Chemistry of Furan Polymers - ACS Symposium Series (ACS

Jul 23, 2009 - Furfural, derived from renewable agricultural resources, has been a significant industrial chemical for many years, used mainly as a se...
7 downloads 26 Views 1MB Size
Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

Chapter 29 Chemistry of Furan Polymers W i l l i a m J. McKillip Q O Chemicals, Inc. P.O. Box 2500 West Lafayette, IN 47906

Furfural, derived from renewable agricultural resources, has been a significant industrial chemical for many years, used mainly as a selective solvent. Furfuryl alcohol is manufactured worldwide in substantial volumes and principally used in the foundry industry. Other derivatives of furfural, namely furan, methylfuran, and tetrahydrofuran, are important as solvents, building blocks for chemical synthesis, and as monomers for polymerization. While furfural is competitive with today's petrochemicals, the prospect of lower cost in the future based on byproduct furfural from solvent pulping technology in the wood industry provides an opportunity for researchers to rediscover the versatility of these oxygen-containing heterocyclic chemicals. Adapting their specific pseudo-aromatic/dienic properties to applications requiring performance-effective chemicals offers many opportunities for furfural's potential to be fully realized. F u r f u r a l ( 1 ) , derived f r o m a n n u a l l y renewable a g r i c u l t u r a l b y p r o d u c t s , is a n i m p o r t a n t i n d u s t r i a l c h e m i c a l m a n u f a c t u r e d a n d used t h r o u g h o u t the w o r l d . It is the feedstock for a n u m b e r o f d e r i v a t i v e chemicals g e n e r i c a l l y k n o w n as " f u r a n s " - t h e s t r u c t u r a l c h a r a c t e r i s t i c o f w h i c h is t h e five-membered o x y g e n - c o n t a i n i n g h e t e r o c y c l i c r i n g . F u r f u r y l a l c o h o l ( 2 ) is the most i m p o r t a n t d e r i v a t i v e o f c o m merce, where i t i s used p r i m a r i l y i n synthesis o f adhesive p o l y m e r s . I n a d d i t i o n , f u r a n , a v a i l a b l e b y d e c a r b o n y l a t i n g f u r f u r a l , has been e m p l o y e d c o m m e r c i a l l y t o p r o d u c e other i n d u s t r i a l chemicals i n c l u d i n g t h i o p h e n e , p y r r o l e , a n d N - s u b s t i t u t e d pyrroles. T h e s e sulfur a n d n i t r o g e n - c o n t a i n i n g h e t e r o c y c l i c chemicals are used as solvents a n d c h e m i c a l b u i l d i n g b l o c k s . Hydrogénation of f u r a n i s done c o m m e r c i a l l y t o p r o d u c e t e t r a h y d r o f u r a n , w h i c h is used as a n i n d u s t r i a l solvent a n d a m o n o m e r for the p r o d u c t i o n o f p o l y t e t r a m e t h y l e n e ether g l y c o l . F u r f u r a l , as a feedstock, p l a y s a role i n t h e m a n u f a c t u r e o f these i n d u s t r i a l l y i m p o r t a n t h e t e r o c y c l i c chemicals. C o n s i d e r i n g t h a t t h e m a t e r i a l s c o n s u m e d t o m a k e f u r f u r a l are accessible i n large q u a n t i t i e s a n d n a t u r a l l y 0097-6156/89/0385-0408$06.00/0 © 1989 American Chemical Society

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

29.

409

Chemistry of Furan Polymers

McKlLLiP

renewed, t h e p r o d u c t i o n o f f u r a n derivatives becomes a n a t t r a c t i v e a l t e r n a t i v e to p e t r o l e u m - b a s e d chemicals.

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

Ç - C H O

Ç LC h L O H

F i v e - m e m b e r e d h e t e r o a r o m a t i c r i n g c o m p o u n d s have been a v a i l a b l e for some t i m e , a n d their r e l a t i v e r e a c t i v i t i e s a n d properties have been s t u d i e d . T h e a r o m a t i c i t y o f the f u r a n r i n g i s t h e lowest i n t h e series: t h i o p h e n e > p y r r o l e > f u r a n (1). T h e dienic character o f f u r a n follows t h e reverse order as s h o w n b y studies o n t h e D i e l s - A l d e r a n d other a d d i t i o n reactions (2). A s a consequence, f u r a n shares b o t h a r o m a t i c a n d d i e n i c p r o p e r t i e s . T h e p r e d o m i n a n c e o f one o f these two a d d i t i o n characteristics a m o n g t h e m a n y derivatives depends o n t h e n a t u r e a n d p o s i t i o n o f the r i n g s u b s t i t u e n t s . C h e m i c a l reactions, p a r t i c u l a r l y i n v o l v i n g p o l y m e r types a n d r e a c t i v i t y , are influenced b y t h i s d u a l i t y . P o l y m e r i z a t i o n systems where t h e f u r a n r i n g is present i n t h e m o n o m e r , either as t h e reactive e n t i t y o r as a pendent group t o t h e f u n c t i o n responsible for t h e p o l y m e r i z a t i o n , are t h e subject o f t h i s d i s c u s s i o n . C o n s i d e r a t i o n w i l l b e g i v e n t o b o t h condensation a n d addition polymerizations. W h i l e there are m a n y chemicals possessing t h e f u r a n nucleus, f u r f u r a l a n d f u r f u r y l a l c o h o l are o f m a j o r i n d u s t r i a l significance. T h e chief source o f f u r f u r a l i n p l a n t m a t e r i a l s is t h e p e n t o s a n f r a c t i o n , p r e d o m i n a n t l y x y l a n (Scheme 1).

(C H 0 ) 5

8

4

CHO CH OH 2

XYLAN

XYLOSE Scheme 1

F u r f u r y l a l c o h o l is m a n u f a c t u r e d o n a n i n d u s t r i a l scale b y e m p l o y i n g b o t h l i q u i d - p h a s e a n d vapor-phase hydrogénation o f f u r f u r a l (3,4)- C o p p e r c a t a l y s t s are preferred because t h e y are selective a n d d o n o t p r o m o t e hydrogénation o f the r i n g .

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

410

ADHESIVES F R O M RENEWABLE RESOURCES

M a n y i n d u s t r i a l a p p l i c a t i o n s u t i l i z e the solvent properties o f f u r f u r a l a n d fur­ f u r y l a l c o h o l ; however, b o t h chemicals also d i s p l a y u n i q u e features as m o n o m e r s for c o n d e n s a t i o n p o l y m e r i z a t i o n . M o s t o f the f u r f u r y l a l c o h o l sold is used as m o n o m e r i n the m a n u f a c t u r e o f resins for i n d u s t r i a l a p p l i c a t i o n .

