous-flow analysis for Mg0 (detection limit 0.01 mmol/L) via the BL firefly (native or recombinant) luciferase reaction (R65). CLAssays. Assays for nitric oxide have assumed considerable importance because of the newly established role of this molecule as a messenger. NO can be conveniently detected by a CL ozone reaction, and this has been used to study NO concentration in exhaled breath (R66). Adamantyl-1,2-dioxetane aryl phosphates are effective in detecting alkaline phosphatase in submicroliter volumes of gingival crevicular fluid. The pattern of enzyme distribution in healthy peridontal sites, revealed by this ultrasensitive method, was different from that observed in gingivitis (R67, R68). Antioxidants are difkult to measure by conventional techniques, but a new enhanced CL reaction provides an assay that is simple and convenient (R69,R70). Addition of a sample containing an antioxidant (e.g., ascorbic acid, urate, vitamin E) to a glowing solution of luminol/4iodophenol/horseradish peroxidase temporarily interrupts light emission, and the duration of this effect is linearly related to the antioxidant concentration. CL detection of peroxide production as a result of the action of an oxidase on a substrate is an established procedure. For example, cholesterol has been measured in microsamples (5 pL) of biological tissues and fluids (detection limit 54 pmol) (R71).A similar assay for acetylcholine has been developed based on acetylcholine oxidase (650 fmol) except that luminol was replaced by the more efficient 7-(dimethylamino)naphthalene-l,2-dicarboxylic hydrazide and an enhancer (4iodophenol) was used to increase light emission intensity (R72). BL Assays. The NAD(P)H-dependent marine bacterial luciferase and the ATP-dependent firefly luciferase reaction provide sensitive detection reactions for measuring components of dehydrogenase- and kinase-catalyzed reactions. An assay for acetate kinase illustrates the general principle of these types of coupled analytical reactions. This enzyme is assayed in a rate or endpoint mode using a mixture of acetyl phosphate and ADP. Enzyme action produces acetate and ATP, and the ATP is measured using the firefly luciferase reaction. The assay is very sensitive for acetate kinase (1.4 x mol), and a biotinylated form of the enzyme has been used in a BL immunoassay for thyroid-stimulating hormone (R73). Optical Biosensors. Sensors based on a molecular recognition layer immobilized on the end of an optical fiber have been developed for antibodies to influenza virus, chorionic gonadotropin, and a-24nterferon. Bound analyte reacts with a peroxidaselabeled antibody, and the label is detected using a CL reaction (R74).A molecular recognition layer can be constructed by immobilizing reagents, e.g., uricase and horseradish peroxidase, to 3-aminopropyl-derivatizedporous silica, using glutaraldehyde, 500R
Analytical Chemistry, Vol. 67,No. 12, June 15, 1995
