Cluster synthesis. 5. Synthesis and crystal and molecular structures of

Apr 1, 1984 - M. J. Carney , R. H. Holm , G. C. Papaefthymiou , R. B. Frankel. Journal of the ... Richard D. Adams , James E. Babin , K. Natarajan. Jo...
0 downloads 0 Views 905KB Size
Organometallics 1984, 3, 623-630

the CO IX is not significantly higher in energy than other intermediate configurations. Comparing IV and IX, it is clear that the major difference is that in IX each metal center is formally saturated (18 e), whereas in IV the third, equatorial metal center is formally unsaturated (only 16 e). Thus, the extra CO in IX serves to stabilize the metal center not involved in bonding t o the edge-coordinated alkyne. Recently, Vollhardt and co-workers22reported evidence for an intramolecular "deck shift" reaction (eq 3). This R 3 S i C = C 4 [Co3Cp3]C-C [Co3Cp3]CSiR3 R3SiC[Co3Cp3]C-C=C-C[ Co3Cp3]CSiR3(3) was interpreted in terms of an alkylidyne coupling/decoupling sequence involving structures related to I -,IV I11 --* IV I. The reconstituted alkyne ligand, however, is necessarily a conjugated diyne, and the second alkyne center can provide the two electrons needed for a saturated intermediate analogous to E.The accessibility of an unsaturated structure such as IV remains to be determined experimentally. In other work we have shown that alkyne scission in an "allowed" process on a d9-d9 M2L6 template.' In the case

623

of M the CpM(C0) fragment is a ds ML4isolobal with CH2 isolobal with CO. Therefore, IX is isolobal with XI, a

0

-

-

-

~

(22) Allison, N. T.; Fritch, J. R.; Vollhardt, K. P. C.: Walborsky, E. C. J. Am. Chem. SOC.1983, 105, 1384-1386.

xc complex very similar to those we have discussed in the binuclear case.

Acknowledgment. This research was supported a t Cornel1 University by NSF Grant CHE 78-28048 and a t the University of Illinois by NSF Grant CHE 81-00140. The procedure described for the synthesis of Cp3Rh3(CO)(C,Ph,) was first conducted by Dr. R. J. Lawson. Registry No. I (M = Rh, R = Ph), 88801-72-3; I (M = Ir, R = Ph), 88801-74-5; Cp3Rh3(CO)(C,Ph2), 39346-10-6; Cp31r3(CO)(C2Ph2), 88801-70-1;Cp3Rh3(C0),,12148-54-8;Cp31r3(CO)3, 80630-37-1; Cp3Rh3(CO)(CgPhTol),88801-71-2; Cp,Rh,(CPh)(CTol), 88801-73-4; CZPh2, 501-65-5; CzPhTol, 3287-02-3; Rh, 7440-16-6; Ir, 7439-88-5.

Cluster Synthesis. 5. Synthesis and Crystal and Molecular Structures of Os,( CO) 19( @) and Os,( CO) (p4-S) Richard D. Adams," Istvdn T. Horvdth, and Pradeep Mathur Department of Chemistry, Yale University, New Haven, Connecticut 065 11 Received November 10, 1983