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

Furfural Polymers H o m o p o l y m e r s o f f u r f u r a l , as r e p o r t e d b y G a n d i n i , p o l y m e r i z e t o b l a c k crossl i n k e d p r o d u c t s w h e n heated t o h i g h t e m p e r a t u r e i n a n i n e r t a t m o s p h e r e (5,6). T h i s i n v e s t i g a t o r showed t h e r e s u l t i n g thermoset p o l y m e r t o be p a r a m a g n e t i c , i n d i c a t i n g t h e presence o f h i g h l y s t a b i l i z e d free r a d i c a l s t h a t i n h i b i t r a d i c a l reactions. T h e color is suggested as a r i s i n g f r o m the u n p a i r e d electrons a n d extensive c o n j u g a t i o n . T h e f o l l o w i n g c o m p o s i t i o n ( 3 ) h a s been p r o p o s e d (6):

3 F u r f u r a l reacts w i t h L e w i s a n d B r o n s t e d acids u n d e r a n h y d r o u s c o n d i t i o n s to y i e l d b l a c k i n s o l u b l e resins. T h e r a t e o f p o l y m e r f o r m a t i o n i s dependent u p o n the h y d r o g e n i o n c o n c e n t r a t i o n a n d t e m p e r a t u r e w h e n f u r f u r a l is p o l y m e r i z e d by d i l u t e a c i d (7). P o l y m e r i z a t i o n u n d e r aqueous c o n d i t i o n s occurs w i t h some f u r a n r i n g o p e n i n g . C o n d i t i o n s o f p o l y m e r i z a t i o n , w h e t h e r aqueous o r a n h y ­ d r o u s , inert o r o x y g e n atmosphere, a l l affect t h e c o m p o s i t i o n o f t h e p o l y m e r . Investigators have r e c e n t l y r e p o r t e d (8,9) t h a t c o n d e n s a t i o n reactions i n v o l v ­ ing the C - 5 hydrogen a n d the protonated or complexed carbonyl group occur, leading to three-dimensional crosslinking. T h e p h o t o p o l y m e r i z a t i o n o f f u r f u r a l b y U V r a d i a t i o n has n o t received m u c h a t t e n t i o n . A l t h o u g h the p r o d u c t s o f heat p o l y m e r i z a t i o n o f f u r f u r a l are b r a n c h e d polycondensates w i t h h i g h l y c o n j u g a t e d s t r u c t u r e s , the p h o t o p o l y m e r o f f u r f u r a l is a l i n e a r p o l y a d d i t i o n p r o d u c t (8,9). T h e gas-phase p h o t o l y s i s o f f u r f u r a l i n the η —• π* a n d π —• π * t r a n s i t i o n s (10) proceeds w i t h f r a g m e n t a t i o n t o c a r b o n monoxide, furan, a n d C 3 hydrocarbons, b u t a certain amount of resinification has also been noted ( a b o u t 5 % q u a n t u m y i e l d w i t h e x c i t a t i o n o f t h e η —• π* transition). V a c u u m liquid-phase photolysis by U V radiation at room tempera­ t u r e has p r o d u c e d l i n e a r p o l y m e r s ( 4 ) w i t h a degree o f p o l y m e r i z a t i o n o f a b o u t

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

29.

McKiLLiP

Chemistry of Furan Polymers

411

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

5 (8,11). T h e presence of one c a r b o n y l g r o u p per o l i g o m e r molecule has also been observed. T h e fact t h a t f u r o i n was i s o l a t e d is s u p p o r t i v e of the proposed m e c h a n i s m . N o e v a l u a t i o n has been done t o date o n the usefulness o f these liquid linear polymers.

4 C o p o l y m e r s of f u r f u r a l w i t h p h e n o l or p h e n o l - f o r m a l d e h y d e p o l y m e r s have been a v a i l a b l e c o m m e r c i a l l y for m a n y years. Since the a c i d - c a t a l y z e d r e a c t i o n of f u r f u r a l a n d p h e n o l has been difficult t o c o n t r o l , m o s t i n d u s t r i a l a p p l i c a ­ t i o n s involve the use of a l k a l i n e c a t a l y s t s . F u r f u r a l - p h e n o l resins are used for t h e i r a l k a l i resistance, enhanced t h e r m a l s t a b i l i t y , a n d g o o d e l e c t r i c a l p r o p e r t i e s c o m p a r e d t o p h e n o l - f o r m a l d e h y d e resins. R e c e n t l y , investigators have s t u d i e d the r e a c t i o n o f f u r f u r a l w i t h o t h e r h y d r o x y 1b e a r i n g a r o m a t i c s . I n the case of b i s p h e n o l A (12,13), f u r f u r a l has been s h o w n t o react i n the ortho p o s i t i o n s , y i e l d i n g the a l c o h o l a d d u c t a n d u l t i m a t e l y r e s u l t ­ i n g i n reaction products bearing fufuryl-diphenol methane groups. T h e p r o d ­ ucts f o r m e d , used i n m o l d i n g powders, show s u p e r i o r t h e r m a l , m e c h a n i c a l , a n d c h e m i c a l properties c o m p a r e d to p h e n o l - f o r m a l d e h y d e p o l y m e r s . F o r a g i v e n degree of p o l y m e r i z a t i o n , the m o l e c u l a r weight of b i s p h e n o l Α-furfural resin is m o r e t h a n twice t h a t of p h e n o l - f o r m a l d e h y d e . A s a r e s u l t , b i s p h e n o l A - f u r f u r a l p o l y m e r s have a m o l e c u l a r weight i n the range of 1,600 t o 1,800 c o m p a r e d t o p h e n o l - f o r m a l d e h y d e resins w i t h m o l e c u l a r weight of 700 t o 800. M o r e o v e r , due t o the higher f u n c t i o n a l i t y o f b i s p h e n o l A , a t h r e e - d i m e n s i o n a l r i g i d c r o s s l i n k e d s t r u c t u r e w i t h a u n i q u e s p a c i a l c o n f i g u r a t i o n c o n t r i b u t e s t o a q u i c k c u r i n g sys­ t e m . I m p r o v e d adhesion p r o p e r t i e s are seen due t o the u n i q u e c y c l i c ether f u n c t i o n a l i t y of the f u r a n r i n g . T h e c o n d e n s a t i o n r e a c t i o n o f b i s p h e n o l A a n d f u r f u r a l m a i n l y depends o n the n a t u r e a n d c o n c e n t r a t i o n o f the c a t a l y s t s , the r e a c t i o n t e m p e r a t u r e , the r e a c t i o n t i m e , a n d the m o l a r r a t i o o f r e a c t a n t s . P o l y c o n d e n s a t i o n of b i s p h e n o l C ( p h e n o l + cyclohexanone) a n d f u r f u r a l , c a t a l y z e d b y base, leads t o resins such as 5 t h a t are m o r e easily c u r e d t h a n p h e n o l - f u r f u r a l condensates, a n d s u c h resins have h i g h e r softening ranges (14)· U n d e r a c i d i c c a t a l y s i s , some r i n g o p e n i n g occurs as evidenced b y the i n f r a r e d s p e c t r u m . C r o s s l i n k i n g i n the a c i d - c a t a l y z e d resin is also suggested b y i t s higher softening range. T h e a c i d - c u r e d resin is m o r e t e m p e r a t u r e s t a b l e t h a n the basec a t a l y z e d r e s i n ; however, t h e r m a l g r a v i m e t r i c a n a l y s i s d a t a show t h a t p h e n o l f u r f u r a l resins o n the whole are m o r e stable t h a n the b i s p h e n o l C - f u r f u r a l resins.