and then the silica attached to the end of a fiber optic bundle. This sensor measured uric acid in serum and urine (0.1-5 pg/ mL) using luminol to detect the peroxide formed in the enzymecatalyzed oxidation of uric acid (R75). Other sensors couple enzyme reagents (e.g., glucose oxidase) to a preactivated nylon mebrane and then attach the membrane to the tip of a fiber-optic bundle (R79, Another strategy employs nylon coils with reagents immobilized on the inner surface. A flow sensor for L-phenylalanine that comprised a coil containing immobilized L-phenylalanine dehydrogenase linked to a second coil containing coimmobiliied marine bacterial oxidoreductase and luciferase has been used to measure this amino acid in semm (detection limit 10 pmol, linear range 1-100 pM) (R77). ImagingAssays. There is increasing interest in determining the spatial distribution of metabolites (ATP, glucose, lactate) in tissue sections. Light emissions from BL indicator reactions for particular metabolites are monitored using a microscope coupled to a photon-counting imaging system (R78). Reactive oxygen species in macrophages from asthma patients have also been imaged (R79). Analytical CL reactions (e.g., detection of horseradish peroxidase) performed in micromachined channels in silicon glass devices can be imaged using cooled CCD cameras (R80). Simpler photographic assays detect light emission from CL immunoassays for serum ferritin performed in microwells (R81),anti-HTLV-I antibodies (R82),and von Willebrand multimers blotted onto membranes (R83). Reporter Gene-Based Assays. Advances in the genetics of BL organisms has led to the use of genes for BL enzymes (luciferases) and proteins (apoaequorin) as reporter genes (R1). Application of reporter genes has now been extended to assays for follicle-stimulating hormone 0(R84)and G protein-linked receptors based on modulation of the expression of luciferase gene constructs (R85). DNAArnpli6cation Assays. The polymerase chain reaction (PCR) or the ligase chain reaction (LCR) in combination with a CL assay is a key component of several clinical and forensic test procedures, e.g., detection of HLA polymorphism for tissue transplantation (R86),determining disease susceptibility, cystic fibrosis mutations (R87),and Mycobacterium tuberculosis (R88). Forensic Applications. Luminol has a long history as a reagent for a presumptive test for blood. Peroxidase activity in blood catalyzes the CL oxidation of luminol, and it is particularly useful for revealing latent patterns (R89). The other main forensic application of CL is in testing DNA samples to determine identity. CL substrates provide sensitive detection of the alkaline phosphatase-labeled oligonucleotide probes used in this technique (R90). Luminometers,Analyzers, Reagents, and Kits. A periodic survey covers the range of commercially available instrumentation (>90 luminometers) and reagents (including reagents in kit form) for CL and BL assays (R91-R93). Descriptions of new CL readers for microplates (R94) and a number of evaluations of automatic clinical analyzers for performing immunoassays have appeared (R95-R98). Larry J. Kricka is a Professor of Pathology and Laborato Medicine at the Universit o Penns lvania and Director of the Generaychemistry
60s
ita{of the University of Penns lvania. He received Laboratory at t& his B.A. and D.Phal. &reesfrom York Unaqersaty,idgland. Has research interests znclude the analytical applications of baoluminescence and chemiluminescence, nonisotopic immunoassays,micromachined analytical systems, and heterophile antibodies. He is editor-in-chief of the Journal of Bioluminescence and Chemzluminescenceand a member of the edrtonal boards of Analytical Biochemistry, Journal of Immunoassay, and Talanta.
