Anal. Chem. 1987, 59, 31 R-46R ner, S. D.; Bobbie, 6.; W e n , S. Hazard. Mater. Spllls Conf. Roc., Prev., Behav., Control Cleanup Spills Waste Sltes 1984, 237-239. Chem. Abstr. 1985, 702, 1 9 4 4 5 ~ . (37Q) Smith, L. M.; Stalllng, D. L.; Johnson, J. L. Anal. Chem. 1984, 56, 1630- 1842. (38Q) Spittier, T. M. ACS Symp Ser. 1984, No. 287 (Environ. Sampling Hazard. Wastes), 37-42. (394) Steinwandter. H. Fresenlus' 2. Anal. Chem. 1985, 327, 600-601. (404) Tuinstra, L. 0. M. T.; Roos, A. H.; Werdmulier, G. A. J . Assoc. Off. Anal. Chem. 1985, 68, 756-759. (41Q) Twman. K. W.; Erlckson. M. D.; Boone. P. J.; Flora, J. D., Jr.; Heggem, D. T. Bull. Envkon. Contam. Toxicol. 1986, 37, 10-17. (420) Wolff, M. S.;Fischbeln, A.; Rosenman, K. D.; Levin, S. M. Chemosphere 1986. 75, 301-307. (43Q) Zarr, N. S.; Lindgren, J. L.; Jenks, J. M. Roc.-APCA Annu. Meet. 1984, 77th (Vol. I), 84-13.2, 7 pp. Chem. Abstr. 1985, 702, 124863~.
(28Q) Laramee, J. A.; Arbogst, 8. C.; Deinzer, M. L. Anal. Chem. 1986, 58, 2907-2912. (29Q) Ligon, W. V., Jr.; May, R. J. Anal. Chem. 1986, 58, 558-561. (30Q) Obbens, H.; Lendero, L. J. Chromatog. 1985, 349, 425-430. (31Q) Oehme, M.; Manoe, S.; Mtkaisen, A.; Khschmer, P. Chemosphere 1986, 75. 607-817. (32Q) Patteron, D. 0.; Holier, J. S.; Groce, D. F.; Alexander, L. R.; Lapeza, C. R.; O'Connor, R. C.; LMdie, J. A. Environ. Toxlcol. Chem. 1986, 5 , 355-360. (33Q) Seymour, M. P.; Jefferies, T. M.; Notarianni, L. J. Bull. Environ. Contam. Toxicol. 1986, 37, 199-206. (34Q) Seymour, M. P.; Jefferies, T. M.; Notarianni, L. J. Anal. Roc. (London) 1986, 23, 260-261. (35Q) Shore, F. L.; Martin, J. D.; Williams, L. R. Biomed. Environ. Mass Specfrom. 1986, 73, 15-19. (36Q) Smith, J. S.; Marks, P. J.; Ben-Hur, D.; Lafornara, J.; Urban, M.; Tan-
.
Coatings Dennis G. Anderson* and John T. Vandeberg DeSoto, Inc., 1700 South Mount Prospect Road, Des Plaines, Illinois 6001 7
INTRODUCTION
and nonvolatile content in urea-formaldehyde resin solutions (4). Numerous methods have been reported or updated for the measurement of acid content in organic coatings materials (5, 47), mixtures of fatty acids (36),and electrodeposition baths (11). Special studies published during this period include the determination of carboxylic acid anhydrides (57) and the acidity of wood (52). The determination of amines via titrimetric procedures was studied in papers dealing with the use of nonaqueous solvents (581,the measurement of primary amino groups in amine hardners for epoxy resins (63),and the determination of unreacted amines in amine oxides (61). Methodology for the accurate determination of hydroxy content has been reviewed by several standards setting bodies (10,46),and a definative paper was published on the measurement of hydrox l content in pol urethane polyols (20). The particular prohems associate$ with the titration of phenolic hydroxyl groups were also reported recently (21,59). Certain functional groups require chemical degradation or hydrolysis prior to titrimetric analysis. Ester functionality continues to be studied through saponification and titration of the excew base (22,42,48). One unique report during this period the use of anthranilic acid for the stepwise removal of monomeric units from the ends of polyester chains (51). Oxirane functionality continues to be of interest, with papers on titration using silver nitrate and ammonium thiocyanate (55) and the measurement of oxidation products in fatty acids (18). Allophonates in urethane polymers were selectively cleaved through aminolysis using dibutylamine (25),with no effect on the urethane functionality present in the polymer. In addition, a special reagent was evaluated to distinguish between sulfide and polysulfide (37) in several polymer types. Titrimetric analysis of specific species in paints and coatings continues. Revised standard procedures for the determination of water content have appeared (8,17,56). Zinc in zinc dust was measured via titration with potassium dichromate (35). The measurement of specific pi ments in coatings has led to revised procedures for titanium 'oxide (27)and Prussian blue (45). Several unique titration procedures were published which have interest to coatings chemists. These include the determination of chemic4 oxygen demand in effluents (26) and the characterization of acrylate latices via conductometric titration (24, 31, 43, 53). Turbidimetric titrations continue to find uses in coatings characterization. Kauri-butanol value as a mechanism to evaluate solvent power was reviewed by ASTM ( I ) . Turbidity was also used in procedures designed to measure dimer content in acrylic acid (12) and polymer content in styrene monomer (6) and to characterize styrene/acrylonitrile polymers frac-
This review covers analytical techniques applicable to the examination of coatings and coatings raw materials, substrates upon which coatings are placed, etc., since the last review in 1985 (4). The compiled references were extracted after searching Chemical Abstracts, Analytical Abstracts, World Surface Coatings Abstracts, and the Journal of Coatings Technology. The contents are divided into 18 analytical techniques useful in coatings characterization. Readers are advised to survey the entire review since the analysis of specific paints, coatings, or related materials may be found in each section. The five most heavily referenced areas are nuclear magnetic resonance spectroscopy, infrared spectroscopy, gas chromatography, thermal analysis, and chemical and electrochemical techniques. New or unique applications for established analytical techniques appear throughout the review. Several new books useful in the analysis of coatings are The Handbook for Painting Firms (19),The Use of Computers in Analytical Chemistry (7), and a general reference work on the analysis of plastics (12). Advances in paint-testing equipment received special attention during this period (5, 6 , 8 )as did the automation of a coatings research laboratory (13) and the use of RIDIT analysis in testing paint quality (9). The analysis of paint samples for forensic purposes was the subject of two recent papers ( 1 7 , 2 1 )as were the examination of surfactants (16) and acrylic binders (15) in paints and varnishes. Flash point measurement continues to be of considerable importance in the coatings industry. Procedures for equilibrium flash point determination (3),Abel-Pensky ( l I , 2 0 ) , Tag cup ( I ) , and flash/no flash (2) were reevaluated. The testing of fire retardant or intumescent coatings was also reviewed in detail (18). Other physical properties of aints that were reported included the oxygen permeability of fxrier materials (14) and polymer latices (10).
8
CHEMICAL AND ELECTROCHEMICAL Gravimetric techniques continue as a vital tool for coatings characterization. Several standards producing organizations have revised their general procedures for measuring the nonvolatile content of coatings (2, 7, 9, 56). The Environmental Protection Agency has also published methodology to measure volatile organic content (VOC) through the use of volatile and water content, density, and volume nonvolatiles (28,29). Among the systems that received special attention in the determination of nonvolatile content were: waterborne coatings (15),pigment content in emulsion paint systems (9), 0003-2700/87/0359-3 1R$06.50/0
0
1987 American Chemical Society
31 R
COATINGS
tionated via gel permeation chromatography (32). Many novel general procedures were reported during this period. Among the more interesting are the determination of water-soluble sulfates, chlorides, and nitrates in pigments (23),water-soluble chromhm(1V) (13),total gaseous organic concentration using a nondispersive infrared analyzer (30), the use of a Setaflash tester to evaluate solvent flammability (62),the examination of solubility characteristicsof automotive paint systems (54),and the use of Kjeldahl analysis for the measurement of nitrogen content in polyamides (60) and copper phthalocyamines (49). Few electrochemical studies were reported during this period. The evaluation of pH in waterborne coatings received special attention (14)as did electrochemical tests for coated metals (50). A voltametric procedure to measure dissolved oxygen in monomers and polymers was recently published (44) as was a nonaqueous polarographic method to determine vinyl monomers in copolymers (38). Other electrochemical procedures of interest include the amperometric determination of glycerine in triglycerides (39),the measurement of free formaldehyde in melamine-formaldehyde resins via cyclic voltametry (34),the estimation of acidity constants in phenolformaldehyde polymers (40), the evaluation of coated steel with improved corrosion resistance (16), measurement of cratering phenomena in cathodic electrodeposition coatings (33), and the detection of nitrocellulose using a pendant mercury drop (41).