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

412

ADHESIVES F R O M RENEWABLE RESOURCES

5 F u r f u r a l - r e s o r c i n o l o l i g o m e r s have been k n o w n for m a n y years (15,16). The r e a c t i o n v e l o c i t y o f f u r f u r a l w i t h r e s o r c i n o l is the fastest c o m p a r e d t o other h y d r o x y s u b s t i t u t e d a r o m a t i c s . F u r f u r a l - r e s o r c i n o l p o l y m e r s , w h e n heat c u r e d , give excellent b o n d i n g s t r e n g t h s , e s p e c i a l l y u n d e r c o n d i t i o n s o f h i g h h u m i d i t y . T h e i r o l i g o m e r s , even i n the presence o f acids, show g o o d shelf life u n t i l reacted w i t h a suitable methylene donor. F u r f u r a l - k e t o n e c o p o l y m e r s have f o u n d c o m m e r c i a l use, p a r t i c u l a r l y i n the Soviet U n i o n , i n a p p l i c a t i o n s r a n g i n g f r o m floor coverings, a n t i - c o r r o s i o n c o a t i n g s , w o o d adhesives, a n d b i n d e r s for c a r b o n / g r a p h i t e . W h e n a n a l k a l i n e c a t a l y s t is used, f u r f u r a l is k n o w n t o react w i t h acetone t o f o r m the s o - c a l l e d " f u r f u r y l i d e n e acetone m o n o m e r , " a m i x t u r e o f 2 - f u r f u r y l i d e n e m e t h y l k e t o n e ( 6 ) , b i s ( 2 - f u r f u r y l i d e n e ) ketone ( 7 ) , m e s i t y l o x i d e , a n d o t h e r o l i g o m e r s . T r e a t m e n t o f the " m o n o m e r " w i t h a n a c i d i c c a t a l y s t leads i n i t i a l l y t o p o l y mers of l o w m o l e c u l a r weight a n d u l t i m a t e l y t o c r o s s l i n k e d , b l a c k , i n s o l u b l e , h e a t - r e s i s t a n t resin (17). D e s p i t e t h e i r r e p o r t e d l y excellent p r o p e r t i e s , v i r t u a l l y no c o m m e r c i a l use o f s u c h resins exists outside t h e Soviet U n i o n . T h e s t r u c t u r e a n d p o l y m e r i z a t i o n m e c h a n i s m o f these f u r f u r a l - k e t o n e p o l y m e r s are d e s c r i b e d i n a recent s t u d y (18). A n excellent c o m b u s t i o n - r e s i s t a n t resin has been r e p o r t e d (19) f r o m the a d d i t i o n o f d i a l k y l p h o s p h i t e s t o b i s ( 2 - f u r f u r y l i d e n e ) ketone ( 6 ) . F u r f u r a l condensates w i t h o t h e r a l i p h a t i c a n d a r o m a t i c ketones have been r e p o r t e d (20,21) t o p r o v i d e p h o t o - c r o s s l i n k a b l e resins a n d h y p e r g o l components.

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

29.

McKiLLiP

Chemistry of Furan Polymers

413

Ο

II CH=CHCCH=CH

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

6

7

C o p o l y m e r s o f f u r f u r a l w i t h p y r r o l e have been r e p o r t e d t o y i e l d c a r b o n fibers o f r e m a r k a b l e q u a l i t y (22). M o r e recent r e p o r t s i n c l u d e t h e use o f p o l y ( N v i n y l c a r b a z o l e ) w i t h f u r f u r a l a n d f u r f u r a l - a m i n e c o p o l y m e r s (23) t o m a k e b o t h c a t i o n / a n i o n exchange resins. A considerable a m o u n t o f a d d i t i o n a l w o r k needs t o be done i n t h i s area t o d e t e r m i n e t h e c o m m e r c i a l usefulness o f s u c h systems. Furfuryl Alcohol Polymers Since t h e l a t e 1950's, a c i d - c a t a l y z e d r e s i n i f i c a t i o n has been t h e m o s t i m p o r t a n t industrial reaction of furfuryl alcohol. T h e polymerization mechanism proposed u p t o t h e e a r l y 1950's for f u r f u r y l a l c o h o l w a s r e p o r t e d b y D u n l o p a n d Peters i n t h e i r excellent treatise o n t h e f u r a n s (24). T h e i r m e c h a n i s m h a s n o t been altered t o a n y great degree since t h a t t i m e . However, w i t h f u r f u r y l a l c o h o l p o l y m e r s (resins) g r o w i n g i n i m p o r t a n c e , t h e c h e m i s t r y o f f u r f u r y l a l c o h o l p o l y ­ m e r i z a t i o n i n i t i a t e d b y heat, acids, a n d a l u m i n a has been s t u d i e d at a n u m b e r o f l a b o r a t o r i e s a n d h a s p r o v e n t o b e c o m p l e x , p a r t i c u l a r l y after t h e first stage of o l i g o m e r p r o d u c t i o n . S t u d i e s d e a l i n g w i t h t h e i d e n t i f i c a t i o n o f c o m p o n e n t s b y spectroscopic a n d c h r o m a t o g r a p h i c techniques (25-28), t h e r e a c t i o n k i n e t i c s i n v o l v e d i n p o l y m e r i z a t i o n (29-31), the s t r u c t u r e o f p o l y m e r s (32), a n d t h e n a ­ t u r e o f t h e o x y g e n o r a c i d - c a t a l y z e d c r o s s l i n k i n g o f t h e i n i t i a l resin (33) have a l l l e d t o a better u n d e r s t a n d i n g o f t h i s c o m p l e x c h e m i s t r y . G a n d i n i , i n h i s comprehensive review (5), e x a m i n e d t h e l i t e r a t u r e u p t o 1977 a n d h a s p r o ­ v i d e d a n excellent s u m m a r y a n d i n t e r p r e t a t i o n o f the r e s i n i f i c a t i o n m e c h a n i s m s p r o p o s e d . T h i s w o r k , c o u p l e d w i t h h i s recent review o f f u r a n p o l y m e r s (34), significantly contributes to the understanding of this complex p o l y m e r i z a t i o n . B a s e d o n the a c c u m u l a t e d d a t a , f u r f u r y l a l c o h o l h a s t o be considered a b i f u n c t i o n a l m o n o m e r i n t h e i n i t i a l stage, a n d i t s " n o r m a l " reactions give l i n ­ ear c h a i n s or o l i g o m e r s c o n t a i n i n g essentially t w o r e p e a t i n g u n i t s , a m e t h y l e n e b r i d g e a n d a m e t h y l e n e ether b r i d g e , w i t h the former p r e d o m i n a t i n g . T h e p o l y ­ m e r i z a t i o n or r e s i n i f i c a t i o n o f f u r f u r y l a l c o h o l is e x o t h e r m i c a n d , d e p e n d i n g u p o n t h e a c t i v i t y a n d c o n c e n t r a t i o n o f the c a t a l y s t u s e d , requires c a r e f u l c o n ­ t r o l o f t h e r e a c t i o n t e m p e r a t u r e . C o n t r o l is generally a c c o m p l i s h e d b y c o o l i n g the r e a c t i o n m i x t u r e w i t h r e f l u x i n g solvent a n d / o r a n e x t e r n a l c o o l i n g fluid. I n e x t r e m e instances, emergency n e u t r a l i z a t i o n o f t h e c a t a l y s t is essential t o a v o i d loss o f c o n t r o l .