The cluster compounds O S ~ ( C O ) ~ ~(I) ( ~and ~ - SO)S ~ ( C O ) ~ ~ ( N (11) C Mcombine ~ ) ~ when refluxed in benzene solvent to yield the new cluster compound 086(co)19(&-s) (111) in 31% yield and the known cluster O S ~ ( C O ) , ~ ( ~(IV) ~ - S in ) l!% yield. The structure of I11 was determined by single-crystalX-ray diffraction methods: space group P1,a = 11.119 (2) A, b = 11.357 (3) A, c = 12.904 (2) A, a = 104.51 (2)", 0 = 91.12 (l)", y = 108.80 (l)', V = 1484.4 (11) A3, Z = 2, Pc&d = 3.82 g/m3. The structure was solved by direct methods and refined with 3847 reflections (F2 3.Ou(F))to yield the final residuals R1 = 0.038 and R2 = 0.045. The structure consists of a butterfly tetrahedron of four osmium atoms with two additional osmium tetracarbonyl groups bridging adjacent edges of the butterfly tetrahedron. A triply bridging sulfido ligand bridges one of the open triangular faces of the cluster. When refluxed in toluene solvent, I11 loses 2 mol of CO and is converted into the new cluster compound 0s6(CO),,(p4-S)(V) in 23% yield. The structure of V was also determined by a single-crystal X-ray diffraction analysis: space group Pna2,, a = 11.371 (3) A, b = 16.550 (3) A, c = 14.140 (3) A, V = 2661 (2) A3, Z = 4, fJ&d = 4.12 g/cm3. The structure was solved by direct methods and refined with 1887 reflections (F1 3.0p(F)) to yield the final residuals R1 = 0.029 and R2 = 0.030. The structure consists of a capped square pyramid of six osmium atoms with a quadruply bridging sulfido ligand spanning the base of the square pyramid. The observed structure is in accord with the skeletal electron pair theory, but the metal-metal bonding to the capping group is highly distorted. Both the shortest (2.625 (1) A) and longest (2.930 (1) A) metal-metal bonds in the molecule involve the capping group. This can be rationalized by a combination of resonance structures, one of which includes a multiple bond at the shortest bond distance and no bond at the longest distance.

Introduction The widespread interest in the chemistry of transitionmetal cluster compounds has stimulated efforts to synthesize them by systematic While redox

c ~ n d e n s a t i o nand ~ . ~ pyrolytic decarbonylation processes5 have been employed with considerable success, condensation reactions promoted by bridging ligands have recently attracted attention.&l4 ---

(1) 'Transition Metal Clusters";Johnson, B. F. G., Ed.; Wiley: New York, 1980. (2) C h i , P.; Longoni, G.; Albano, V. G. Adu. Organomet. Chem. 1976, 14, 285.

0276-7333184 f 2303-0623$01.50/0

(3) Chini, P. J . Organomet. Chem. 1980, ZOO, 37.

(4) King, R. B. Frog. Inorg. Chem. 1972, 15, 287. (5) Eady, C. R.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc., Dalton Trans., 1975, 2606.

0 1984 American Chemical Society

624 Organometallics, Val. 3, No. 4, 1984

Adams, Horubth, and Mathur

Table I. Crystallographic Data for X-ray Diffraction Studies

(A) Crystal Data

I11

V

o~6scl,ol9

29 P i , No. 2 11.119 (2) 11.357 ( 2 ) 12.904 (3) 104.51 (2) 91.12 (1) 108.80 (1) 1464.4 (11) 1705.5 2 3.82

Pna2,, No. 33 11.371 (3) 16.550 ( 3 ) 14.140 ( 3 ) 90.0 90.0 90.0 2661 (2) 1649.4 4 4.12

(B) Measurement of Intensity Data Mo KZ (0.71073 A ) graphite

radiation monochromator detector aperture, mm horiz (A + B tan e ) A B vert cryst faces

Mo KG (0.71073 A) graphite

3 .O 1.o 4.0 100, Too, 122 122,T21,123 cryst size, mm 0.03 X 0.11 X 0.29 cryst orientation direction; deg from c axis normal t o 122; 8.6 reflctns measd h+kil max 28 50" moving crystal-stationary counter scan type w scan width (A + 0.347 tan e ) 1 .oo bkgd additional scan at each end of scan w scan rate (variable) max, deglmin 10.0 min, deg/min 1.4 no. reflctns measd 5208 3847 data used (F22 3.0u(F2))

3.0 1.o 4.0 010,oio, 111,11111 102,i 0 2 , 2 1 T , 2i1 0.04 X 0.17 X 0.24 normal t o 102,10.3 +h+k+l 50" moving crystal-stationary counter 1.oo additional scan at each end of scan

10.0 1.4 2657 1887

(C) Treatment of Data absorption correction coeff, cm-l grid transmission coefficient max min decay correction max min P factor final residuals, R F RWF esd of unit wt obsvn largest shiftlerror value of final cycle largest peak in final diff fourier, e-/A3

257.7 4 X 12 X 18

287.4 14X4X16

0.47 0.08

0.333 0.016

1.02 0.93 0.02 0.038 0.045 2.15 0.03 2.97

0.02 0.029 0.030 1.36 0.16 1.11

In recent studies we have shown that cluster compounds containing triply bridging sulfido ligands (A) can couple M'

readily with other metal carbonyl cluster compounds to form a variety of new high-nuclearity metal carbonyl cluster^.'^" Self-condensation reactions may also occur.l8

).

