Chlorophenylalkyl-substituted Carboxylic Acids and Silanes Designed

Jul 22, 2009 - Interaction of Liquids at Solid Substrates. Chapter 2, pp 10–19. Chapter DOI: 10.1021/ba-1968-0087.ch002. Advances in Chemistry , Vol...
0 downloads 0 Views 1MB Size
2 Chlorophenylalkyl-substituted Carboxylic

Downloaded via YORK UNIV on December 18, 2018 at 23:49:36 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Acids and Silanes Designed as Adhesion Promoters J. G. O'REAR and P. J . SNIEGOSKI Naval Research Laboratory, Washington, D . C. 20390 F. L . JAMES Miami University, Oxford, Ohio 45056

Eight new surface active molecules having a terminal p-chlorophenyl substituent, a polymethylene

spacer, and reac-

tive carboxyl or alkoxysilane groups have been prepared. Such structures form monolayers which promote adhesion between a solid substrate and an organic resin because they expose a relatively high energy chlorophenyl outer surface which is easily wet by the resin. Preparative methods are outlined for the monocarboxylic CO H,

acids p - C l C H ( C H 2 ) n - 1 6

4

(where n is 12, 14, 18, and 20), for the dicarboxylic

2

acids p - C l C H ( C H ) 1 2 C H ( C O H ) C H C O H and p - C l C H 4 6

4

2

2

2

(CH ) CH(CO H)CH CH CO H, 2

12

2

2

2

silanes p - C l C H C H C H S i ( O M e ) 6

Si(OEt) . 3

criteria.

4

2

2

6

and for the

2

2

3

and

substituted

p-ClC H CH CH26

4

2

The compounds are characterized by conventional NMR

spectra establish the para position of the

chloro substituent. GLC shows that the purities of the acids generally exceed 97.5%. Principal impurities are the unchlorinated analogs and lower homologs.

" \ T o s t c o m m e r c i a l finishes for glass fiber f o r m surfaces w h i c h are n o t r e a d i l y w e t b y t h e resins u s e d for glass fiber i m p r e g n a t i o n . T o c o r r e c t this d e f i c i e n c y i n a d h e n s i o n , r e d e s i g n of existing " c o u p l i n g a g e n t s " or " a d h e s i o n p r o m o t e r s " has b e e n p r o p o s e d (16). T h e n e w concept u t i l i z e s m o n o l a y e r s of a p p r o p r i a t e d e s i g n f o r p r o m o t i n g a d h e s i o n b e t w e e n a n o r g a n i c r e s i n a n d a s o l i d substrate (see F i g u r e 1 ) . T h e n e w structures r e p o r t e d here f e a t u r e a t e r m i n a l c h l o r o p h e n y l substituent 10 Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

2.

11

Adhesion Promoters

O'REAR E T A L .

e x p o s i n g a n outer surface w h i c h is r e a d i l y w e t b y resins, a p o l y m e t h y l e n e spacer a l l o w i n g o u t w a r d o r i e n t a t i o n of t h e e x p o s e d g r o u p , a n d at the o p p o s i t e e n d a r e a c t i v e g r o u p c a p a b l e of c h e m i c a l l y b o n d i n g to the s o l i d substrate. M o r e t h a n one r e a c t i v e g r o u p i n t h e m o l e c u l e m a y b e d e s i r a b l e ; for e x a m p l e , w e h a v e i n v e s t i g a t e d t h e use of one or m o r e c a r b o x y l groups.

I n the case of t w o t e r m i n a l c a r b o x y l g r o u p s , t h e y s h o u l d

be

s e p a r a t e d b y m o r e t h a n one c a r b o n a t o m to a v o i d s e n s i t i v i t y to d e c a r boxylation.

Alternatively, the single c a r b o x y l group m a y be

with -SiCl , - S i ( O E t ) 3

QCX>

3

replaced

or other g r o u p s . CI

CI

0

-High surface energy group or

Strongly adsorbed group Figure 1.

Si(OEt)

C0 H 2

3

Structural concept for adhesion promoters

T h e present s t u d y o u t l i n e s m e t h o d s for p r e p a r i n g f o u r n e w m o n o c a r b o x y l i c a c i d s , t w o n e w d i c a r b o x y l i c a c i d s , together w i t h one k n o w n a n d t w o n e w s u b s t i t u t e d silanes. A l l c o m p l y w i t h t h e a b o v e s t r u c t u r a l concepts. S t r u c t u r e s of the six a c i d s are g i v e n b e l o w .