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

414

ADHESIVES F R O M RENEWABLE RESOURCES

T h e degree o f first-stage p o l y m e r i z a t i o n is c a r r i e d out t o the desired p o i n t as m e a s u r e d b y viscosity. W h e n the p r o p e r v i s c o s i t y has been reached, the r e a c t i o n is t e r m i n a t e d b y a d j u s t i n g the p H o f the s y s t e m to between 5 a n d 8. S u c h l i q u i d resins c a n be stored for 6 m o n t h s or longer w i t h o u t any a p p r e c i a b l e b u i l d u p i n viscosity. T h e l i q u i d resins have l i n e a r s t r u c t u r e s f o r m e d by i n t e r ­ m o l e c u l a r d e h y d r a t i o n s o f the h y d r o x y l g r o u p o f one m o l e c u l e a n d the active α-hydrogen a t o m o f a n o t h e r . F u r f u r y l a l c o h o l d i m e r a n d higher h o m o l o g u e s ( 8 ) are m a j o r c o n s t i t u e n t s i n the p r o d u c t m i x t u r e . However, other c o m p o n e n t s are present, i n c l u d i n g h o m o l o g u e s o f d i f u r f u r y l m e t h a n e ( 9 ) , a n d b o t h f u r a n terminated a n d hydroxymethyl-terminated homologues of difurfurylmethylene ether ( 1 0 ) , i n a d d i t i o n t o 2 , 5 - b i s ( h y d r o x y m e t h y l ) f u r a n a n d i t s h o m o l o g u e s ( 1 1 ) as d e t e r m i n e d b y t h i n layer c h r o m a t o g r a p h i c ( T L C ) d e n s i t o m e t r y a n a l y s i s .

CH,

H-

CH OH 2

H-

CH,

Jn

π

CH,OCH,

—In

Π

CHjOH

HOCH

R-HorHOCH 2

10

11

A s s h o w n , the p o l y m e r e n d groups o f these o l i g o m e r s are h y d r o x y m e t h y l a n d / o r unsubstituted furan rings. Identification of 2,2'-difuryl methane a n d h i g h e r h o m o l o g u e s i n d i c a t e s t h a t f o r m a l d e h y d e , detected as a gaseous b y p r o d ­ uct o f the r e a c t i o n , is released b y t e r m i n a l h y d r o x y m e t h y l g r o u p s a n d / o r f r o m i n t e r n a l ether bridges. A n a d j u n c t to the u n d e r s t a n d i n g o f t h i s m e c h a n i s m is the evidence o b t a i n e d t h a t p o l y m e r i z a t i o n o f 2 , 5 - b i s ( h y d r o x y m e t h y l ) f u r a n produces n o 2 , 2 - d i f u r y l m e t h a n e or higher h o m o l o g u e s (35). A n a l y s i s by t h i n - l a y e r c h r o m a t o g r a p h y shows s u c h resin h a v i n g greater t h a n 9 5 % d i f u n c t i o n a l c o m p o n e n t s ( t e r m i n a l h y d r o x y m e t h y l groups) as c o m p a r e d to less t h a n 5 0 % for the resin f r o m a c o n ­ v e n t i o n a l f u r f u r y l a l c o h o l p o l y m e r i z a t i o n (35). ,

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

29.

McKiLLiP

Chemistry of Furan Polymers

415

A c o m p e t i n g r e a c t i o n to p o l y m e r g r o w t h t h r o u g h f u n c t i o n a l g r o u p c o n d e n s a t i o n occurs i n a c i d - c a t a l y z e d p o l y m e r i z a t i o n o f f u r f u r y l a l c o h o l . I n the l a t e r stages o f s u c h p o l y m e r i z a t i o n s , r i n g h y d r o l y s i s occurs, r e s u l t i n g i n the development o f a l i p h a t i c c a r b o x y l i c a n d k e t o n i c g r o u p s . Researchers have f r e q u e n t l y suggested the f o r m a t i o n of l e v u l i n i c a c i d , a l t h o u g h n o l e v u l i n i c a c i d has ever been i s o l a t e d , n o d o u b t due t o i t s reactive n a t u r e . W h i l e earlier investigators p o s t u l a t e d c r o s s l i n k i n g t h r o u g h the C - 3 a n d C - 4 p o s i t i o n s , m o r e recent studies (36), o n the basis o f a n a l y t i c a l d a t a , suggested t h a t the m a i n cause o f b r a n c h i n g a n d c r o s s l i n k i n g involves a c o n d e n s a t i o n r e a c t i o n between m e t h y l e n e groups w i t h i n a c h a i n a n d a h y d r o x y m e t h y l g r o u p at the e n d of a n o t h e r (Scheme 2) t o y i e l d s t r u c t u r e s such as 1 2 .

Scheme 2 T h e o n l y feature n o t e x p l a i n e d by t h i s m e c h a n i s m is the d a r k color o f the final resins. G a n d i n i , i n his review (34), suggests as w i t h f u r f u r a l resins, s m a l l a m o u n t s of v e r y intense c h r o m o p h o r e s m u s t b e present a l o n g the r e p e a t i n g chains; t h e i r c o n c e n t r a t i o n s are t o o low t o be detected b y N M R or I R spectroscopy^ H o m o p o l y m e r s of f u r f u r y l a l c o h o l or c o p o l y m e r s w i t h f o r m a l d e h y d e as final crosslinked thermoset p o l y m e r s d i s p l a y o u t s t a n d i n g c h e m i c a l , t h e r m a l , a n d m e c h a n i c a l properties (37). H e a t t r e a t m e n t o f f u r f u r y l a l c o h o l resins leads to the f o r m a t i o n of glasslike p o r o u s c a r b o n , possessing p r o p e r t i e s o f m o l e c u l a r sieves as well as p e r f o r m a n c e p h e n o m e n a s i m i l a r t o those observed i n s u p e r c o n d u c t i n g m a t e r i a l s (38-42). T h o u g h the exact m e c h a n i s m o f the c a r b o n i z a t i o n process as w e l l as the s t r u c t u r a l changes are n o t f u l l y e x p l a i n e d , a scheme o f p y r o l y s i s c h e m i s t r y has been proposed (39). T h e m a i n changes i n s t r u c t u r e occur i n the t e m p e r a t u r e region 150 ° C to 450 ° C , where a r u p t u r e o f m e t h y lene bridges, o p e n i n g o f f u r a n r i n g s , a n d f o r m a t i o n of a r o m a t i c systems takes place. A b o v e 450 ° C , the r e m a i n i n g m e t h y l e n e C - H residue c a p a b l e o f f o r m i n g