(9) (a) Richter, F.; Vahrenkamp, H. Angew. Chem., Znt. Ed. Engl. 1980, 19, 65. (b) Ibid. 1979, 18, 531. (e) Ibid. 1978, 17, 864.

(10)(a) Huttner, G.; M o b , G.; Pritzlaff,B.; von Seyerl, J.; Zsolani, L. Chem. Ber. 1982,115,2044. (b) Huttner, G.; Sigwarth, B.; von Seyerl, J.; Zsolani, L. Zbid. 1982, 115, 2036. (11) Vahrenkamp, H.; Wucherer, E. J.; Wolters, D. Chem. Ber. 1983,

A

-

6

-

(6) Marko, L. Gazz. Chim. Ital. 1979, 109, 247. (7) (a) Vahrenkamp, H. Angew. Chem., Int. Ed. Engl. 1975, 14,322. (b) Vahrenkamp, H Wucherer, E. J. Ibid. 1981,2@,680. (8) Day, V. W.; Leach, D. k;Ranchfuss, T. B.J. Am. Chem. SOC.1982, 104, 1290.

116, 1219. (12) (a) Seyferth, D.; Henderson, R.S.; Fackler, J. P., Jr.; Mazany, A. M. J. Organomet. Chem. 1981,213, C21. (13) Adams, R. D.; D a w d i , 2.;Foust, D. F.; Segmllller,B. E. J.Am. Chem. SOC.1983,105,831. (14) Adame, R. D.; Horv&th,I. T.; Yang, L.W. J. Am. Chem. SOC.1983, 105,1533. (15) Adama, R. D.; Foust, D. F.; Mathur, P. Organometallics 1983,2, 990. (16) Adama, R. D.; Horvith, I. T.; Mathur, P.; Segmuer, B. E.; Yang, L. W. Organometallics, 1983, 2, 1078.

Osmium Cluster Synthesis

Organometallics, Vol. 3, No. 4, 1984 625

Table 11. Positional and Thermal Parametersa and Their Estimated Standard Deviations for Os6(CO),,(p3-S)(111) atom

X

0.78533 (6) 0.80129 (7) 0.82785 (7) 0.94381 (7) 0.68793 (7) 0.62573 (7) 0.6310 ( 4 )

Os1

Os2 Os3 Os4 Os5 Os6 S atom 01 02 03 04 05 06 07 08 09

010 011 012 013 014 015 016 017 018 019

X

0.681 (1) 1.032 (1) 1.087 (1) 0.767 (2) 0.849 ( 2 ) 0.511 ( 2 ) 1.082 (1) 0.685 (1) 0.851 (1) 1.043 (1) 1.205 ( 2 ) 1.033 (1) 0.410 ( 2 ) 0.727 ( 2 ) 0.765 (1) 0.465 ( 2 ) 0.878 (1) 0.603 (2) 0.393 (2)

0.80068 ( 5 ) 0.92988 (5) 0.70647 ( 5 ) 0.63287 ( 5 ) 0.59111 ( 5 ) 0.77302 (6) 0.6848 ( 3 )

B1.1 1.74 (2) 2.93 (3) 2.35 ( 3 ) 2.00 (3) 2.14 (3) 2.15 (3) 1.9 (2)

z 1.015 (1) 0.888 (1) 0.959 (1) 1.167 (1) 0.970 (1) 0.878 (1) 0.773 (1) 0.720 (1) 0.469 (1) 0.627 (1) 0.741 (1) 0.415 (1) 0.509 (1) 0.376 (1) 0.509 (1) 0.643 (1) 0.773 (1) 0.984 (1) 0.785 (1)