Monocarboxylic acids

Dicarboxylic acids CI

CI

(Ç 2)n-l H

C0 H 2

(Ç 2)n HC-CO«H I (ÇH,). 2'x I C0 H H

2

η = 12, 14, 18 and 20

2

η = 12 χ = 1 and 2 Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

12

INTERACTION O F LIQUIDS A T SOLID SUBSTRATES

A l l six o f t h e c h l o r o p h e n y l - s u b s t i t u t e d c a r b o x y l i c acids a r e d e r i v e d f r o m a c i d c h l o r i d e s of l o n g - c h a i n a l i p h a t i c h a l f esters. T o p r e p a r e these uncommon

intermediates i n sufficient a m o u n t s , p r a c t i c a b l e p r e p a r a t i v e

m e t h o d s h a d to b e d e v e l o p e d .

M e t h o d s are g i v e n f o r c o n v e r t i n g a p p r o ­

p r i a t e α,ω-dicarboxylic acids t o the c o r r e s p o n d i n g a c i d c h l o r i d e h a l f esters. C e r t a i n o f t h e p - c h l o r o p h e n y l - s u b s t i t u t e d c a r b o x y l i c acids a r e r e ­ l a t e d p r o d u c t s i n a m u l t i s t e p synthesis. A s c h e m a t i c o u t l i n e o f s y n t h e t i c p r o c e d u r e s is presented to c l a r i f y these r e l a t i o n s h i p s . P r o p e r t i e s o f seven new

p-chlorophenyl-substituted

intermediates

a n d six n e w p - c h l o r o ­

p h e n y l - s u b s t i t u t e d c a r b o x y l i c acids a r e r e p o r t e d .

A l l o f t h e 13 n e w

c o m p o u n d s h a v e b e e n c h a r a c t e r i z e d b y c o n v e n t i o n a l c r i t e r i a . B o t h gasliquid chromatography

a n d nuclear magnetic

resonance

are used to

assess t h e p u r i t y o f t h e c a r b o x y l i c acids a n d t h e i r i n t e r m e d i a t e s . Synthetic

Methods

α,ω-Dicarboxylic A c i d s .

DODECANEDIOC A N D OCTADECANEDIOC ACID.

T h e d o d e c a n e d i o c a c i d , m . p . 125°-127 ° C , w a s p u r c h a s e d f r o m A l d r i c h C h e m i c a l C o . , M i l w a u k e e , W i s c o n s i n . H u n i g s 1.6 g r a m p r e p a r a t i v e p r o ­ c e d u r e f o r o c t a d e c a n e d i o c a c i d ( 6 ) w a s s c a l e d u p f o r 9 0 g r a m batches i n a c c o r d a n c e w i t h h i s l a r g e scale m e t h o d f o r d o c o s a n e d i o c a c i d ( 7 ) . R e c r y s t a l l i z a t i o n f r o m m e t h y l e t h y l ketone, gives o c t a d e c a n e d i o c a c i d (m.p. 1 2 1 ° - 1 2 4 ° C ; 5 7 % y i e l d ; 9 6 % p u r i t y ) . T h e p r i n c i p a l impurity is tridecanedioc acid. Diesters. D I E T H Y L DODECANEDIOATE AND D I E T H Y L OCTADECANEDIOATE.

T h e respective diesters w e r e p r e p a r e d i n 9 9 . 4 % a n d 9 9 . 0 % p u r i t i e s b y the m e t h o d r e p o r t e d f o r d i e t h y l a d i p a t e ( 9 ) . P h y s i c a l properties o b ­ s e r v e d f o r t h e respective diesters agree w i t h r e p o r t e d values ( I , 2, 15). H a l f Esters.