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

416

ADHESIVES F R O M R E N E W A B L E RESOURCES

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

a crosslinked a r o m a t i c s y s t e m arises. N M R studies o f f u r f u r y l a l c o h o l resin carb o n i z e d over t h e t e m p e r a t u r e range 60 ° C t o 860 ° C s h o w the f o l l o w i n g results i n t e r m s o f s t r u c t u r a l a n d c h e m i c a l changes t a k i n g place d u r i n g heat t r e a t m e n t : h e a t i n g u p t o 240 ° C results i n increases i n m o l e c u l a r weight a n d c r o s s l i n k i n g ; u p t o 320 ° C , c r o s s l i n k i n g increases sufficiently t o f o r m r i g i d s t r u c t u r e s ; t e m p e r a t u r e s o f 380 ° C a n d higher lead t o h y d r o g e n release a n d appearance o f p a r a m a g n e t i c centers. F u r f u r y l a l c o h o l p o l y m e r s are used i n a v a r i e t y o f a p p l i c a t i o n s i n c l u d i n g s a n d cores a n d m o l d s for m e t a l c a s t i n g , corrosion-resistant fiberglass-reinforced p l a s t i c s , low flammability a n d low-smoke-generating composites a n d foams, carbonaceous p r o d u c t s , p o l y m e r concretes, w o o d adhesives, a n d others. T h e i r thermoset characteristics give these p o l y m e r s advantages over resin systems i n a p p l i c a t i o n s d e m a n d i n g t h e r m a l s t a b i l i t y , corrosion c o n t r o l , a n d low smoke gene r a t i o n a n d flame s p r e a d i n fire s i t u a t i o n s . Difunctional Furan Monomers W i t h i n t h e past 10 years, a n u m b e r o f investigators have e x p l o r e d t h e use o f 2 , 5 - d i s u b s t i t u t e d f u r a n m o n o m e r s i n p o l y m e r condensation reactions. I n spite o f t h i s a t t e n t i o n , n o significant c o m m e r c i a l a p p l i c a t i o n has developed thus f a r . T h e general u n a v a i l a b i l i t y a n d h i g h price o f these m o n o m e r s are d r a w b a c k s as are the lower t e m p e r a t u r e a n d o x i d a t i v e s t a b i l i t y a n d enhanced color development characteristics o f some o f the p o l y m e r s developed f r o m t h e m . F u r f u r y l a l c o h o l , reacted w i t h f o r m a l d e h y d e i n the presence o f acetic a c i d , is selective i n y i e l d i n g 2 , 5 - b i s ( h y d r o x y m e t h y l ) f u r a n . T h i s c r y s t a l l i n e s o l i d m o n o mer h a s been used i n p r e p a r i n g polyesters a n d p o l y u r e t h a n e s . C o l o r s t a b i l i t y has been a l i m i t a t i o n i n c e r t a i n instances. Hydrogénation o f 2 , 5 - b i s ( h y d r o x y m e t h y l ) f u r a n t o 2 , 5 - b i s ( h y r o x y m e t h y l ) t e t r a h y d r o f u r a n provides a w a t e r - w h i t e , stable, l i q u i d d i o l t h a t shows p r o m i s e as a p o l y u r e t h a n e / p o l y e s t e r c o m p o n e n t . I n t h i s i n s t a n c e , e x c e p t i o n a l l y color-stable p r o d u c t s are p r o d u c e d (43). R e s i n i f i c a t i o n o f 2 , 5 - b i s ( h y d r o x y m e t h y l ) f u r a n occurs i n the presence o f a c i d c a t a l y s t s i m i l a r t o f u r f u r y l a l c o h o l , a l t h o u g h t h e e n d groups o f t h e r e s u l t i n g resins are h y d r o x y m e t h y l . T h e s e resins are characterized b y enhanced r e a c t i v i t y c o m p a r e d t o a c i d - c a t a l y z e d f u r f u r y l a l c o h o l resins (43). T h e y convert t o h i g h l y crosslinked t h e r m o s e t t i n g p o l y m e r s t h a t d e m o n s t r a t e u n i q u e characteristics i n composites i n c l u d i n g h i g h char y i e l d o n c a r b o n i z a t i o n , low smoke e v o l u t i o n a n d low flame s p r e a d , corrosion resistance, a n d s u p e r i o r h i g h - t e m p e r a t u r e s t a b i l i t y c o m p a r e d t o other t h e r m o s e t t i n g resin systems. 2 , 5 - B i s ( h y d r o x y m e t h y l ) f u r a n a n d 5 - h y d r o x y m e t h y l f u r f u r a l (available f r o m C 6 sugars) have been o x i d i z e d t o f u r a n - 2 , 5 - d i c a r b o x y l i c a c i d (44)- L i n e a r p o l y esters, p o l y u r e t h a n e s , a n d p o l y a m i d e s c o n t a i n i n g these m o n o m e r s have been described i n t h e l i t e r a t u r e (45-48) a n d have been m a d e v i a c o n d e n s a t i o n p o l y m e r i z a t i o n techniques i n c l u d i n g b u l k , s o l u t i o n , a n d i n t e r f a c i a l m i x i n g procedures. G a n d i n i (5,34) reviewed t h e p o l y c o n d e n s a t i o n reactions u p t o 1986 a n d

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

29.

McKiLLiP

417

Chemistry of Furan Polymers

p o s t u l a t e d o n t h e possible reasons for lack o f performance o f these f u r a n r i n g containing polymers.

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

Furan Polymers F u r a n , a v a i l a b l e t h r o u g h the d e c a r b o n y l a t i o n of f u r f u r a l e m p l o y i n g a noble m e t a l c a t a l y s t , a n d 2 - m e t h y l f u r a n , a v a i l a b l e f r o m t h e c a t a l y t i c hydrogénation o f f u r f u r a l u s i n g n i c k e l c a t a l y s t s , are m o n o m e r s w i d e l y i n v e s t i g a t e d recently. A c i d c a t a l y z e d p o l y m e r i z a t i o n o f f u r a n a n d m e t h y l f u r a n has been reviewed (49), a n d a l a t e r p u b l i c a t i o n (50) has identified tetramers a n d r e l a t e d s t r u c t u r e s such as 13 a n d 14. S t r o n g chromophores m u s t b e present i n m i n o r c o n c e n t r a t i o n s , i n a d d i t i o n t o structures like 13 a n d 14, since these reactions result i n p o l y m e r s t h a t are h i g h l y colored. Hydrogénation o f these f u r a n oligomers w o u l d p r o v i d e u n i q u e p o l y s a t u r a t e d c y c l i c ethers.