LITERATURE CITED Bronstein, I.; Fortin,,J.; Stanle , P. E.; Stewart, G. S.A. B.; Kricka, L. J. Anal. Bzochem. 1J94,219, 169-181. Bronstein, I.; S arks, A. In Immunochemical Assays and Biosensor TechnoE)ogyzn the 1990s; Nakamura, R M., Kasahara, Y., Rechnitz, G. A., Eds.; American Society for Microbiology: Washington, DC, 1992; pp 229-250. Kricka, L. J.; Nozaki, 0. Lab. Rob. Autom. 1992,4,343-350. Kricka, L. J. Clin. Biochem. 1 9 9 3 , 26, 325-331. Kricka, L. J. Clin. Chem. 1 9 9 4 , 40, 347-357. Lewis, S.W.; Price, D.; Worsfold, P. J.J. Biolumin. Chemilumin. 1993,8, 183-199. Pollard-Knight, D. V. In Bioluminescence and Chemiluminescence: C u m Status; Stanley, P. E., Kncka, L. J., Eds.; Wiley: Chichester, U.IC, 1991; pp 83-90. Pringle, M. J. Adv. Clin. Chem. 1993,30, 89-183. F$mrds, IC;Worsfold, P. J. Anal. Chim. Acta 1992,266,147113.
(R10) Tokmakov, A. A. Usp. Sovrem. Biol. 1 9 9 3 , 113, 247-256; Chem. Abstr. 1 9 9 4 , 117, 186993. (R11) Rongen, H. A. H.; Hoetelmans, R. M. W.; Bult, A.; Van Bennekom, W. P. J. Pharm. Bzomed. Anal. 1994, 12, 433463
(R12) KKakman, P. J. M.; Brinkman, U. A. T. Anal. Chim. Acta 1 9 9 2 , 266, 175-192. (R13) Guilbault, G. G.; Mascini, M. G. Ital. Chim. Clin. 1992, 17, 415-426. (R14) Weeks, I. Chemiluminescence Immunoassay;Elsevier: Amsterdam, 1992. (R15) Bioluminescence and Chemiluminescence: Status Report.; Szalay, A. A., Kricka, L. J., Stanley, P. E., Eds.; Wiley: Chichester, U.K., 1993. (R16) Kricka, L. J.; Stanley, P. E. J. Biolumin. Chemilumin. 1 9 9 4 , 9, 87-105. (R17) Kricka, L. J.; Stanley, P. E. J. Biolumin. Chemilumin. 1 9 9 4 , 9, 379-388. (R18) Baret, A. US. Patent 5 108 893, 1992; Chem. Abstr. 1994, 117, 2481 50. .- . .. (R19) Beheshti, I.; Koelling, H. US. Patent 5 290 936, 1994; Chem. Abstr. 1 9 9 4 , 120, 293605. (R20) McCapra, F.; Beheshti, I. US. Patent 5 284 951, 1994; Chem. Abstr. 1994, 121, 157542. (R21) McCa ra, F US. Patent 5 283 334, 1994; Chem. Abstr. 1 9 9 4 , 121.33792.. Migni, M.iYoko ama, J.; Ichikawa, H.; Sawada, H.; Matsumoto, T. Jpn. Patent 06856818,1994; Chem. Abstr. 1994,120,323611. Akhavan-Tafti, M. H. PCT Int. Patent Appl. 94 10 337, 1994; Chem. Abstr. 1994,121, 77759. Masuya, H.; Kondo, K.; Aramaki, Y.; Ichimori, Y. Eur. Patent Appl. 491477, 1992; Chem. Abstr. 1 9 9 4 , 117, 171465. Ramaknshnan, K. US. Patent 5 284 952, 1994; Chem. Abstr. 1 9 9 4 . 120. 318832. ~...(R26) Ram&shnan, IC PCT Int. Patent Appl. 94 04 538,1994; Chem. Abstr. 1 9 9 4 ,. 121. ---, 157433. (R27) Bronstein, I.; Edwards,B.; Juo, R.-R. US. Patent 5 326 882, 1994; Chem. Abstr. 1 9 9 4 , 121, 200412. (R28) Josel, H. P.; Hemnann, R.; Klein, C.; Heindl, D. Ger. Patent 4210759, 1993; Chem. Abstr. 1 9 9 4 , 120, 164160. (R29) Kricka, L. J. PCT Int. Patent Appl. 93 16 195, 1993; Chem. Abstr. 1 9 9 4 . 119. 244979. (R30) Bronstein, I.; Edwards, B.; Voyta, J. PCT Int. Patent Appl. 93 13 405, 1993; Chem. Abstr. 1994, 119, 177150. (R31) Kissel, T.R. US. Patent 5 279 940, 1994; Chem. Abstr. 1 9 9 4 , 120. 239660. (R32) Kobatake, E.; Iwai, T.; Ikariyama, Y.; Aizawa, M. Anal. Biochem. 1993. 208. 300-305. (R33) Ullman, E. F.; Kirakossian, H.; Singh, S.; Wu, Z. P.; Irwin, B. R.; Pease, J. S.; Swtchenko, A. C.; Irvme, J. D.; Daffom, A. Proc. Natl. Acad. Scz. U S A . 1994. 91. 5426-5430. 