GAS CHROMATOGRAPHY Gas chromatography remains an important analytical tool for the examination of coatings. Standard methods for the examination of volatile species continue to appear, including procedures for p-xylene (6),mineral spirits (4),acrylate esters ( 5 ) ,and benzene in hydrocarbon solvents (8). In addition, procedures for the determination of solvents in polymers (61) and in flexible packaging materials (18) have appeared. Of special interest is the use of a gas chromatographic headspace technique to measure the coalescing aid concentration in latex paint formulations (69). Several new approaches have been reported for the evaluation of impurities in raw materials used in the coatings industry. A method to evaluate the impurities present in tri(ethylene glycol) based plasticizers (47) and in phthalic anhydride (21)has been reported during this period. Coal tar derivatives have received special attention with the publication of two recent papers (14, 67). Trace analyses for species in coatings formulations prompted the publication of studies related to the measurement of organotin compounds in aqueous media (68) and the determination of Cellosolve acetate at the ppm level (10). The examination of antioxidants in polymers was the subject of a revised ASTM test (7) as were the determination of unreacted monomer in cured adhesives (39), butadiene/acrylonitrile polymers (34), vinyl chloride homo- and copolymers (9),and epichlorohydrin in epoxy resins (20). The examination of aliphatic carboxylic acids via gas chromatography continues to be extensively used. A novel derivitizationtechnique using chloroacetone has been reported for monocarboxylic acids (43),as well as gas chromatographic liquid phases with improved separation of fatty acid methyl esters (16,27). Fats and oils continue to be studied extensively (31),with specific analyses of minor seed oils (22,661,essential oils (53),and soybean oil (42) appearing recently. The examination of other species in polymers has led to the publication of work on the determination of glycerine in epoxy resins (19) and volatile species in epoxy/isocyanate (3) and phenolic resin systems (17). The high molecular weight and low volatility of binders used in coatings limit the direct analysis of these materials via gas chromatography. Chemical degradation of polyester polymers continues to be studied in great detail and several new alkaline hydrolysis methods have been presented (30, 35, 44). In addition, two additional studies were reported utilizing transesterification to form volatile species from polyester polymers (23, 51). Acrylic polymers were also examined following hydrazinolysis (46)to form ethanol from the ethyl acrylate present in the polymer system. The presence of specific functional groups in polymers was examined by use of gas chromatography, including oxirane ring position in epoxides (111, volatile components formed during the ther32 R
ANALYTICAL CHEMISTRY, VOL. 59, NO.
12, JUNE
15, 1987
mosetting of water-based coatings (63),and species liberated in an epoxy/phenolic curing reaction (62). Pyrolysis techniques provide an alternative mechanism for the generation of volatile species capable of analysis via gas chromatography. Two reviews of this technique were reported (37,651,as well as papers dealing with the pyrolysis of polymers in general (25) and acrylic polymers in particular (24, 36,48, 70). Among the other systems studied using pyrolytic techniques were: styrene/butadiene copolymers (56),wood (57),and poly(viny1acetate) and polyether systems containing dextrin (64). Somewhat unique uses of gas chromatography reported during this period include an evaluation of potential instruments for volatile organic content (VOC) (451, the use of a permeation sampler to determine volatile priority pollutants (1.9, and two-stage thermal desorption for low volatility organic vapor determination (2). Thermodynamic studies include the use of inverse gas chromatography (40) and the measurement of activity coefficients (52),solubility parameters (591,and surface pro Brties of calcium carbonate treated with stearic acid (49). 8 dor problems continue to plague the coatings industry, with definative studies published on the application of internal standards (55), an Atlas of Odor Character Profiles (26),methodology for odor testing (28), and a mechanism for the identification of odor-causingspecies using gas chromatography/mass spectrometry (71). Gas chromatography mass spectrometry continues to find increasingly greater app ‘cation in the examination of coatings systems. The use of fast atom bombardment (FAB) was reported for the determination of antioxidants and other paint additives (50) as well as general techniques for the examination of printing inks (54). Constituents examined using gas chromatography/mass s ectrometry include vinyl monomers based on stearic acid (607, fatty acids (38,41,58),the thermal fragmentation of aromatic polyester resins (291,novolacs cured with tetramines (I), aliphatic polyamides (12), poly(viny1 chloride) (32),and polysiloxanes (13, 33).
I
GEL PERMEATION CHROMATOGRAPHY Gel permeation or steric exclusion chromatography was used extensively in the characterization of polymers and coatings. One new book appeared during this period (30)as did a series of papers on the use of gel permeation chromatography in the paint industry (16-20). General papers also were published on the use of gel permeation chromatography for the examination of polymers (53)and plastics (#). In addition, a review was published on the use of ultraviolet detectors to measure polymer composition following separation according to molecular size (23). Flow-rate monitoring in gel permeation chromatography was also the subject of a recent study (41). The use of chroma aphic data to calculate molecular weight averages and distri utions was the subject of an updated ASTM method (2). Similarly, low-angle laser light scattering was used in conjunction with gel permeation chromatography to calculate absolute molecular weights in a styrene-butyl acrylate copolymer (39). Another method for evaluatin average molecular weights included a reevaluation of procefures to calculate Mark-Houwink constants (38). Several other unique studies were reported during this period which used data generated via gel permeation chromatography, including the measurement of polymer miscibility (9),the interactions of polymers and inorganic pigments (29),and a comparison of molecular weight models for polymers (12, 34). Two excellent theoretical studies of gel permeation chromatography featured new corrections for zone spreading (57) and a review of the basic mechanisms and models operating during separations (31). Specific addition polymer systems examined via gel permeation chromatography include styrene homopolymers (44, 481, styrene-methyl methacrylate copolymers (36, 37, 561, poly(alky1acrylates) (14,50),and acrylic acid homopolymers which were derivatized to form poly(methy1 methacrylate) (52). Condensation polymers, with their broader molecular weight distribution, have been examined in great detail. Studies reported during this period included unsaturated polyesters (15,22),alkyds (21,28,32),triglycerides (33),epoxy resins (24,49,51),phenol and melamine-formaldehyde oligomers (5,11,58),polyurethanes (6),silicones prepared from silicic acid ( I ) , polybutyrals (35,46)cationic polyelectrolytes (541,and polyether/sulfones (47). Gel permeation chroma-
??
COATINGS Dennis 0. And.rsm is a Technical Manage in the Analytical and Computer Application Research Department 01 DeSoto. I n < Since loinkg DeSoto 20 years ago. he ha been involved in the s ~ W and s character iation 01 polymers and coatings usin chemical and instrumental techniques. H received B.S. and M.S. degrees in chamirtr hom ROOSeven University, where he is ais a faculty member. Mr. Anderson ha5 at th~ed or coauthored 24 publications dealin wnh the analysis of pdymers and coating" and 1s Coauthor of An Infrared Spectroscopy Aflas for fhe Coathgs Industy He is ais0 the recipient of three ROO" Foundation awards for distinguished Service to the coatings mdustry. JOkn T. Vandebarp is Diiectw of Polymer Deveiopment and New Venture Research. Administrative and Research Center. 060to. Inc.. Des Plaines. IL 60016. His responribiinies include polymer development. radiation-curablecoatings. and new venture research. He has more than 20 years of experience wilh DeSoto. having held several : technical and managerial positions. He Obtained his B.A. degree in chemistry from Carroll College. Helena. MT. He received the M.S. and W.D. degrees in chemisw from Loyola Univerrity. Chicago. IL. In 1966 , and 1969. reroectively. He has aUmwed 17 I publications ininfrared and nuclttar magnetic re5onance spectroscopy. tetraarylborate chemistry. polymcr Character~ration, chelating polymers. and Coatings analysis and has patents pendtng He is Coauthor of two bmks in the field of infrared Spectroscopy. the latest published in 1980. entitled. An Infrared Specfroscopy Atlas for the Coatings Industry. He has been a recipient ot awards lor distinguished and outstanding SeNiCe to the coatings industry. He is a member of the Federation 01 Societies for Coatings Technology. Chkago Society for Coatings Technology, Sigma X I , American Chemical Soclely: Coatings Division and Polymer Division. American ASSOCiation for the Advancement of Science. and InduStriai Research Institute. Board of Editors-Research Management. He has been included in Who's Who io Technologv T d y a n d Who's Who h the MMwest.