13

14

T h e c o p o l y m e r i z a t i o n o f f u r a n a n d 2 - m e t h y l f u r a n w i t h d i e n o p h i l e s s u c h as m a l e i c a n h y d r i d e leads t o p o l y m e r s t r u c t u r e s w i t h f u r a n pendent f u n c t i o n a l ity. F u r a n , 2 - m e t h y l f u r a n , a n d 2 , 5 - d i m e t h y l f u r a n have been c o p o l y m e r i z e d w i t h a c r y l i c m o n o m e r s (51,52) a n d a c r y l o n i t r i l e (52,53). T h e furan ring of f u r a n , 2 - m e t h y l f u r a n , a n d 2 , 5 - d i m e t h y l f u r a n p a r t i c i p a t e s as a diene i n a free r a d i c a l c o p o l y m e r i z a t i o n w i t h a c r y l o n i t r i l e . T h e i n i t i a l step for f u r a n a n d for 2 , 5 - d i m e t h y l f u r a n is t h e a t t a c h m e n t o f a n a c r y l o n i t r i l e r a d i c a l at t h e 2 - p o s i t i o n , b u t for 2 - m e t h y l f u r a n , t h e a t t a c k is at t h e - 5 - p o s i t i o n . P r o p a g a t i o n proceeds b y the a t t a c k o f t h e f u r a n r a d i c a l o n a n a c r y l o n i t r i l e m o l e c u l e , t o leave one olefinic b o n d i n t h e s t r u c t u r e d e r i v e d f r o m t h e f u r a n r i n g . I f t h i s b o n d is i n t h e 4,5- or 2 , 3 - p o s i t i o n , i t m a y be i n v o l v e d i n a second a d d i t i o n a l r e a c t i o n b y t h e r e t u r n o f the p r o p a g a t i n g c h a i n . F u r a n a n d 2 - m e t h y l f u r a n c a n undergo other D i e l s - A l d e r reactions w i t h s t r o n g d i e n o p h i l e s . C r o s s l i n k e d p o l y m e r s have been o b t a i n e d f r o m r e a c t i o n o f a l i n ear p o l y i m i d a z o l e or p o l y q u i n o x a l i n e , c o n t a i n i n g pendent f u r a n g r o u p s , w i t h a n olefinic a n d e n d - c a p p e d a r o m a t i c c o m p o u n d (Scheme 3) (54,55). These polyq u i n o x a l i n e p o l y m e r s (15) have a l i c y c l i c o x y - c r o s s l i n k s repeated t h r o u g h o u t t h e p o l y m e r where t h e f u r a n c o n s t i t u e n t has undergone a D i e l s - A d l e r r e a c t i o n w i t h

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

418

ADHESIVES F R O M RENEWABLE RESOURCES

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

the a r o m a t i c olefin g r o u p . T h e a l i c y c l i c o x y - l i n k a g e is subsequently a r o m a t i z e d by a p p l i c a t i o n of heat t o p r o d u c e h i g h - p e r f o r m a n c e p o l y m e r s s u i t a b l e for use at t e m p e r a t u r e s u p t o 400 ° C .

Ο

Ο 15

Scheme 3 O t h e r l i n e a r p o l y m e r s s u i t a b l e for h i g h - t e m p e r a t u r e s t r u c t u r a l l a m i n a t e s are o b t a i n e d by the r e a c t i o n o f b i s ( f u r f u r y l ) i m i d e v i a D i e l s - A d l e r r e a c t i o n s (56,57). S t a b i l i t y i n a i r u p t o 500 ° C has been r e p o r t e d for these p o l y m e r s . T h e p r e p o l y m e r s have pendent p h e n y l s u b s t i t u e n t s a n d are s o l u b l e i n o r g a n i c solvents, a n i m p o r t a n t processing i m p r o v e m e n t for h e t e r o - a r o m a t i c p o l y m e r s . P o l y m e r i c a d d i t i o n c o m p o u n d s ( 1 6 ) o f f u r a n a n d e t h y l e n e , where η is a w h o l e n u m b e r f r o m 1 t o 50, have been p r e p a r e d (58) b y a d d i t i o n o f > 2 m o l e f u r a n to 1 m o l e ethylene at 120 ° C t o 250 ° C a n d h i g h pressures followed b y f r a c t i o n a l e x t r a c t i o n o f the s o l i d p r o d u c t f o r m e d . T h e s e p o l y m e r s have i n t e r ­ e s t i n g p h y s i c a l a n d c h e m i c a l p r o p e r t i e s . T h e y appear t o be h i g h l y c r y s t a l l i n e o n a n a l y s i s b y X - r a y . A s a consequence, t h e p o l y m e r s show g o o d t h e r m a l s t a ­ b i l i t y , w h i c h increases d i r e c t l y w i t h m o l e c u l a r weight. T h e presence o f ether bridges makes possible conversion (Scheme 4) t o other c o m p o u n d s t h a t r e t a i n the d o u b l e h y d r o c a r b o n c h a i n (ladder) s t r u c t u r e a n d m a y b e a r v a r i o u s f u n c -

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

29.

McKiLLlP

Chemistry of Furan Polymers

419

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

t i o n a l g r o u p s , s u c h as h y d r o x y l or h a l o g e n , a n d i s o l a t e d or c o n j u g a t e d d o u b l e b o n d s (17).

16

17

Scheme 4

Furan/Alkylfuran Condensation Polymers F o r m a t i o n o f the d i f u r y l a l k a n e skeleton has been a c c o m p l i s h e d b y c o n d e n s a t i o n of a 2-substituted furan derivative w i t h a carbonyl compound under acidic c o n d i t i o n s ; i n other w o r d s , d i f u r f u r y l p r o p a n e (18) has been p r o d u c e d b y the c o n d e n s a t i o n o f f u r a n w i t h acetone (60).