B,AZ 4.3 (3) 3.3 (3) 3.5 (3) 5.5 ( 4 ) 5.6 (4) 5.6 (4) 4.7 (3) 4.6 ( 3 ) 3.5 (3) 3.4 (3) 5.8 (4) 4.2 (3) 5.7 (4) 5.5 (4) 4.2 ( 3 ) 7.0 (5) 3.8 (3) 5.1 (4) 4.9 (3)

z

Y

0.80060 ( 5 ) 0.63625 ( 6 ) 0.56805 (5) 0.78943 (6) 0.78015 ( 6 ) 0.94300 (6) 0.6136 ( 4 ) Y

0.886 (1) 1.023 (1) 0.803 (1) 0.745 (1) 0.405 (1) 0.488 (1) 0.545 (1) 0.296 (1) 0.457 (1) 1.067 (1) 0.831 (1) 0.707 (1) 0.716 (1) 0.617 (1) 1.020 (1) 1.040 ( 2 ) 1.159 (1) 1.120 (1) 0.706 (1)

4 . 2

1.65 (2) 2.18 ( 2 ) 1.59 ( 2 ) 2.23 ( 2 ) 2.28 ( 2 ) 2.31 (2) 1.9 (1) atom C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19

B3.3 1.39 (2) 1.72 (2) 1.75 (2) 2.08 (2) 1.68 ( 2 ) 2.57 ( 3 ) 1.8 (1)

B, .* 0.63 ( 2 ) 0.62 (2) 0.75 ( 2 ) 0.85 (2) 0.73 ( 2 ) 1.12 ( 2 ) 0.3 (1)

involves the formation of a coordinate bond between the sulfido ligand and the incoming metal atoms M' (B).+18 Subsequent ligand eliminations can lead to metal-metal bond formations which may be influenced by the bridging sulfido ligand. In this report we shall describe the nature of the coupling of the cluster compounds OS~(CO)~~(~~-S) (I)19and OS~(CO)~~(CH,CN)~ (IIPwhich yields the new nido-cluster

II

OS~(CO)~~(~~-S) (111) and the known compound Os5(C0),,(p4-S) (IV). I11 can be closed by decarbonylation to yield the new cluster OS&!O)~,(~~-S) (V). Both I11 and V have been characterized by single-crystal X-ray diffraction methods.

0.846 (2) 0.939 (1) 0.741 (1) 0.707 ( 2 ) 0.497 ( 2 ) 0.545 ( 2 ) 0.560 (2) 0.400 (2) 0.510 (2) 0.960 (1) 0.810 (2) 0.742 (2) 0.741 ( 2 ) 0.679 ( 2 ) 0.929 (1) 1.012 (2) 1.075 (1) 1.049 (2) 0.791 ( 2 )

+

B2.3 0.21 ( 2 ) 0.68 (2) 0.28 ( 2 ) 0.78 ( 2 ) 0.46 ( 2 ) 0.50 ( 2 ) 0.1 (1) z

Y

X

0.716 ( 2 ) 0.940 (2) 0.982 (2) 0.783 ( 2 ) 0.830 ( 2 ) 0.621 (2) 0.989 (2) 0.740 ( 2 ) 0.844 ( 2 ) 1.000 ( 2 ) 1.104 ( 2 ) 1.003 ( 2 ) 0.516 ( 2 ) 0.715 ( 2 ) 0.738 ( 2 ) 0.529 ( 2 ) 0.789 ( 2 ) 0.610 ( 2 ) 0.478 ( 2 )

The form of the anisotropic therrnal parameter is exp[-~/,(hza*zBl,l+ k'b*'B,,, 2hZa*c*B, ,3 + 2kZb*c*B,,, )].

It is believed that the first step in such condensations

B*.3 -0.05 ( 2 ) -0.10 ( 2 ) -0.00 ( 2 ) 0.42 ( 2 ) -0.31 (2) 0.08 (2) -0.2 (1)

0.934 0.853 0.948 1.076 0.959 0.895 0.747 0.716 0.559 0.625 0.699 0.500 0.543 0.462 0.540 0.699 0.770 0.905 0.779

(1) (1) (1) (2) (2) (2) (1) (1) (1) (1) (2) (1) (2) (1) (1) (2) (1) (2) (1)

Re,, 1.62 (1) 2.32 ( 2 ) 1.91 (1) 2.03 (1) 2.05 (1) 2.29 (1) 2.06 ( 9 )