\
-
\
I
tography has also found utility in the measurement of polymerization kinetics. Some of the more interesting studies reported were the polymerization of styrene analogues (8,27, 45,551, the curing of acrylate coatings using ultraviolet light (40),the preparation and characterization of model urethane polymers (25), and N,N-tetraglycidyl-methylenedianiline resins (36). The determination of low molecular weight species using gel permeation chromatography continues as a fruitful area of research. Measurements of free phenol in phenol/melamine formaldehyde resins (101,residual amines in epoxy resin curing agents (7),and antioxidants (42) were reported during this period. Other general studies of interest include a standard method for weight average molecular weight via light scattering (31, characterization of molecular weight distribution using dynamic melt rheology (59),and methods for evaluating skewness in molecular weight distributions (4, 13).
HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY The nonvolatile nature of many species present in coatings dramatically increases the utility of high-performance liquid chromatography for solving coatings problems. A review of recent developments in detection techniques was published (43) along with the use of Fourier transform infrared spectroscopy as a novel detection system ( 4 ) . The particular difficulties inherent in ensuring the accuracy of high-performance liquid chromatographic assays received special attention during this period (15). Particular emphasis was given to the analysis of radiation-curable materials (14, 28) with specific techniques to aid in component separation and identification. Publications also continue on the development of hydrodynamic chromatography ( I f), with specific studies on the characterization of emulsion particle size distribution (16, 34).
Low molecular weight aliphatic aldehydes were reacted with sodium bisulfite prior to ion chromatographic separation of
the hydroxyalkanesulfonates formed (5). Ion chromatographic techniques were also used to determine ethylene glycol level following oxidation with periodic acid (45). Polyglycerols, on the other hand, were examined by use of a carbohydrate analysis column to separate cyclic diglycerol, glycerol, and polyglycerol oligomers (1 7 ) . Wood preservatives, such as pentachlorophenol, were the subject of a high-performance liquid chromatographic study during this period (22) as was the determination of pentachlorophenol acrylate purity (7). Monomeric species received special attention, with specific studies on trimellitic anhydride ( 9 ) ,unsaturated acids (8), ultraviolet absorbers (27), and antioxidants (40, 4 1 ) . The determination of plasticizers was also reviewed (29) as was methodology for the examination of nonionic type surfactants (2,3,21).The use of high-performance liquid chromatography to measure airborne isocyanates was the subject of an excellent review paper (31) and specific methods for measuring toluene diisocyanate were presented in two recent studies ( 1 , 35). A wide variety of polymers continue to he studied by use of high-performance liquid chromatographic techniques. The methylolation of melamines under varying synthesis conditions was reported (26) as was the separation of phenol-formaldehyde oligomers (30). Polyurethane polymer characterization received special attention, with specific publications on the hydrolysis of biurets and allophonates (131, the role of catalysts in competing isocyanate reactions (44), the use of urea derivatives to separate isocyanate prepolymers (42) and the direct determination of isocyanates and amines as degradation products during the production of polyurethane-coated wire (53). Oligomer separation using techniques other than steric exclusion chromatography continue to appear. Among the addition polymers examined in this manner were styrene oligomers (12, 25) and oligo(ethy1ene glycol) dimethacrylates (18). Condensation polymer systems studied included epoxy oligomers (19,23),triglycerides (6, 10, 32,36-38), cashew phenols (391, and cellulose derivatives (20, 24).
THIN-LAYER CHROMATOGRAPHY With the increased utilization of high-performance liquid chromatography, papers related to thin-layer chromatography continue to decrease dramatically. A review article dealing with the use of chromatography to examine components of plastics ( I ) mentions thin-layer chromatography as a useful tool. The isolation and identification of dyes in nail lacquers (4)used thin-layer chromatography as the primary separation mechanism. Specific publications of interest in this area include the identification of components in thermoplastic polyesters (31, the separation of a homologous series of alkyl acrylates and methacrylates (Z), the examination of products formed in the reaction of melamine and formaldehyde (51, and the identification and quantitation of peroxides (6).
ATOMIC ABSORPTION SPECTROSCOPY Atomic absorption spectroscopy (4) was referenced for determining metal content in paints, coatings, and varnishes. Methods were reported for antimony ( 3 ) ,arsenic (5),harium ( f f ) , cadmium (121, chromium ( 4 , 13), lead ( 1 , 7,8, 15),and mercury (2, J4, 16). Atomic absorption spectroscopy was also reported for the analysis of aluminum in titanium dioxide (10) and microtraces of various impurities in titanium dioxide pigments (9).
INFRAREDSPECTROSCOPY Numerous reviews were completed in infrared spectroscopy. Grasselli (37) presented applications of Fourier transform infrared spectroscopy to polymers, coal, shale, minerals, and heavy hydrocarbons and in trace and inorganic analysis. She included IR related developments in data processing, differential spectra, combined techniques, special techniques, and interface and biomedical studies. Chalmers et al. (15) described FTIR uses in the industrial laboratory. Papers dealing with the theory of FTIR and its applications to polymers (57),in surface studies (RZ), films and coatings (22, 66, 76), and forensic analysis (103) were published during this period. IR methods were applied to emulsion paints (49), pressure-sensitive adhesives (53),and artifacts (59). Fourier transform diffuse reflectance infrared (DRIFT) was used to study polymer films and coatings (19)and its usefulness described in the far-infrared region (29). ANALYTICAL CHEMISTRY. VOL. 59, NO. 12. JUNE 15, 1987
33R
COATINGS
Hummel(48) published the 2nd revised edition of the atlas of polymer and plastics analysis. Bershtein and Ryzhov (7) reviewed the relationship between molecular characteristics of polymers and parameters of far-IR spectra. Polymers from renewable resources were analyzed by IR and NMR (14)and IR and TGA (79). Decker and Bendaikha (23)followed photopolymerization of multifunctional acrylate macromonomers, a kinetic study. Studies in acrylate/methacrylate polymerizations under different conditions were also reported (39,52,99).The reactivity of acrylic melamine resin high-solids coatings and physical properties o cured films was reported (78). IR and NMR were used to investigate the synthesis and characterization for water-soluble polyacrylamide (86),cross-linking of novolacs with paraformaldehyde (90),the dicyandiamide/epoxy reaction (201, structure/ property relations of polyethertriamine-cured bisphenol A diglycidyl ether epoxies (731,and amine hardened epoxy resin (34,45,96). The modification of phenolic novolaca by epoxies was followed by IR (47) as was the curing by joint condensation of phenol, melamine, and formaldehyde (10) and condensation of aromatic 1,3-diamines with pyridine-3-aldehyde (55). Chemical aspects during the curing of polyurethane coatings were studied by IR (69). Yudina et al. (105)analyzed thermosetting olyimides using IR. Vinyl cinnamate was synthesized anfcopolymerized with vinyl acetate. Monomer distributions were determined by IR (67). The kinetics of curing of an organosilicon oligomer were investigated by IR (94). Pate1 (85) studied N-alkyl-p-aminosalicylic acid formaldehyde polymers. Polyalkylene oxide ionomers were investigated by IR and NMR (5)as was the cyclization of natural rubber (88). FTIR analysis methods were used in the cure kinetics characterization of organic coatings systems (13),the miscibility of polyvinyl phenol blends (75), profiling of deuteriated acrylic coatings and UV screens used to protect bisphenol A polycarbonate (101), and the thermal and photochemical behavior of structurally hardened piperidine light stabilizers in polyolefins (2). Allen et al. (3, 4 ) used IR and UV to determine photooxidative stability of electron beam- and UV-cured di- and triacrylate resins. Decker and Jenkins (24),in a kinetic approach, used IR to investigate oxygen inhibition in UV- and laser-induced polymerizations. IR methods were used to follow isoxazoline group introduction into cis-polybutadiene and cis-polyisoprene (97). Provder and others (89) used FTIR, DMA, and TGA for a kinetic study of blocked isocyanates in coatings. Horalek and Krejcar (46) followed the addition of primary amines to the double bond of acrylates. FTIR was used to study surface treatment of polypropylene by 02/N2 plasma (25), the ester derivatization of hydrocarboxylic and higher fatty acids (&), ketones interacting with poly(viny1chloride) (70),bound water on poly(viny1alcohol) ( 4 1 ) , and ozone oxidation in the adhesion of poly(dimethy1siloxane) films (74). Photodegradation mechanisms of methacrylate paint films were investigated by FTIR and ESR (42),and thermal behavior of methacrylic acid and tert-butylmethacrylate showed polyanhydride formation a t 250 OC (60). FTIR was used to study the degradation of protective coatings on mild steel (83),to measure autooxidation of thin films of butadiene on polished steel (28),to study chemical bonding and hydrothermal stability of an aminosilane on metal oxide surfaces (80), and to measure thin films on smooth metals (93). Sack et al. (92)investigated the copper-catalyzed thermal oxidation of low-density polyethylene using IR methods. IR was used to study the thermal oxidation and cross-linking of carboxyl terminated polybutadiene (56). The thermal degradation of polyether-urethane was followed by IR, GLC, and GC MS techniques (36). IR and UV spectroscopy were use to study the surface degradation of wood by ultraviolet light (44) and light aging of thermoplastic polyurethane elastomers (33). Attenuated total reflectance IR of solution cast films was used to investigate molecular structure and Tg of surface layers of polystyrene (106) and poly(dimethylsi1oxane) content in the surface layer of polyurethane (50). IR methods showed polymer compatibilization through hydrogen bonding in a styrene copolymer containing fluorinated tertiary alcohol groups (87). Intumescence fire-retardant polymers were investigated by IR and NMR to identify mechanisms (12). IR and ESCA techniques found utility for studying plasma-
!