0734) Pease, J. S.; Kirakossian, H.; Wagner, D.' B.; U l l m i , E. F. PCT Int. Appl. 94 03 812, 1994; Chem. Abstr. 1 9 9 4 , 120, 293591. 0735) Arakawa, H.; Ike ami, T.; Maeda, M.; Tsuji, A. J. Biolumin. Chemilumin. 1983,8, 135-139. (R36) Chettibi, S.;Lawrence, A. J.; Stevenson, R. D.; Young, J. D. FEMS Immunol. Med. Microbiol. 1994,8, 271-281. (R37) Bruno, J. G.; Kiel, J. L. In Vitro Cell. Dev. Biol.: Anim. 1993, 29A, 737-741. (R38) Becker, B. F.; Raschke, P.; Bardenheuer, H.; Gerlach, E. Pharm. Pharmacol. Lett. 1993,3, 93-96. (R39) Albrecht, D.; Jungi, T. W. J. Leukocyte Biol. 1993,54, 300306. (R40) Marhoffer, W.; Stein, M.; Schleinkofer, L.; Federlin, IC 1. Biolumin. Chemilumin. 1994,9, 165-170. (R41) Bergenfeldt, M.; Ohlsson, IC Gastroenterol. Jpn. 1993, 28, 687-698. (R42) h o l d , R.; Wemer, F.; Humbert, B.; Werchau, H.; Koenig, W. Immunology 1 9 9 4 , 82, 184-191. (R43) Beck-Speier, I.; Lenz, A. G.; Godleski, J. J.J. Toxicol. Environ. Health 1994,41, 285-297. 0144) Trajkovska, S.; Dzhekova-Sto'kova, S.; Kostovska, S. Anal. Chzm. Acta 1 9 9 4 , 2 9 0 , 246-448 (R45) Girotti, S.; Ferri, E: Nucci, S.;Di Graci, F.; Cascione, M. L.; Sermasi, G.; orlandini, A.; Farina, L. In Bioluminescence and ~
I
Chemiluminescence: Curr. Status; Stanley, P. E., Kricka, L. J., Eds,; Wdey: Chichester, U.K., 1991; pp 491-494. Tun. S.: Bereczki. C.: Havass. 2. Prostadandins Leukotrienes Essent. Fatty Acids 1994, 51, 69-73. Foote, N. P. M.; Grant, P. L. PCT Int. Patent Appl. 94 11 528, 1994; Chem. Abstr. 1 9 9 4 , 121, 77760. Ohno, Y.; Hobo, T.; Suyama, M.; Tamura, R.; Ishii, M. Anal. Sri 1993 - - - -, -9, 2.1.1-777 -- - -- . . & - e n , P.; Edwin, V. Anal. Biochem. 1994,220, 39-45. Nyren, P.; Edwin, V. Anal. Biochem. 1 9 9 4 , 220, 46-52. Ha akawa, K; Miyoshi, Y.; Kurimoto, H.; P/latsushima, Y.; Tala m a , N.; Tanaka, S.; Miyazaki, M. Btol. Pharm. Bull. 1 9 9 8 , 16, 817-821 Ishida, J.; Yamaguchi, M. Fukuoka Daigaku Yakugaku Kiyo 1993,17, 1-18; Chem. Abstr. 1 9 9 4 , 118, 925. Cree, I. A.; Hunter, E. M.; Sutherland, L. A.; Subedi, A. M. C.; Dewar, J. A.; Preece, P. E.; Andreotti, P. E. In Bioluminescence and Chemiluminescence: Status Report.; Szalay, A. A., Kricka, L. J., Stanley, P. E., Eds.; Wiley: Chichester, U.K., 1993; pp 276-280. Andreotti, P. E.; Linder, D.; Hartman, D. M.; Becker, IC;Herbst, K.; Cree, I.; Bruckner, H. W. In Bioluminescence and Chemiluminescence: Status Re ort.; Szala A A., Kricka, L. J., Stanley, P. E., Eds.; Wiley: {hichester, 8.K.; 1993; pp 271275. Maeda, M.; Tsuji, A. J. Biolumin. Chemilumin. 1993,8, 241246. Cattaneo, M.; Luong, J. H. T. Enzyme Microb. Technol. 1993, 15., 424-428. ~ ~ H-&Sil H-ansen, E. H.; Winther, S.IC;Gundstrup, M. Anal. Lett. 1 9 9 4 , 27, 12: 1239-1253. Kiba, N.; P Ueda, F.; Furusawa, M.; Yamane, T. Anal. Chim. Acta Kiba. 187-191. 1 9 9 2 , 2 6 9 , 187-1Y1. Kiba, N.; Ueda, F.; Sae sa, K.; Goto, Y.; Furusawa, M.; Yamane, Chim. E t a 1992. 1992,271. 271, 47-51. Ypnane, T. Anal. Chzm. Ki Kiba, N.; Koemado, H.; Furusawa, M. Anal. Chim. Acta 1994, 290, 357-361. Suda, M.; Sakuhara, T.; Murakami, Y.; Karube, I. Appl. Biochem. Biotechnol. 1993,41, 11-15. Imai, IC; Watanabe, H. Tech. Behav. Neural Sci. 1 9 9 3 , 11, 83-125. Prados, P.; Higashidate, S.; Imai, K. Biomed. Chromatogr. 