E T H Y L HYDROGEN DODECANEDIOATEAND E T H Y L HYDRO­

G E N O C T A D E C A N E D I O A T E . P r a c t i c a b l e m e t h o d s h a d to b e d e v e l o p e d f o r c o n v e r t i n g t h e d i e t h y l esters to t h e respective h a l f esters i n batches as large as 100 grams. T h e i m p r o v e d process gives a r e l a t i v e l y h i g h c o n ­ v e r s i o n of t h e r e a c t e d diester t o t h e h a l f ester a n d a l l o w s a q u a n t i t a t i v e r e c o v e r y of t h e u n r e a c t e d diester w h i c h c a n b e s u b m i t t e d t o another batch operation. A l c o h o l i c s o d i u m h y d r o x i d e s o l u t i o n ( 2 6 m l . o f I N ) is a d d e d d r o p w i s e d u r i n g 3 0 m i n . to a s t i r r e d m i x t u r e o f d i e t h y l d o d e c a n e d i o a t e ( 15.0 g r a m s ; 0.0524 m o l e ) a n d e t h y l a l c o h o l ( 3 0 m l . ) . W a t e r ( 6 0 m l . ) is a d d e d a n d s t i r r i n g is c o n t i n u e d (ca. 15 m i n . ) u n t i l t h e p H reaches 8.0. E x t r a c ­ t i o n of t h e aqueous m i x t u r e w i t h p e t r o l e u m ether ( 3 0 ° - 6 0 ° C . b o i l i n g r a n g e ; 2 X 120 m l . ) removes u n r e a c t e d d i e t h y l d o d e c a n e d i o a t e ( 8 . 6 0 g r a m s ; 0.0300 m o l e ) . A c i d i f i c a t i o n o f t h e aqueous l a y e r w i t h 600 m l . o f 0.1N hydrochloric acid precipitates ethyl hydrogen dodecanedioate a n d d o d e c a n e d i o c a c i d . B o t h acids are extracted w i t h ether ( 2 X 150 m l . ) . A f t e r d r y i n g a n d c o n c e n t r a t i n g t h e extract, the r e s i d u e is m e l t e d b y w a r m ­ i n g t o 6 0 ° C , p o u r e d i n t o 250 m l . of p e t r o l e u m ether a n d a l l o w e d t o s t a n d for 1 h o u r at 25 ° C . f o r e q u i l i b r a t i o n . P r e c i p i t a t e d d o d e c a n e d i o c a c i d is r e m o v e d b y filtration (1.80 grams; 0.0078 m o l e ) . T h e filtrate is c o o l e d

Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

2.

13

Adhesion Promoters

O'REAR E T A L .

t o —10 ° C . a n d filtered to collect t h e e t h y l h y d r o g e n d o d e c a n e d i o a t e , 3.72 g r a m s ; 0.0144 m o l e ; m.p. 4 9 ° - 5 0 ° C . i n agreement w i t h t h e ^reported v a l u e ( 8 ) . T h e y i e l d s b a s e d u p o n t h e a m o u n t of diester c o n s u m e d a r e 6 4 . 3 % h a l f ester a n d 3 4 . 8 % d i a c i d , a t o t a l of 9 9 . 1 % . Y i e l d s b a s e d u p o n the diester u s e d are 2 7 . 5 % h a l f ester, 1 4 . 9 % d i a c i d , a n d 5 7 . 3 % r e c o v e r e d diester, a t o t a l o f 9 9 . 7 % . D i e t h y l octadecanedioate c a n b e p r e p a r e d b y the same s t o i c h i o m e t r y p r o v i d e d that the diester is d i s s o l v e d i n f o u r times as m u c h a l c o h o l ( 4 X 30 m l . ) , that t h e s a p o n i f i c a t i o n step is p e r f o r m e d at 6 0 ° C , a n d t h a t t h e final m i x t u r e of d i a c i d a n d h a l f ester is r e s o l v e d i n hexane. T h e m o d i f i e d p r o c e d u r e y i e l d s e t h y l h y d r o g e n o c t a d e c a n e d i o a t e m e l t i n g at 71.5° t o 72.5°C. i n agreement w i t h t h e l i t e r a t u r e v a l u e ( I ) . Y i e l d s b a s e d u p o n the a m o u n t of diester c o n s u m e d a r e 9 0 . 0 % h a l f ester a n d 3 . 3 % d i a c i d . B a s e d u p o n t h e a m o u n t of diester u s e d , t h e y a r e 4 4 . 4 % h a l f ester, 1.6% d i a c i d a n d 5 1 . 0 % r e c o v e r e d diester. A c i d Chlorides of H a l f Esters. T h e h a l f esters a r e c o n v e r t e d to t h e c o r r e s p o n d i n g h a l f ester a c i d c h l o r i d e b y a l l o w i n g e a c h to s t a n d o v e r n i g h t w i t h t w o e q u i v a l e n t s of t h i o n y l c h l o r i d e . U n r e a c t e d t h i o n y l c h l o r i d e is r e m o v e d a t r e d u c e d pressure. T h e r e s i d u a l a c i d c h l o r i d e s are u s e d f o r the p r e p a r a t i o n o f t h e keto esters. Keto Esters.