d
34R * ANALYTICAL CHEMISTRY, VOL. 59, NO. 12, JUNE 15, 1987
polymerized hexamethyldisiloxane (98). Several quantitative applications were reported by use of IR methods, such as determination of hydroxyl groups in prepolymers (63),thickness of plastic films (43),analysis of paraffin wax oxidates (81),monomer content of acrylamide polymers (58), average molecular mass and degree of condensation in nonylphenol/ethylene oxide condensates (26), analytical control of a mixture of solvents for anticementation paints (102),and silanol in silicones (38). The importance of accurate IR band intensities and methods of measurement was discussed by Kettle (54). IR and GC techniques helped describe the protection and renovation of concrete with emulsion paints (27). Other uses of FTIR included the catalytic activity of propylene oxide on TiOz (31),the formation of polymeric coatings by anodic electrodeposition ( I ) , ATR of powdered amorphous polymers (6),E-glass/ [N-(2-aminoethyl)-3-aminopropyl] trimethoxysilane surface chemistr (77),surface layer and absorbance between polystyrene andlpolyurethane films (84),and spectral features of alkali and zinc salts of an ethylene/methacrylic acid copolymer (11). IR spectroscopy was used to characterize goethite (71) and pyridine adsorption onto goethite (72),investigate acid/ base properties of alumina/magnesia mixed oxides (62),examine carbon black (91),phthalocyanine ring systems (16),and bifunctional initiators (95),and to study absorption at the solid liquid interface (104). FTIR and NMR studies of blends o poly(viny1 chloride) and poly(viny1 bromide) with polyesters were reported (18). A comparison of ATR vs. photoacoustic sampling for surface analysis was done by Gardella et al. (32)with ATR providing more sensitivity. Golden and Saperstein (35) compared reflection-absorption spectroscopy of surface species. Fowkes et al. (30) used IR spectral shifts to quantify acid base complexes of polymers. F IR techniques were used to identify band intensities of liquids (8, 9 ) . Infrared emission measurements were made on thin polymer films (40). Another IR study of polymers, paper, bones, etc. was accomplished by photothermal beam deflection spectroscopy (64). A special device to eliminate specular reflectance from diffuse reflectance FTIR spectra was reported (68). Near-infrared quantitative spectroscopic techniques were reported for the hydroxyl content in polyols (17, loo),packaging laminates (21),ethylene/vinyl acetate copolymers (611, and triethylene tetramine/epoxy resin (51).
d
4
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Definite trends were noted in the NMR field, with emphasis on multinuclei techniques for characterizing polymer structure. Carbon-13,nitrogen-15, and fluorine-19 FT-NMR techniques were most popular for studying polymer-related phenomena. Boxall (11,12)surveyed modern techniques for paint testing and reaction studies, respectively, and included NMR in these reviews. Proton techniques were used to assign chemical shifts in dyads and triads in methyl acrylate/vinyl acetate copolymers (90) and methyl group motions in poly(methy1 methacrylate) (50,80) and to study styrene/methyl methacrylate copolymers (70) and tacticity in poly(tributy1tin methacrylate) and poly(tributy1tin methacry1ate)styrene copolymers (93). The characterization of poly(ethylene/trimethylene terephthalate) copolyesters ( 7 8 , the addition of diols to double bonds of unsaturated polyesters (78), the effect of total degree of substitution on molecular parameters of cellulose acetate (35), matrix polymerization of vinyl acetate in presence of moleculm sieves (8), and study of epoxide prepolymers (43, 44), poly2-vinylfuran and Diels-Alder reaction with maleic anhydride (61),and piperazine-derived polyamide-amines along macromolecular chains (86)were accomplished with proton NMR. The 300-MHz and 350-MHz proton NMR was utilized to investigate p-cresol-formaldehyde condensates and blocked polyurethane systems, respectively (76, 89). Newmark (71) used distortionless enhancement by polarization transfer (DEPT) NMR techniques to assess eight commercial polymers. The general applicability of this new multiphase technique is for assignment of carbon multiplicity in proton noise decoupled I3C NMR. Bauer, Dickie, and Koenig ( 4 , 5 )employed magic-angle 13C NMR to study cured and degraded acrylic copolymer/mel-
COATINGS
amine-formaldehyde coatings. High-resolution proton and 13C NMR methods were used in the analysis of the stereochemistry of poly(methy1 methacrylate) (34),the microstructure of glycidyl methacrylate/ alkyl acrylate copolymers (28) and glycidyl methacrylate/ tert-butyl acrylate copolymers (29), and the tacticity of poly(tri-n-butyltin methacrylate) (26). The degree of hydrolysis in polyacrylamides was followed by 13C NMR and elemental analysis (95). The structure elucidation of polyester binders for coatings was reported using proton and 13C NMR methods (51). Branched polyesters (54),polyesterification and isomerization of maleic anhydride and 1,6-hexanediol (2),cross-linking of unsaturated polyester/styrene-cured resins (73),and the copolymerization of styrene and maleic anhydride (47)were also investigated by proton and 13CNMR. Amino resins, such as polyurethane oligomers to determine allophanate and biuret groups (821,melamineformaldehyde (cross-linking mechanisms) (38),melamine/polyol reactions (62),and urea and acrolein synthesis and characterization (83), were characterized by 13C NMR techniques. 13C NMR was used to characterize vinyl and vinylidene copolymers (19),vinyl alcohol/vinyl acetate (141, poly(viny1 acetates) (91),alkyl branching in ethylene/vinyl acetate copolymers (41),vinyl chloride vinyl acetate copolymers (811, partially hydrolyzed poly(vin alcohol) (15),and water-soluble cellulose acetate (67). Mo ified polydienes via 1,3-dipolar cycloaddition reactions were confirmed b 13C NMR (37). Epoxy/amine reactions were followed by and 15NNMR methods (42). Mechanisms and reaction kinetics were reported. Fleming (35) characterized diglycidyl ether of bisphenol A epoxy resins with 13C NMR. 3C NMR was also reported for investigating pol mer structure in chlorinated natural rubber (63),solid poly($methylsiloxane) gums, silicone resins, and incompatible resin/gum blends (72),polylactones (591, cellulose nitrates (741, cellulose ethers (79),furfuryl alcohol resins (curing) (22),and polymerization of N-vinylcarbazol (9). Several phenolic type resins were investigated by 13CNMR methods. Examples are the cocondensation between resole and amino resins (88), phenol-formaldehyde (58,64,66),and sulfonation of novolacs (32). Fluorine-19 NMR was employed to elucidate epoxy resin cure, concerning boron trifluoride monoethylamine and fluoroboric acid (85),polyvinyl fluoride (13),trifluoroethylene homopolymers (16),polyvinylidene fluoride (33),and fluorinated urethanes (48). Nitrogen-15 NMR spectroscopy was used to characterize urea-formaldehyde and melamineformaldehyde resins (31, 84). A few authors reported specific NMR quantitation techniques for polymers. Harris (45) elaborated on the quantitative aspects of high-resolution solid-state NMR. ASTM reported a standard method for the determination of primary hydrox 1 contents of polyether polyols for polyurethanes (1) using ??C and 19FNMR. Methods for determining hydroxyl groups in phenol-acetaldehyde oligomers (94)and in polyols (63) by NMR were also mentioned. End groups formed from free radical polymerization (6, 7) were quantified by NMR techniques. Kennedy et al. (57) described a simple NMR method for the quantitation of 0-acetate ester and pyruvic acid acetol content of polymeric xanthan gum. A mixture anal sis of fatty amines and their derivatives was analyzed by YC NMR (68). The method was'quick and accurate. Many special applications for NMR as related to coatings were published. Charlesby (18)reported on the cross-linking of polymers by NMR investigations. The relative mobility of polymer segments was studied by 13C NMR (87). Zaper and Koenig (92) applied high-resolution solid-state NMR spectroscopy to surface studies. Pulsed NMR measurements were made to determine the relative and absolute linseed oil content in wood (75). The effect of stabilizers on the photooxidation of polystyrene was reported by Choudhary et al. (21). Holton (49)reported magnetic resonance study of solvent interactions. Solvent polarity parameter values obtained were compatible with the theory. Solvation mechanisms in the radiation-induced polymerization of vinyl ethers was followed by 13C NMR (27). Monodisperse hydroxy-terminated oligomers of 1,4-butanediol and 2,4-toluene diisocyanate were characterized by proton and 13CNMR methods and infrared
6
%!