1994,8, 1-8. Ishida, J.; Sonezaki, S.;Yamaguchi, M. Analyst 1992, 117, 1719-1724. Girotti, S.; Ferri, E.; Ghini, S.; Rauch, P.; Carrea, G.; Bovara, R.; Roda, A.; Antonietta, M.; Masotti, G. Analyst 1993, 118, 849-853. Leone, A. M.; Gustafsson, L. E.; Francis, P. L.; Person, M. G.; Wiklund, N. P.; Moncada, S. Biochem. Biophys. Res. Commun. 1 9 9 4 , 2 0 1 , 883-887. Cha ple, I. L. C.; Matthews, J. B.;Thorpe, G. H. G.; Glenwright H. Smith, J. M.; Saxby, M. S.J. Peridontol. Res. 1993,28: 266-273. Cha ple I. L. C . Glenwri ht, H. D.; Matthews, J. B.; Thorpe, G. G.f Lumle;, P. J. J. d t n . Perzdontol. 1994,21,409-414. Maxwell, S. R J.; Thorpe, G. H. G.; Whitehead, T. P. In Biologie Pros ective; Galteau, M.-M., Ed.; Libbey: Montrouge, France, 1998 p 519-522. Whitegead, T. P.; Thorpe, G. H. G.; Maxwell, S.R. J. Anal. Chim. Acta 1 9 9 2 , 2 6 6 , 265-277. Chamoin, M.-C.; Charbonnier, M.; Lafont, H.; Temaux, J.-P. Biochim. Bioph s. Acta 1 9 9 4 , 1210, 151-156. Temaux, J.-P.; damoin, M.-C. J. Biolumin. Chemilumin. 1994, 9, 65-72. Muyakami, S.;. Nakjjma, M.; Ito, S.; m a d ? , S.;Maeda, M.; TSUJ~, A. In Bzolumznescence and Chemzlumanescence: Status Report.; Szala ,A. A, Kricka, L. J., Stanley, P. E., Eds.; Wiley: 1993; pp 296-300. Chichester, Starodub, N. F.; Arenkov, P. J.; Starodub, A. N.; Berezin, V. A. Sens. Actuators B 1994, 18, 161-165. Zhang, Z.; Ma, W.; Yang, M. Fenxi Huaxue 1992,20,10481051; Chem. Abstr. 1 9 9 4 , 117, 229326. Cattaneo, M. V.; Luong, J. H. T. Proc. SPIE-Int. SOC.Opt. Eng. 1993,1886, 186-192. Girotti, S.; Fem, E.; Ghini, S.; Budini, R.; Carrea, G.; Bovara, R.; Piazzi, S.; Merighi, R.; Roda, A. Talanta 1993,40, 425430. Mueller-Klieser, W.; Walenta, S.Histochem. J. 1993,25,407420. Vachier, I.; Le Doucen, C.; Loubatiere, J.; Damon, M.; Terouanne, B.; Nicolas, J.-C.; Chanez, P.; Godard, P. J. Biolumin. Chemilumin. 1994, 9, 171-175. Kricka, L. J.; Ji, X.; Nozaki, 0.; Wilding, P. J. Biolumin. Chemilumin. 1 9 9 4 , 9, 135-138. OToole, A.; Kricka, L. J.; Thorpe, G. H. G.; Whitehead, T. P. Anal. Chzm. Acta 1 9 9 2 , 266, 193-199. Kuroda, N.; Nakashima, K.; Akiyama, S.; Shiraki, H.; Maeda, Y. Clin. Chim. Acta 1992,211, 113-119. Wen, L. T.; Smolec, J. M.; Coughlin, J.; McPherson, R. A. J Clzn. Lab. Anal. 1 9 9 3 , 7, 317-323. Crowley, W. F.; Albanese, C.; Christin-Maitre, S.; Sluss, P. M.; Jameson, J. L. Mol. Cell. Endocrinol. 1994, 101, 211-219. Weyer, U: Schaefer, R.; Himmler, A,; Mayer, S.K; Buer er, E.; Czemiiofsky, A. P.; Stratowa, C. Recept. Channels 1953, 1. 193-200.
-
8.;
If
JK.,
AnalyticalChemistry, Vol. 67, No. 12, June 15, 1995
501R
Erlich. H.: Bupawan. T.: Becovich. A.: Scharf. S.Arch. Pnthnl %m. Genet. 1992,89, 163-168. Winn-Deen , E: S.: Bak. C. A.: Wiedmann. M. Mol. Cell. Probes 1993,7, 179-186. Yeshion, T. E. In Chemiluminescence and Bioluminescence: Cuw. Status; Stanley, P. E., Kricka, L. J., Eds.; Wiley: Chichester, U.K., 1991; pp 379-384. Neuweiler. I.: Venturini. 1.: Balzas, I.; Komher, S.; Hintz, D.; Victor, J. A h . Forensic Ha;emogenet. 1992,4, 132-136. Stanley, P. E. J. Biolumin. Chemilumin. 1994,9, 123-125. Stanley, P. E. I. Biolumin. Chemilumin. 1994.9.51-53. Stanley, P. E. J. Biolumin. Chemilumin. 1993,8,237-240.
502R
Analytical Chemistry, Vol. 67, Na. 12, June 15, 1995
(R94) Sasaki, T. Jpn. Patent 5 281 143, 1993; Chem. Abstr. 1994, 120, 101245. (R95) Sato, Y.; Takizawa N.; Saito, S. Ni on Rinsho Ku akkai S?