ÇH

3

ÇH

CH

3

CH,

ςΜ-ç - < W 18

3

19

Scheme 5

Subsequent hydrogénation (Scheme 5) u s i n g a nickel c a t a l y s t affords the s a t u r a t e d d i t e t r a h y d r o f u r f u r y l p r o p a n e (19) (59). Ditetrahydrofurfuryl propane (60) is a solvent a n d co-catalyst for the selective p o l y m e r i z a t i o n o f dienes t o 1,2-polydienes. O t h e r 2 - s u b s t i t u t e d f u r a n derivatives, i n c l u d i n g 2 - f u r f u r y l a m i n e a n d 2 - m e t h y l f u r o a t e , have been condensed w i t h aldehydes or ketones t o f o r m d i f u n c t i o n a l d i f u r y l alkane derivatives (61). P r e v i o u s l y , the c o n d e n s a t i o n o f 2 - m e t h y l f u r a n w i t h aldehydes a n d ketones, i n c l u d i n g f o r m a l d e h y d e , f u r f u r a l , acetone, a n d the

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

420

ADHESIVES F R O M RENEWABLE RESOURCES

like, have afforded d i ( m e t h y l f u r y l ) alkanes ( 2 0 ) (62). T h e s e c h e m i c a l s c a n be f u n c t i o n a l i z e d t o p r o v i d e i n t e r e s t i n g m o n o m e r s for f u r t h e r p o l y m e r i z a t i o n .

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

R 20 C o p o l y m e r s o f a c r y l o n i t r i l e w i t h f u r f u r y l a l c o h o l , f u r f u r y l acetate, 2,5-bis( h y d r o x y m e t h y l ) f u r a n , a n d 2 , 5 - b i s ( a c e t o x y m e t h y l ) f u r a n b y free r a d i c a l c a t a l y sis have recently been r e p o r t e d (63). P r o t o n a n d C - N M R spectroscopy c h a r a c terizes the p r o d u c t s as a d d i t i o n reactions t o the 4,5-positions o f f u r f u r y l a l c o h o l or the 2,3 a d d i t i o n t o the 2 , 5 - b i s ( h y d r o x y m e t h y l ) f u r a n r i n g . T h e s e p r o d u c t s are susceptible t o a c i d a n d undergo a rearrangement t h a t removes t h e c l e f i n i c s t r u c t u r e . T h e c o p o l y m e r s are d e c o m p o s e d t o a h a r d , glassy, carbonaceous m a t e r i a l b y h e a t i n g i n n i t r o g e n . T h e conversion was s t u d i e d b y t h e r m o g r a v i m e t r i c and elemental analysis. T h e copolymers prepared from furan monomers cont a i n i n g a m e t h y l g r o u p decompose m o r e r e a d i l y at a lower t e m p e r a t u r e t h a n those l a c k i n g the g r o u p or those i n w h i c h the a l c o h o l has been a c e t y l a t e d . 1 3

Furfuryl Acetate Polymers F u r f u r y l acetate undergoes a n i n t e r e s t i n g a c i d - c a t a l y z e d p o l y m e r i z a t i o n i n acet o n i t r i l e t o give p o l y ( 2 , 5 - f u r a n d i y l m e t h y l e n e ) ( p o l y f u r f u r y l ) (64). The polym e r i z a t i o n is a c c o m p a n i e d b y c h r o m o p h o r i c side r e a c t i o n as e v i d e n c e d b y the p o l y m e r s o l u t i o n t u r n i n g a deep green color. Because the i n v e s t i g a t o r s reco g n i z e d t h a t the color was very l i k e l y caused b y p o l y c o n j u g a t e d species, they s t u d i e d the c h r o m o p h o r i c side r e a c t i o n f u r t h e r as a possible r o u t e t o a s o l u b l e c o n d u c t i v e p o l y m e r (Scheme 6) (65).

Scheme 6

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

29.

Chemistry of Furan Polymers

McKiLLiP

421

C y c l i c v o l t a m m e t r y was used t o determine t h e extent o f e l e c t r o a c t i v i t y . O x ­ i d a t i o n peaks were observed associated w i t h t h e f u r a n r i n g at p o s i t i v e voltage, w h i l e r e d u c t i o n peaks were observed at negative p o t e n t i a l . T r a n s i e n t o x i d a t i o n p r o d u c t s are now present t h a t c a n b e reduced at less negative p o t e n t i a l s . E l e c ­ t r o c h e m i c a l o x i d a t i o n e x p e r i m e n t s e x a c t l y p a r a l l e l those o f c h e m i c a l o x i d a t i o n . I n t h e e l e c t r o c h e m i c a l o x i d a t i o n sequence, t h e loss of a n electron f r o m a f u r a n r i n g generates a c a t i o n r a d i c a l w h i c h , u p o n loss o f a p r o t o n f r o m t h e adjacent m e t h y l e n e g r o u p a n d a f u r t h e r one-electron o x i d a t i o n , generates a d e l o c a l i z e d c a t i o n . Successive sites o n t h e same c h a i n c a n be s i m i l a r l y o x i d i z e d b y a l t e r n a t e steps o f d e p r o t o n a t i o n a n d one-electron o x i d a t i o n . T h e r e s u l t a n t charged species c a n t h e n take p a r t i n h y d r i d e , p r o t o n , a n d electron transfer e q u i l i b r i a i n t h e s o l u t i o n . I n t e r m e d i a t e o x i d a t i o n p r o d u c t s , w h i c h have n o t h a d t i m e t o engage i n the b i m o l e c u l a r e q u i l i b r i a , thus have shorter lengths o f c o n j u g a t i o n . T h e b e h a v i o r o f o x i d i z e d p o l y f u r f u r y l i n s o l u t i o n m a y prove t o be a useful m o d e l for t h e c o n d u c t i v i t y o f i n s o l u b l e c o n d u c t i v e polymers. Conclusions W h i l e a c i d - or h e a t - c u r e d p o l y m e r s based o n f u r f u r a l a n d f u r f u r y l a l c o h o l have been o f i n d u s t r i a l significance for m a n y years, new p o l y m e r i c types based o n d i f u n c t i o n a l derivatives a n d p o l y m e r s derived f r o m e x p l o i t i n g t h e d i e n i c c h a r a c ­ teristic o f furans are s u r f a c i n g a n d present p o s s i b i l i t i e s for u n i q u e performance p r o p e r t i e s . T h e p o t e n t i a l a v a i l a b i l i t y o f f u r f u r a l as a b y p r o d u c t f r o m solvent p u l p i n g technology c o u l d p r o v i d e t h e next generation o f chemists w i t h a feed­ stock c o m p e t i t i v e w i t h o i l a n d gas. T h e s e renewable a g r i c u l t u r a l resources offer significant new o p p o r t u n i t y as c h e m i c a l feedstock. Literature

Cited

1. Cook, M. J.; Katritzky, A.R.; Linda, P. Advances in HeterocyclicChemistry;Academic Press: New York, 1974; Vol. 17, 255. 2. Albert, A. HeterocyclicChemistry;Oxford University Press: New York, 1968; 2nd. Ed., p. 278. 3. Wojcik, R.H. Ind. Eng. Chem. 1948, 40, 210. 4. Swadesh, S. U.S. Patent 2 754 304, 1956. 5. Gandini, A. Adv. Polym. Sci. 1977, 25, 47. 6. Galego, N.; Gandini, A. Rev. CENIC 1975, 6(1), 163. 7. Williams, D.L.; Dunlop, A.P. Ind. Eng. Chem. 1948, 40, 239. 8. Galego, N. Ph.D. Thesis, University of Havana, Cuba, 1975. 9. Galego, N.; Gandini, A. J. Polym. Sci., Polym. Chem. Ed. 1977, 15, 1027. 10. Gandini, Α.; Parsons, J.M.; Bock, R.A. Can. J. Chem. 1976, 54, 1095. 11. Galego, N.; Gandini, A. Rev. CENIC Cent. Nac. Invest. Cient. 1 Cienc. Fis. 1975, 6, 163; Chem. Abstr. 1976, 84, 18211p.