spectroscopy (36). The plasticization of poly(viny1 chloride)/dioctyl phthalate was investigated and reported by Gevert and Svanson (39) using NMR and DSC. The role of amines in the isomerization reaction of polycondensed maleic anhydride and di(ethy1ene glycol) was followed by proton NMR (52). Both NMR and ESR spectroscopy were used to investigate the effects of diluents on poly(viny1 acetate) dynamics (10). Microstructural changes concerning the solidstate photochemistry of polyethylene/carbon monoxide and photodegradation and photooxidation were monitored by 13C NMR (40). Kumar et al. (60) followed in situ dehydrooligomerization of castor oil fatty acid ester into esters of dimer and oligomer acids over molybdenum oxide on silica/alumina catalyst by proton NMR, IR, and MS. The solubility and diffusion of water in low-density polyethylene were studied by MacCall (69) and confirmed by NMR evidence. 13C measurements showed compatibility behavior of polystyrene/poly(vinyl methyl ether) blends (56). 13Ctechniques also allowed the prediction of microstructure of vinyl acetate/alkyl acrylate ester emulsion copolymers based on solubility parameters (53). Durairaj and Blum (30)characterized oligomeric micelles of sodium carboxylates by IR and 13C NMR spectroscopy. I3C NMR was also used to study nonionic surfactants in heptane solutions (microemulsions) (23). Investigations of the aspects of lipid peroxidation were done by NMR and ESR spectroscopy (3). NMR techniques have been reported for the determination of critical micelle concentration with polyoxyethylated surfactants (24, 25) surfactant materials (46), and monoalkyl phosphates (17,20).
SURFACE ANALYSIS Several surface analysis techniques were reviewed by Smith and Falla (43)for their usefulness in studying coatings. There were scanning electron microscopy/energy dispersion spectroscopy (SEM/EDS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS or ESCA), secondary ion mass spectrometry (SIMS), high-energy ion scattering spectroscopy (HEIS, or RBS),. and bombardment-induced light emission (BLE). The latter two were found unsuitable for coatings; AES and SIMS had limited utility. SEM/EDS and XPS are capable of providing a wealth of information regarding the nature of substrate and paint surfaces. Briggs and Seah (Editors) (9)published a book with XPS and AES the main subjects. The format of the book consists of general chapters on instrumentation, spectral interpretation, depth profiling, and quantification, followed by chapters on the use of these technologies in various fields, i.e., polymer technology and corrosion science. A book on photoelectron spectroscopy deals with the theory and experimental methods and describes analytical methods and use for studying surfaces and adsorbates (8). Avouris and Demuth (5)review the general picture of the varied applications of electron energy loss spectroscopy (EELS) in the study of clean and adsorbate-covered surfaces of solids. Valuable information about binding sites, surface phonons, chemical information, etc. is covered. Gardella (25) reviewed the application of SIMS, XPS, FTIR,and ion scattering to the study of polymer surfaces, Briggs (8)reviewed XPS for the same application, and Echlin (21) reviewed several techniques for the analysis of organic surfaces. Surface degradation processes involving polymers were investigated with ESCA (20) and XPS, AES, and SEM (12). Several surface techniques, including ESCA, XPS, SIMS, ISS, and SEM, were described by Romand (40) for physical/ chemical characterization of polymeric surfaces. Interfacial chemistry of stoved organic coatings on mild steel was analyzed by SEM (13). Coating failures were investigated by XPS (55). Photostability of photocured organic coatings were examined by ESCA and IR (28). The results indicate that oxidation occurs mainly in a thin surface layer. Nikolaeva and Khromov (36) used ESCA to show the effects of degreasing procedures and carbon contaminants on iron phosphate coatings. Another surface/adsorption study showed a study of silica, wollastonite, and clay powders coated with 5% by weight of tridecylamine (52). The data suggested a method for coating particle surfaces. The outdoor weathering (oxidization) of wood surfaces was studied by use of ESCA (27).The chemistry of wood structure was elucidated. The same technique was used to evaluate ANALYTICAL CHEMISTRY, VOL. 59, NO. 12, JUNE 15, 1987
35R
COATINGS
wood and cellulose surfaces modified with aqueous chromium trioxide treatment (56). Coordination of the chromium ion was suggested; no depth profiling was done. Kampf (30) obtained good correlation among ESR, ESCA, and IR when all were used to study degradation processes during the weathering of polymers. Polyesters stabilized with polymer-bound UV stabilizers were analyzed by ESCA and IR (46). The amount of stabilizer on the surface increased with accelerated aging. Clark and Munro (16) followed surface and bulk aspects of the natural and artificial photoaging of bisphenol A polycarbonate by ESCA and difference UV spectroscopy. Photooxidation, not photo-Fries rearrangement, was the predominant process in the surface regions for both types of exposure. ESCA was used to follow photooxidation changes in the surface chemistry of polystyrene (17,18, 33) and thallium-derivatized polycarbonate surfaces (49). The role of unsaturated groups in glow discharge polymerization (29), characterization of perfluoroalkylene-linked polyquinolines (191, conducting poly-yne and poly(metalyne) (31), quantitative determination of the surface composition of acrylate copolymer latex films (38),surface studies of precipitated polystyrene/ poly(methy1 methacrylate) diblock copolymers (44), and molecular rearrangement a t the surface of a cross-linked polymer system, Le., poly(propy1ene glycol)/poly(glycidoxypropylmethylsiloxane) (37), was reported. Bonding/adhesion phenomena were investigated at polymer metal interfacial surfaces (53,54), especially treated mild stee coated with epoxy coating, and at polyethylene/epoxy coating interfacial surfaces (15) using XPS techniques. XPS was used to investigate corrosion a t solid/liquid (electrode) interfaces (41), to determine of chromium species in passivation layers on tinplate (6), and to study corrosion resistance of chromated galvanized steel sheets (14). Corrosion research was also performed using AES for failure analysis (47), reaction in phosphate layers during corrosion (51), and corrosion resistance for epoxy/phenolic lacquer coated onto tinplate and electrolytic chromium-coated steel (24). A review of AES was completed by Thompson et al. (48), and the role of AES in long-range R&D was illustrated (50). AES was further emphasized by Somorjai and Bent (45) where bond geometries and bond energies were found. Another thorough report describing modern developments in coatings characterization and microanalysis involving electron and ion beam applications was described (34). Several standard methods relating to AES for surface analysis were published (1-4). The dating of manuscript inks was done with AES (35). Analysis of several diverse polymer surfaces by SIMS was reported (7,101.SIMS and ISS were employed in the analysis of thin organic layers on metal surfaces (39). Brown and Vickerman (11)described static SIMS, fast atom bombardment mass spectrometry (FABMS), and SIMS imaging in applied surface analysis. The authors predict application of these techniques to practical surface problems in areas of polymers, glasses, and catalyst technology. Secondary ion imaging techniques were applied to heterogeneous organic olymer films of polystyrene/poly(methyl methacrylate) {lends. Islands of PMMA were identified. Internal reflection spectroscopy (IRS) was applied in the quantitation of polymer surface composition (32). TEM techniques were applied to analyze adhesive and cohesive failures for crack propagation of polymer/metal bonds (26). Polymer penetration of the metal oxide layer and the aging behavior by a salt spray test were examined by EELS in the same publication. Photon correlation spectroscopy (PCS) and angular intensity light scattering (AILS) were used to analyze carboxylic acid copolymer latices (23). The hydrodynamic methods, i.e., PCS and sedimentation, show a maximum in diameter with pH, while the AILS resulta are pH independent. The diameter of a no-acid latex was found to be independent by both AILS and PCS.