ω - ( P - C H L O R O B E N Z O Y L ) ALKANOIC ACID ESTERS.

The in­

t e r m e d i a t e keto esters, p - C l C H C O ( C H ) i C O E t a n d p - C l C H C O ( C H ) i C 0 E t , w e r e s y n t h e s i z e d f r o m α,ω-dicarboxylic acids via t h e m a j o r steps s h o w n i n S c h e m e I. 6

2

7

4

0

2

2

6

4

2

SCHEME I CI

CI

C0 H 2

(ÇH ) -2 2

n

C0 H 2

>(Ç 2)n-2

HÇH ) _

H

2

C0 Et

n

2

-


(CH ) 2

C0 Et

2

n - 1

C0 H

2

2

η = 12; η = 18

acid chloride

co-(chlorobenzoyl)

dicarboxylic acid

of half ester

alkanoic acid ester

ω-(chlorophenyl) alkanoic acid

A c i d c h l o r i d e s of t h e respective h a l f esters a r e c o n v e r t e d t o t h e d e s i r e d keto esters b y F r i e d e l - C r a f t s reactions r e s e m b l i n g those d e v e l o p e d b y F i e s e r f o r p r e p a r i n g t h e -(p-chlorobenzoyl)nonanoic a c i d ester ( 5 ) . T h e keto esters are c o n v e r t e d to the respective keto acids t h r o u g h s a p o n i ­ fication w i t h 1 0 % a l c o h o l i c p o t a s s i u m h y d r o x i d e , a c i d i f i c a t i o n a n d r e c r y s t a l l i z a t i o n f r o m toluene. Y i e l d s of t h e keto acids b a s e d u p o n t h e respective a c i d c h l o r i d e s a r e 75 a n d 7 9 % . P r o p e r t i e s o f t h e keto a c i d s a n d t h e i r d e r i v a t i v e s a r e g i v e n i n T a b l e s I a n d II. Monocarboxylic

Acids,

ω- ( P - C H L O R O P H E N Y L ) A L K A N O I C ACIDS.

The

saturated acids p - C l C H 4 ( C H ) C 0 H a n d p - C l C H ( C H ) i C 0 H of S c h e m e I result f r o m the W o l f f - K i s h n e r r e d u c t i o n (4) o f t h e c o r r e s p o n d ­ i n g ω - ( p - c h l o r o b e n z o y l ) a l k a n o i c acids. R e s p e c t i v e y i e l d s of t h e acids 6

2

1 1

2

6

4

2

7

Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

2

14

INTERACTION O F LIQUIDS A T SOLID SUBSTRATES

Table I.

No.

Analysis and Properties of Intermediates B.P. (°C./mm. Hg)

Compound

1. p - C l C H C O ( C H ) C O H 2. p - C l C H C O ( C H ) C 0 H 3. p - C l C H ( C H ) O H 4. p - C l C H ( C H ) O H 5. p - C l C H ( C H ) B r 6. p-ClC H (CrL>) Br 7. p - C l C H ( C H ) C H ( C 0 E t ) C 0 E t 6

4

6

2

4

6

4

2

1 2

6

4

2

1 8

6

4

6

1 0

2

2

4

2

199/1.0 210/1.0 — 245/1.5

1 2

4

2

1 2

2

2

N.E. Calcd. Found 324.0 409.9

105-107 324.9 110-112 409.0 32-34 58-60

2

1 6

18

6

M.P. CC.)

44-46 —

— —

Analyses (%) Cl

H Calcd. Found

Cahd. Found

CigHosClOa C H C10 Ci H C10 C H C10 C H BrCl

66.55 70.48 72.82 75.65 60.09

66.56 70.53 72.83 76.05 59.55

7.66 9.12 9.85 10.86 7.85

7.66 9.21 10.02 10.98 7.80

6. C H o B r C l

64.93

64.50

9.08

9.02

7. 0 5 Η

68.39

68.49

8.95

8.90

No . 1. 2. 3. 4. 5.

Formula

2 4

3 7

8

2 9

2 4

3

4 1

1 8

2 8

24

4

Calcd.