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

422

ADHESIVES F R O M RENEWABLE RESOURCES

12. Jambusaria, R.B.; Potnis, S.P. Polymer J. 1974, 6, No. 5, 333. 13. Jambusaria, R.B.; Potnis, S.P. J. Indian Chem. Soc. 1975, 52, 233. 14. Patel, P.S.; Patel, S.R. Eur. Polym. J. 1986, 22, No. 7, 525. 15. Delmonte, J. U.S. Patent 2 462 054, 1949. 16. Winheim, A. U.S. Patent 2 516 283, 1950. 17. Kamenskii, I.V.; Ungurean, N.V.; Kovarskaya, B.M.; Itinskii, I.V. Plast. Massy 1960, 12, 9, Chem. Abstr. 1961, 55, 15985. 18. Isacescu, D.A.; Auramescu, F. Rev. Roum. Chim. 1978, 23, 661, 865, 873. Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

19. Barisov, G.; Kraicheva, I.; Varbanov, S. Eur. Polym. J. 1983, 19, 827. 20. Panda, S.P. Chem. Ind. (London) 1974, 706. 21. Panda, S.P.; Kulkarni, S.G. Combust. Flame 1978, 33, 93. 22. Futamoto, M.; Kawabe, U.; Hosoki, S. Japanese Patent 7 819 693, 1978. 23. Chaohua, C.; Li, Y . Langhow Daxue Xuebao. 1984, 20, 52; Chem. Abstr. 1984, 101, 153056. 24. Dunlop, A.P.; Peters, F.N. The Furans; Am. Chem. Soc. Monograph 119, Rheinhold Publishing Corp: New York, 1953. 25. Barr, J.B.; Wallon, S.B. J. Appl. Polym. Sci. 1971, 15, 1079. 26. Hachihama, Y.; Shono, T. Technol. Rep. (Osaka Univ.) 1957, 7, 479. 27. Wewerka, E.; Loughran, E.; Walters, K. J. Appl. Polym. Sci. 1971, 15, 1437. 28. Wewerka, E . J. Polym. Sci. 1971, A19, 2703. 29. Hachihama, Y.; Shono, T. Technol. Rep. (Osaka Univ.) 1954, 4, 413. 30. Rathi, A.K.A.; Chanda, M. J. Appl. Polym. Sci. 1974, 18, 1541. 31. Krishnan, T.A.; Chanda, M. Angew. Makromol. Chem. 1975, 43, 145. 32. Conley, R.T.; Metil, I. J. Appl. Polym. Sci. 1963, 7, 37. 33. Conley, R.T.; Metil, I. J. Appl. Polym. Sci. 1963, 7, 1083. 34. Gandini, A. Encyclopedia of Polym. Sci. and Eng.; John Wiley & Sons, Inc. 1986, 2nd Ed. 35. Leitheiser, R.H.; Londrigan, M.E.; Rude, C.A. Proc. Am. Chem. Soc. Mtg., 1979, Honolulu, Hawaii. 36. Maciel, G.E.; Chuang, I.S.; Myers, G.E. Macromolecules 1984, 17, 1087. 37. McKillip, W.J.; Sherman, E . Kirk-Othmer Encyclopedia of Chem. Tech.; John Wiley & Sons, Inc.: New York, 1980, 3rd Ed., 499. 38. Fitzer, E.; Schafer, W.; Yamada, S. Carbon 1969, 7 643. 39. Fitzer, E.; Schafer, W. Carbon 1970, 8, 353. 40. Ozanne, N.; Ameill, J.; Bonnetain, L.; Bull. Soc. Chim. Fr. 1971. 41. Trimm, D.L.; Cooper, B.J. J. Chem. Soc. 1970, 477. 42. Antonowicz, K. Nature (London) 1974, 247, 358. 43. QO Chemicals Technical Data Sheet No. 194, 1979. 44. Morikawa, S.; Teratake, S. Japanese Patent 7 909 260, 1979. 45. Moore, J.A.; Kelly, J.E. Macromolecules 1978, 11, 568. 46. Moore, J.A.; Kelly, J.E. J. Polym. Sci. Polym. Chem. Ed. 1978, 16, 2407. 47. Izumi, M. Japanese Patent, 6 424 730, 1964.

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

29.

McKiLLiP

Chemistry of Furan Polymers

423

48. Matsumoto, I. Japanese Patent 7 340 763, 1973. 49. Gandini, A. Adv. Polym. Sci., 1977, 25, 47. 50. Lamb, B.S.; Kovacic, P. J. Polym. Sci. Polym. Chem. Ed. 1980, 18, 2423. 51. Moore, J.A.; Partain, E.M. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 3851. 52. Fawcett, A.H.; et. al. Polymer 1985, 26, 1268. 53. Fawcett, A.H.; et. al. Polymer Communications 1985, 25, 300. 54. Jones, R.J.; O'Rell, M.K. U.S. Patent 3 904 585, 1975.

Downloaded by UNIV OF GUELPH LIBRARY on May 14, 2012 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch029

55. Jones, R.J.; U.S. Patent 3 905 941, 1975. 56. Jones, R.J.; Green, H.E. U.S. Patent 3 927 027, 1975. 57. Jones, R.J.; Cassey, H.N.; Green, H.E. U.S. Patent 3 951 902, 1976. 58. Stingliani, G.; Manette, R.; Carbonaro, S.; Dall'Astra, G. British Patent 1 402 705, 1975. 59. Huffman, G.; Pentz, W.; Vietti, D. U.S. Patent 4 577 035, 1986. 60. Hall, H. U.S. Patents 4 429 090 and 4 429 091, 1984. 61. Still, R.; Cawse, J.; Stanford, J. U.S. Patent 4 496 751, 1985. 62. Fauque, L.J. U.S. Patent 2 681 917, 1954. 63. Fawcett, A.H.; Yau, T.F.; Mulemwa, J.N.; Tan, C.E. British Polymer Journal 1987, 19, 211. 64. Buchwalter, S.L. J. Polym. Sci., Polym. Chem. Ed. 1985, 23, 2897. 65. Buchwalter, S.L. Viehbeck, A. Polymer Preprints, Division of Polymer Chemistry, Inc. 1987, 28, No. 1, 211. RECEIVED August 30, 1988

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.