i
ULTRAVIOLET-VISIBLE SPECTROSCOPY Gothe (9) reviewed the theoretical and practical aspects of UV curing systems and described how ultraviolet spectroscopy (UV) was used to investigate photochemistry, photosensitizing mechanisms, and photoinitiation for polymerization. In their publication, Kallendorf and Singleton (12) used UV to correlate between the properties of wet UV coatings and cured 36R
ANALYTICAL CHEMISTRY, VOL. 59, NO. 12, JUNE 15, 1987
films. The photodegradation of epoxy/acrylate UV-cured coatings was examined by UV and IR (2). Cross-linknetworks and oxygen uptake had marked effects on the weathering resistance of the films studied. UV analysis was applied to follow benzoyl peroxide initiated styrene polymerizations and copolymerizations (8), the photolysis of polyacrylic acid containing an aryl ketone chromophore (17), and the polymerization of poly(dimethylsi1oxanes) end-capped with methacrylate groups and then copolymerized with styrene (4). UV methods were reported for the quantitation of combined isocvanates in Dolvurethanes (3) and trielvcerides (1). Vhible spectiosiopy (VS) w& explainedv6y FairmA’(7)for use in color measurements regarding analytical vs. numerical integration in tristimulus calculations. Dulog (6) reported on the use of VS to measure adsorption of polymers on pigment surfaces, i.e., pigment wetting. VS was used to identify pigments in small paint samples (5),to assess the yellowing of white paints (15),and to identify organic pigments in paints (14). Analytical methods to quantify formaldehyde from resins (10, 13,16),primary amines in polymers (18),polyester resin curing (21),and inhibitor levels in acrylates and methacrylates (20) used VS techniques. A VS method was reported for measuring the hexavalent chromium of the pigment portion of liquid or powdered paint (11). An extraction/photometric analysis of leach solutions from antifouling paints was reported by Punger et al. (19).
X-RAY ANALYSIS Mann (8) reviewed the dynamics, structure, and function of interfacial regions and proposed the possibility for using synchrotron radiation for X-ray structure analysis. Reka et al. (12) used X-ray examination to study the internal stress in deformed paint coatings. Andermann and Fujiwana (2) proposed some fundamental aspects of surface film analysis with variable angle ultrasoft X-ray fluorescence spectrometry. Worthy (17) elaborated on this technique for obtaining nondestructive depth profiles of films of varying thickness, including ultrathin films. Potential applications include the study of weathering, corrosion, adhesion, and interfacial problems in multilayered systems. Kuang et al. (7) use energy-dispersive X-ray analysis for measuring polymer distribution in latex-treated paper. Small-angleX-ray scattering (SAXS)techniques were used to elucidate the structure of poly(triazineurethane)/butadiene block copolymers (3), perfluoroalkylalkanes (15), and organosiloxane copolymers (16)and identify phase separation in low molecular weight polymer mixtures (13) and heterogeneous structure in poly(tetramethy1ene glycol) induced by ionic end groups (14). Wide angle X-ray scattering (WAXS) was used to characterize properties of castor oil based polyurethanes (11)and ether/ester-amide copolymers (4) and chain conformation and packing in noncrystalline polymers (9). X-ray diffraction spectrometry (XDS) techniques were used in the analysis of titanium oxide pigments (1,6) and to decipher the thermal effects induced by grinding in dolomite (10).
X-ray fluorescence spectrometry (XFS) was used to determine the main admixtures and impurities in the production of titanium white (5).
SPECTROSCOPY-MISCELLANEOUS TECHNIQUES The most significant use of electron spin resonance spectroscopy (ESR) to coatings is its ability in predicting durability. Its use for accelerated weathering exposure testing for acrylic/melamine coatings was presented by Gerlock et al. (18, 19). It has been shown to be useful in determining degradation mechanisms of epoxy paint film (29) and photodegradation processes of alkyd and polyurethane coatings (47). Also, ESR methods were described to follow the curing mechanisms of amine-cured epoxy resins (46) and epoxyurethane resins/oligomers (15, 16), follow emulsion polymerizations (7) and vinyl polymerization in aqueous poly(ethylene glycol) (&), study flame retardant mechanisms (49), study interactions of stabilizers with ketones, peroxides, and phenols (36, 37), and define the photochemical behavior of
COATINGS
titanium dioxide piginents (6, 14, 48). Photoacoustic spectroscopy (PAS) was used in quantitative studies of solid samples, Le., PMMA films containing triphenylmethane dye (4),in accelerated corrosion testing (43), in adhesion and structural analyses of organic and metallic coatin s (25), in the accelerated degradation of poly(viny1 chlorifie) ( I ) , and in studying the natural weathering of polyethylene films (3). Analysis of iron-containing compounds by Mossbauer spectroscopy was summarized by Lipka et al. (35). This technique was reported in studies of corrosion films (31), aluminum sample (cans) composition and thickness (8), corrosion electrochemical research (13),rust formation during simulate atmospheric corrosion (34),and iron contamination during the processing of poly(viny1 chloride) suspensions (44). Small-angleneutron scattering spectrometry (SANS) found application for investigating cross-link distribution of polymer networks (5,28,42) and packing properties of concentrated polystyrene latex dispersions (10). Inelastic electron tunneling spectroscopy (IETS) was used to investigate the interaction of adhesives and adhesion promoters with metal oxides (11, 12) and silane coupling agents on aluminum oxide (51). Raman spectroscopy (RS) was used to characterize the passive f i i formed on weathering steels (32),follow poly(viny1 chloride) degradation (211, and investigate the homogeneity of epoxy-amine coatings (2). RS techniques were used to determine unsaturated terminal groups in polyether polyols (39), characterize urea-formaldehyde resins (30), and study P o pers during unidirectional deformation (stretching) (40) an in general polymer analysis (20). The nondestructive analysis of pigments by laser Raman was reported by Guineau
i
(24).
Dielectric spectroscopy (DS) measurements were utilized to follow the curing of shellac with epoxy resin (22, 23). Henry and Berteaud (27) re orted the diffusion of water in polyurethane films measure I f by microwave spectroscopy. Laser nephelometry analysis was used to investigate the kinetics of photopolymerization of multifunctional acrylates (17). The dependence of the rate of polymerization and of the induction period on various parameters was examined, specifically the source intensity, the concentration of monomer, and the concentration of dissolved oxygen. The quantitative evaluation of additives in plastics by neutron activation analysis was reported by Krassowski (33). Fluorescence spectroscopy (FS) was reported for studying the aging of paints and coatings (38),monitoring cure of epoxy resins (50),and identifying inhomogeneities in organic coatings using a dyeing technique (9). Minato et al. (41) described errors in spectrophotometry and colorimetry of fluorescent samples caused by polarization of the measuring system. Harwood (26) reported on luminescence properties, lightfastness, and spectroscopic properties of some anthraquinone dyes by using fluorescence and phosphorescence spectroscopy, and flash photolysis. Wolf et al. (52) described the utilitv of chemiluminescence of thermosetting resins. Their stidies monitored chemical/physical changes in an epoxy resin system to simulate an aircraft coating. Test coupons were exposed to accelerated aging conditions in which the temperature, humidity, and external tensile stress were varied over considerable range. Chemiluminescence intensity/temperature/ time profiles of all aged resin coupons were related to changes in the chemical and mechanical properties of the resin system.