Found

10.91 8.67 11.94 9.31 9.85 22.21° 7.99 18.00 8.08

10.86 8.83 11.95 8.90 9.85 21.17° 8.46 18.85° 8.00

a

2

a

00

3 9

4

Bromine assays.

Table II.

Analysis and Properties of Carboxylic Acids

No. 8. 9. 10. 11. 12. 13.

M.P. (°C.)

Compound p-ClC H (CH ) C0 H p-ClC H (CH ) C0 H P-C1C H (CH ) C0 H p-ClC H (CH ) COoH p - C l C H ( C H ) C H ( COoH ) CH CO>H p - C l C H ( C H ) C H ( C 0 H ) CHoCHC0 H 6

4

6

2

4

6

2

4

6

2

4

2

n

2

1 3

9

1 7

2

1 9

6

4

2

1 2

6

4

2

1 2

9

2

2

67-68 70-70.5 74-75 78-79 87-88 85-86

N.E. Calcd. Found 310.9 337.4 395.0 423.1 198.5 205.5

313.0 338.9 396.0 424.0 198.9 206.7

Analyses (%)

No.

Formula

8.

CigH C10

9.

C*>QH JC10O

10. 11. 12. 13.

27

2

3

C C C C

24

H C10Ô H C10 H C10 H C10 39

2 6

4 3

2

2 2

3 3

4

2 3

3 5

4

Η

CI

Calcd. Found

Calcd. Found

Calcd. Found

69.55 70.88 72.97 73.81 66.57 67.22

8.75 9.22 9.95 10.24 8.38 8.58

69.68 70.65 73.26 73.83 66.60 67.52

8.80 9.31 10.26 10.31 8.40 8.63

11.41 10.46 8.98 8.38 8.93 8.63

Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

11.65 10.37 8.61 8.31 8.88 8.56

2.

O'REAR E T A L .

15

Adhesion Promoters

after w o r k - u p a n d r e c r y s t a l l i z a t i o n f r o m h e p t a n e (—10 ° C . ) a m o u n t to 80 a n d 9 5 % . T h e other h o m o l o g o u s a c i d s , p - C l C H ( C H ) i 3 C 0 H a n d p - C l C e H ( C H ) i 9 C 0 2 H are derived from appropriate monoalkylated m a l o n i c esters s h o w n i n S c h e m e I I t h r o u g h s a p o n i f i c a t i o n , a c i d i f i c a t i o n , and decarboxylation. e

4

4

2

2

2

S C H E M E II CI > (ÇH2)

(ÇH )n-l 2

C 0

2

(ÇH ) 2

n

2

N

H C - C 0

HC-C0 Et

Br

H

(ÇH )

n

2

C0 Et

(ÇH ) 2

2

C 0

Side r e a c t i o n

2

2

H

X

H

η = 12 χ = 1; χ = 2

(ÇH ) 2

C 0

2

n +

l

H

η = 1 2 ; η = 18 Alcohols.

O>-(P-CHLOROPHENYL)DODECYL A L C O H O L A N D «>-(p-CHLORO-

P H E N Y L ) ocTADECYL A L C O H O L . T h e s e alcohols are o b t a i n e d i n greater t h a n 9 5 % y i e l d s f r o m L i A l H r e d u c t i o n s of t h e a p p r o p r i a t e m o n o c a r b o x y l i c acids. 4

Bromides,

ω- ( P - C H L O R O P H E N Y L ) D O D E C Y L B R O M I D E A N D ω- ( P - C H L O R O -

P H E N Y L ) OCTADECYL BROMIDE.

Conversion

of

the

alcohol

to

the

corre­

s p o n d i n g b r o m i d e is a c c o m p l i s h e d b y C o l l i n s ' m e t h o d ( 3 ) . T h e respec­ tive bromides are purified b y distillation i n 8 4 % y i e l d , a n d b y recrystal­ lization from alcohol i n 7 8 % yield. Monoalkylated Malonic A c i d Esters. D I E T H Y L ω-( P - C H L O R O P H E N Y L ) DODECYLMALONATE

AND DIETHYL

ω- ( p - C H L O R O P H E N Y L ) O C T A D E C Y L M A L O -

N A T E . T h e s e i n t e r m e d i a t e diesters of S c h e m e I I are p r e p a r e d b y r e a c t i o n of s o d i o d i e t h y l m a l o n a t e (0.30 m o l e ) a n d t h e a p p r o p r i a t e