B, A' 3.0 (4) 2.0 (3) 2.7 (3) 3.5 (4) 3.6 (4) 3.6 ( 4 ) 3.0 ( 4 ) 3.2 (4) 2.9 (4) 2.6 ( 3 ) 3.5 ( 4 ) 2.8 ( 4 ) 3.9 ( 4 ) 3.3 ( 4 ) 2.3 (3) 5.4 (6) 2.6 ( 3 ) 4.1 ( 5 ) 2.8 ( 4 )

P c * ~ B , ~+, 2hka*b*BI3, +

Table 111. Interatomic Distances ( A ) with Esd's for 0s6(c0)19(~3~s) (I1') distance atoms distance atoms

Os( 1)-Os(2) OS(l)-Os( 3) Os(l)-Os(4) OS(OS (5) Os( OS( 6) OS(2)-0s( 3) OS(3)-oS (4) OS(4)-0s ( 5 ) OS(5)-0s( 6) Os( 1)-s OS(3)-S 0~(5)-S Os( 1)-c(1) W l )-C(2 1 OS(2 )-C( 3 ) 0~(2)-C(4) W2)-C(5) 0~(2)-C(6)

0~(3)-C(7) 0~(3)-C(8) OS(3)-C( 9 ) OS(4)-C( 1 0 ) OS(4)-C( 11 ) OS(4)-C( 1 2 ) OS( 4 )-C ( 13)

2.837 (1) 2.809 (1) 2.822 (1) 2.820 (1) 2.830 (1) 2.839 (1) 2.836 (1) 2.849 (1) 2.850 (1) 2.376 ( 3 ) 2.432 ( 3 ) 2.417 ( 3 ) 1.923 (14) 1.890 (13) 1.954 (13) 1.893 (14) 1.840 (14) 1.922 (17) 1.893 (14) 1.886 (14) 1.885 (13) 1.865 (12) 1.875 (16) 1.860 (13) 1.876 (17)

Os(5 ) C (14) W 5 ) 4 ( 1 51 Os(6 ) C (16 ) Os( 6)-C(17 ) 0 s (6 )-c(18 1 Os(6 ) C ( 1 9 ) C(1) - W 1 C(2)-0(2) C(31-Ot 3) C(4)-0(4) C(5)-0(5) C(6)-0(6) C(7 )-0(7 1 C(8 1-O(8 1 C(9 )-0(9 1 C(1 0)-0(10 ) C(11)-O(11) C( 12 )-0(12 ) C(13)-O(13) C(14)-0 (14 ) C(15 )-0(15 ) C(16 )-0(16 ) C( 17 )-0(17 ) C(18)-O(18) C(19 )-0(19 )

1.860 (14) 1.883 (11) 1.880 (18) 1.954 (17) 1.866 (16) 1.979 (14) 1.160 (15) 1.138 (14) 1.129 (15) 1.190 (16) 1.173 (15) 1.170 (18) 1.162 (16) 1.155 (15) 1.183 (14) 1.150 (14) 1.160 (18) 1.162 (15) 1.160 (18) 1.193 (16) 1.158 (13) 1.170 (19) 1.126 (15) 1.163 (16) 1.137 (15)

Experimental Section Although the products are air stable, all reactions were performed under a prepurified nitrogen atmosphere. O S ~ ( C O ) ~ ~ (17)Adams, R. D.; Horvith, I. T.; Segmiiller, B. E. J. Organomet. Chem.. in Dress. ( 1 8 j A d b a , R. D.; Mhnig, D.; Segmtiller, B. E. Organometallics, 1983. 2. ~.149. ~~