MICROSCOPY Microscopy discussions will include optical microscopy (OM), transmission electron microscopy (TEM),and scanning electron microscopy (SEMI. In a thorough report, Cottrell, Patel, and Falla (14) described practical approaches to the analytical study of particulate contaminants; contaminants in paint films were highlighted. The authors emphasized OM and SEM energy dispersive spectroscopy techniques. Kollek (25)descri d OM photometry as a tool for adhesion investigations. Palenek (33) elaborated on the use of OM for forensic analysis and microchemistry of traces of paint. OM was described as an effective means to measure film thickness (28),investigate bitumen/polymer blends ( I O ) , ex-
&
,
amine small polystyrene latex particles using negative staining techniques (36),and characterize mineral salts from monuments (2). Small paint defects were analyzed by use of SEM/energy-dispersive X-ray, X-ray diffraction, and OM methods (8). Cinti et al. (13) made observations on the morphological structure of various antifouling paints using SEM. Others (24)adopted SEM and X-ray methods to investigate corrosion prevention of protective films. Polyurethane elastomers filled with clay, wollastonite, silica, talc, and calcium carbonate were compared to unfilled elastomer using SEM and mechanical testing (37). Clay and wollastonite were shown to be more compatible with the elastomer. Dorner (16)emphasized the important of TEM, SEM, and OM to analyze plastics. EM methods along with hydrodynamic chromatography, nephelometric and light scattering methods, photon correlation spectroscopy, laser Doppler anemometer, centrifugal methods, and electrical zone sensing devices were reviewed for their application to particle characterization to submicron dispersions and emulsions (20). A review by Balcerzyk et al. (5) described applications of SEM in studies of polymers; internal structure and surface morphology were elucidated. SEM was found useful for determining polymer/modifier compatibility (38), describing interpenetrating polymer networks (18,26) and studying blends (9). Adsorption and adhesion phenomena related to coatings were investigated by SEM techniques. The adsorption of dissolved organic material from estuarine water to metal surfaces was discovered to be a selective process (20). The adsorption of inhibitors from aqueous solution onto etched surfaces improved the durability of aluminum adhesive bonds (15). Surface pretreatment of zinc and subsequent adhesion to e oxy resins provided choice of plating conditions (22). Oxife morphology and adhesive bonding on titanium surfaces, especially water-immersed samples, gave information regarding bond strengths with epoxy resin (adhesive failure energy and crack velocity) (4). The adhesion of epoxy resins to metals having microfibrous topography was studied for bond strengths and surface fracture (23). Yellow iron oxide was precisely characterized using EM, X-ray, neutron, and electron diffraction, IR, and Mossbauer spectroscopy (41). Carbon black was carefully analyzed by EM, X-ray and electron diffraction, TGA, microcalorimetry, and adsorption methods for the effects of heat treatment on its physical properties (39). SEM was reported for the analysis of emulsions (32), emulsion coalescence (27,40) and emulsion coatings on paper (19). It was used to investigate into degradation mechanisms for masonry coating systems (31). SEM was important to study the corrosion products of galvanized reinforcements immersed in highly basic solutions (7). Calcium ions in solution were the controlling factor in the formation of a passivating layer of calcium hydroxyzincate. Electron microscope techniques were used to observe the structure of phenol-formaldehyde resins and to study their resistance to UV radiation (34), adhesive bonding based on polyvinylidine fluoride and poly(methy1 methacrylate) (II), morphology isoprene/ (isoprene-styrene)/styrene three-block copolymers (I), paint failures (42), and the presence and significance of primary particles in highly dispersed materials (17). The analysis of surfaces and thin films using incident beam of electrons, incident beam of ions, incident beam of photons, spark source mass spectrometry, and acoustic microscopy were monitored (21). Scanning laser acoustic microscopy (SCAM) was discussed and applications in the nondestructive evaluation of adhesive bonds were considered (3). Infrared microscopy was employed to study fatigue in polymers (30),and an electron microprobe was used in the microanalysis of plastics (6). Energy-dispersive X-ray fluorescence spectrometry was described as a versatile analytical tool for determining major and minor elements in paints (12). Coated paper was analyzed by use of ultraviolet fluorescence microscopy (35).
THERMAL ANALYSIS Review articles dealing with the use of thermal analysis for the characterization of polymeric materials (70, 77) and ANALYTICAL CHEMISTRY, VOL. 59, NO. 12, JUNE 15, 1987
37 R
COATINGS
coatings systems (34,63) continue. Several studies of special interest include the investigation of fusion-bonded epoxy powder coatings (511, the determination of composition in acrylamide/acrylate copolymers using thermogravimetric analysis (20) and the limitations of using an accelerating rate calorimeter in chemical hazard evaluation (19). The determination of glass transition temperatures (Tg) for polymers and coatings continues as a primary use for thermoanalytical techniques. This popularity has prompted the reexamination of the ASTM standard test for Tg (3). Also, in an effort to better understand how the Gibbs theory impacts glass transition temperature measurements, several new papers have been published (28,431. The effects of polymer composition on Tg continues to be a major area of study. This period has produced papers dealing with addition polymers containing acrylate esters (4), tetrafluoroethylene (49), vinyl chloride (7, 5 3 , and vinyl methyl ether (65). Condensation polymers containing poly(ethy1ene terephthalate) (46) were also studied in considerable detail, as was the effect of organic species (13, 62) and carbon dioxide (14) as plasticizing moieties in polymer systems. Another major use of thermoanalytical techniques is the measurement of polymerization and cure kinetics for polymer and coatings systems. In addition to several general papers on this topic (9, 23, 64, 71), the polymerizations of acrylate esters (40,47),methacrylic acid containing polymers ( I ) , and unsaturated polyester resins (37)were studied in some detail. Special studies reported during this period include the examination of irradiated poly(tetrafluoroethy1ene) films (5)and the compatibility of mixtures of homopolymers and homopolymer/ block copolymer blends (50). The curing mechanisms prevalent in an acrylic/melaminethermoeetting polymer system were the subject of a recent translation of a Japanese paper (35). Further development of high solids coatings has led to the greater use of blocked isocyanates in new generation systems. Kinetic studies of unblocking temperatures continue to appear in the literature (11,45,54,59) and should lead to a greater understanding of these coatings systems. The more traditional examination of epoxy resin cure kinetics continues to be extensively studied. During this review period, publications have dealt with the use of diamines (24, 33, 73), dicyandiamide (25,531, polyamides (39), phthalic anhydride (69), and diphenyliodonium salts (29) as curing agents for epoxy resins. In addition, the heterogeneity of network structures developed with epoxy polymers was examined by using differential scanning calorimetry (41, 68). Finally, the cure behavior of phenol-formaldehyde resoles (18), phenolic and resorcinolic resins (17,60,61) and ring-opening polymerizations of phenyl-substituted vinyl cyclopropanes (15) have been studied. The third major use of thermoanalytical techniques involves the determination of thermal stability within polymer and coatings systems. Several general papers on this topic have appeared during this period (26,32), along with specific studies related to acrylic (10, 16,49, 74), allylic (67),poly(propylene1 (27), polyurethanes (6,22,48,52), poly(methylsi1oxane) (56), and polyester (36,38,66, 72) binder systems. Many special studies have also been reported which are of interest to coatings scientists. Among the more interesting were the chemorheQlogy of a vinyl ester polymer (30),phase transitions in silicone polymers (58),characterization of plastics from wood (58, 75), the effects of water on Oriental lacquers (42) and novolac resins (761, and the presence of domains in various blends and mixtures (2, 8, 12,21, 31).
ENVIRONMENTAL AND INDUSTRIAL HYGIENE Airborne isocyanates in polyurethane spray painting were determined by using filters impregnated with N-4-nitrobenzyl-N-n-propylamine and analyzed by HPLC (25). Glinsmann and Rosenthal (4) evaluated an aerosol photometer .for monitoring welding fume levels in shipyards. Several organic and inorganic materials were measured in air: benzene (11, 15), formaldehyde (1, 3, 12, 22, 23), chlorinated hydrocarbon solvent (18),dioctyl phthalates (21), glycol ether and glycol ether acetate vapors (14,16),isocyanate (2,24),styrene (13,20), vinyl chloride (17),respirable and total dust (9),cadmium and inorganic compounds of cadmium (5, 6),cobalt and inorganic compounds of cobalt (19), chromium and inorganic compounds of chromium (7,8),lead (26),and 38R
ANALYTICAL CHEMISTRY, VOL. 59, NO. 12, JUNE 15, 1987
mercury (IO),and identification and counting of asbestos fibers (27).