I

~~~

(19) Adams, R. D.; Horvith, I. T.; Kim, H. S. Organometallics, in press. (20) (a) Johnson, B. F. G.; Lewis, J.; Pippard, D. A. J . Chem. SOC., Dalton Trans. 1981,407. (b) Dawson, P. A.; Johnson, B. F. G.; Lewis, J.; Puga, J.; Raithby, R. R.; Rosales, M. J. Chem. SOC.,Dalton Tram. 1982, 233.

(NCMe)220and O S ~ ( C O ) ~ ~ ( ~ were ~ - Sprepared )'~ by reported procedures. Reagent grade solvents were used without further purification. IR spectra were recorded on a Nicolet 5SX FT-IR. Preparation of Os6(CO),,(p3-S)(111). In a typical preparation a solution of 0.100 g of O S ~ ( C O ) ~ ~ ( N and C M0.070 ~ ) ~ g of O S ~ ( C O ) ~ ~ ( F(I) ~ -inS 50 ) mL of benzene solvent was heated to reflux. After 15 min a solution of 0.050 g of Os3(CO)lo(NCMe)2 in 20 mL of benzene was added via syringe and heating was continued a further 45 min. The solution turned red-brown and the solvent was removed in vacuo. The brown residue was put

626 Organometallics, Vol. 3, No. 4, 1984

Adams, Horvcith, and Mathur

Table IV. Selected Interatomic Angles (deg) with Esd's for Os,(CO),,(p,-S) (HI) atoms

angle

Os( OS( 1)-OS( 3 )

60.37 ( 2 ) 112.04 ( 2 ) 138.91 ( 2 ) 136.98 ( 2 ) 60.47 ( 2 ) 85.37 ( 2 ) 141.43 ( 2 ) 60.65 ( 2 ) 110.10 ( 2 ) 60.58 (2) 59.32 ( 2 ) 60.32 (2) 60.00 ( 2 ) 59.53 ( 2 ) 59.63 ( 2 ) 59.72 ( 2 ) 59.90 ( 2 ) 59.52 ( 2 ) 85.75 (7) 69.8 ( 4 ) 100.0 ( 3 ) 55.19 (8) 127.7 ( 4 ) 111.7 ( 4 ) 86.61 (8) 164.9 (4) 74.0 (3) 54.64 ( 7 ) 128.5 (4) 114.2 (3) 88.48 (8) 71.9 ( 4 ) 99.4 (3) 81.9 (3) 111.7 (4) 155.6 ( 4 ) 89.6 (4) 86.0 ( 4 ) 171.0 (4) 96.4 ( 4 ) 88.3 (4) 53.34 (7) 116.2 (4) 129.5 ( 4 ) 123.9 (4) 85.27 (7) 91.9 ( 4 ) 164.9 ( 4 ) 72.5 ( 4 )

Os( OS( 1) - 0 ~ ( 4 ) OS(2 )-OS (1)-OS (5 ) o S ( 2 ) - 0 ~ OS( 6 ) Os ( 3 ) - 0 ~1()-OS( 4 ) Os( OS OS( 1)-OS( 5 ) Os (3)-Os(l )-OS(6 ) Os( OS (1)-OS(5 ) 0 ~ ( 4 ) - 0 OS( ~ ( 6) o S ( 5 ) - 0 ~1 ( )-OS(6 ) OS(1) - 0 ~ ( 2 ) - 0 3~)( Os(1)-Os(3)-0s(2) Os(l)-0~(3)-0~(4) O s ( l ) - 0 ~ ( 4 ) - 03~)( Os(1) - 0 ~ ( 4 ) - 0(5~) OS(1) - 0 ~ ( 5 ) - 0 ~ ( 4 ) OS(1)-OS ( 5)-OS (6 ) Os(1 )-OS( 6 ) - 0 ~ ( )5 Os(2)-0s( 1)-s Os(2)-Os( 1)C(1) Os(2)-0s( 1)-c(2) Os(3)-Os(l)-S OS OS (1)C( 1) OS( 3 ) - 0 ~1()-C (2 ) 0 ~ ( 4 ) - 01~)-S ( 0 ~ ( 4 ) - 01~)C( ( 1) OS OS (1)C(2 ) Os(5)-oS( 1)-S Os(5)-Os(l )-C (1) Os(5)-0s(l )-C( 2 ) Os(6)-Os(l)-S Os(6 ) - 0 ~ ( l ) C ( 1 ) Os(6)-0~(l)-C(2) OS(1)-OS( 2 )-C (3) os(1)-Os( 2 )-c(4) Os(1) - 0 ~ ( 2 ) C ( 5 ) Os( OS( 2 ) 4 (6) W3)-W2 )4(3) os ( 3)-os (2 )-c(4 ) Os(3)-0~(2)