MISCELLANEOUS TECHNIQUES Several papers were published during this period dealing with the general use of electrochemical methods for the characterization of paint films (5,9,10,34). A high-voltage dc pulse method was found to be useful for monitoring the resistance of paint films in contact with electrolyte solutions (2). Special emphasis was given to the electrochemical characterization of photocured coatings (3, 7) where the authors indicated the usefulness of several electrochemical techniques. Marine coatings continue to be examined in a study describing an apparatus for accelerated testing in natural and synthetic seawater (38). General papers relating to the use of resistance (13,22,31) and Faradaic distortion (27) were also published. Corrosion testing continued as a fruitful avenue of research, with general papers dealing with under rusting of organic coatings (14,28), methods for predicting coating durability (26,41) and the use of alternating (21,351 and direct current (30,40) techniques to assess anticorrosion coatings. Procedures to investigate the corrosion resistance of lacquered tinplate (32) and iron (11) have also appeared. Impedance measurements have also been reported as a method to rank the effects of surface treatment on corrosion resistance for marine (36) and other coating types (4, 25). A computer program was reported which simplifies the analysis of data from electrochemical impedance measurements (19), allowing this information to be used more readily. Specific impedance studies were also published dealing with the evaluation of primers (15), epoxy powder coatings (8), cathodic electrodepositioncoatings on steel (23) and the effects of acid media on epoxy-coated mild steel (17). During this period several interesting general studies were reported. The standard ASTM test for refractive index was reviewed (6) as was the use of refractive index measurements to evaluate monomer conversion to polymer ( I ) , the composition of urethane oligomers (29,37), and the determination of small differences in copolymer composition (20). Adhesion testing was also studied in some detail (18, 33), as was the combustability of paints and wallpaper (39) and the measurement of cross-link density for UV-cured materials using evaporative rate analysis (24). Finally, polymer networks were characterized using vapor pressure measurements (16) in good agreement with mechanical property measurements, and the particle size of dioctyl phthalate aerosols was examined by use of an electrostatic classifier (12).
MISCELLANEOUS MEASUREMENTS (INCLUDING PHYSICAL TESTS) The physical testing methodology discussed in this section includes methods for measuring viscosity and viscoelastic properties of coatings and polymers, hardness determination, the examination of coating film thickness, impact-resistance tests, solubility parameters, etc. Test methods for measuring the degree of cure in radiation curable coatings were presented during this period (13),as were procedures for the evaluation of coating suitability in harsh environments (17,57, 70). A rapid flash/no flash test was proposed for paints and varnishes (22) as was a series of equations to predict the flash point of solvent mixtures (62). Several studies relating to better understanding the current procedures for corrosion resistance were reported (21,37,50), as were papers on the absorption of polymers on ferric oxide (48), the calculation of physical properties (melting points, refractive indices, etc.) of polymers (46), and the prediction of polymer solubility in solvent mixtures (38). Paint film thickness received some renewed attention, with a critical evaluation of the techniques available for this measurement (2, 7,8). Other unique measurements reported included the evaluation of paint film light resistance (18),failure analysis on paint films (IO),the examination of paint drying (65) and mud cracking (23), as well as the prediction of roll-spatter from latex paints (45). An extensive monograph appeared that reviewed the fundamentals of powder surface properties (44) along with publications on the use of a disk centrifuge (19) and oil absorption (36) to evaluate pigment surface area. Also reported was work related to the calculation of interfacial
COATINGS
tension from sessile drops (20),a radiotracer method to evaluate solvent evaporation from paint films (32),and methods to determine the hardness of coatings and plastics (14,47).The adhesion of coatings to a wide variety of substrates remains a major concern to the coatings scientist. To aid in the evaluation of this critical parameter, the direct pull-off test was examined in great detail (33,64). The standard tape adhesion test was also reexamined (4)as was the role of adhesion in corrosion protection (9,27,29,59). Other factors related to adhesion were studied in publications examining impact resistance (69),the development of bond strength in adhesive joints (58,60),and the use of holographic interference to detect adhesion failure a t an early stage (34). Viscoelastic properties of coatings were studied in papers dealing with a computational method to determine shear rate-dependent viscosity (421,industrial coating thixotropy (51,67), and molecular weight averages from intrinsic viscosity data (16,17). The specific viscosity behavior of different polymer types was reported in publications dealing with styrene oligomers (521,polyacrylates (401,polyisobutylenes (681,alkyd resins (611,and phenolics (39). A general evaluation of physical and mechanical property measurements, as related to paint films, was recently published (71).Dynamic mechanical measurements on paint fiis and polymers continued during this period, with papers on dielectric relaxation techniques (28,66)and torsional braid Among the specific systems examined analysis (25,38,43,72). in this manner were acrylic/melamine polymers far high solids coatings (49),elastomeric adhesives (15),acrylate-containing nonionic microemulsions (24, polymer networks (26,31,41), 301,epoxy/acrylate prepolymers during W curing (53),filled polyester urethane (121,and polysiloxanes (35). Stresses developed during film formation from latex (54-56)and epoxy coatings (63)were also studied in some detail. Finally, a procedure to predict mechanical wear in traffic paints (I)and standard procedures to evaluate coating abrasion resistance were reevaluated.
ACKNOWLEDGMENT The authors wish to express their gratitude to DeSoto, Inc., for allowing publication of this review and to the staff of DeSoto’s Information Center for their assistance during the preparation of this review. Special appreciation is given to Ellen Postal for her help in typing the manuscript. LITERATURE CITED
INTRODUCTION (1) American Society for Testing 8 Materials. ASTM D 1310-84,7985 Annual Book of ASTM Standards, 06.03,169-78. (2) American Society for Testing & Materials. ASTM D 3934-84,1985 Annual Book of ASTM Standards. 06.03,541-4. (3) American Society for Testing & Materials. ASTM D 3941-84,7985 Annual Book of ASTM Standards 06.03* 545-8. (4) Anderson, D. G.; Vandeberg, J. T. Anal. Chem. 1985, 57, R15-1329. (5) Anon. Mefhods of Analysis for the Canning Industry; Lange, H. J., Ed.; Food Trade Press 1983;pp 213-74. (6) Anon. Palnt Resin 1984, 54(3), 12 (8pp). (7) Barker, P. The Use of Computers In Analytlcal Chemlsby; Pergamon: Oxford, 1983;xvi 472 pp. (8) Bennynck, P. J. Double Llalson 1985, 32(35415,IV-VII), 18-21. (9) Bsranek, E. Farbe Lack 1985, 97(4), 289-93. (10) Chainey, M.; Wllkinson, M. C.; Hearn, J. Makromol. Chem., Macromol. Chem. Phys. 1985, Suppi. 70177, 435-46. (11) Comlte Superleur Normalisation Repubiique Bulgarle. Bds 13409,1983: BSI WorMwMe Llst Stand. lB84(Sept). 45. (12)Crompton, T. R. Pergamon Serles in Analytical Chemistry 8 ; Pergamon: Oxford, 1984;ix 4- 445 pp. (13) Cunningham, G. P.; Kamarchik, P. frog. Org. Coat. 1984, 72(4), 369-91. (14) Demorest, R. L. T A f f I Polymers, Laminations Coatlngs Conf., Boston, 1984, 333-9. (15) Deutsches Institut Fuer Norrnung. DIN 53 186. 1984: BSI Worldwide List Stand. lB84(Sept), 45. (16) Nakamura. K. J . Jpn. SOC. Coi. Mat. 1984, 57(9). 499-510. (17) Raaschou Nielsen, H. K. J. Coatings Tech. 1984, 56(718),21-32. (18) Rowan, N. T. Polym. faint Col. J. 1984, 775(4140),227. (19) Vincentz, Curt R. I n The Mend’bodc of fainting Fkms; Thomer, K. W.. Zemeck. K.. Eds.; Vetlag: Hannover, 1984;XI 502 pp. (20) Mad Pro Normellsacl (Czechoslovakia). CSN 67 3015, 1983: BSI W&Me Llst Stand. fB84(June), 43. (21) Wall, C. D. PhD Thesis, Unhrerslty of London, Imperial College of Science & Technology 1978,276 pp.
+
+
CHEMICAL AND ELECTROCHEMICAL
(1) Amerlcan Society for Testlng & Materlais. ASTM D 1133-83,7984 AnnualBook of ASTM Standards, 06.03,150-2.
(2) American Soclety for Testing & Materials. ASTM D 1353-83,7984 Annual Book of ASTM Standards 06.03,177-8. (3) American Society for Testing & Materlais. ASTM D 1364-83,7984 Annual Book of ASTM Standards, 06.03,164-8. (4) American Society for Testing 8 Materials. ASTM D 1490-82,7984 AnnualBodc of ASTMSta&&, 15.06,112-3. ( 5 ) American Society for Testing & Materials. ASTM D 1639-83,7984 Annual Book of ASTM Standards, 06 .O 7 , 279-80. (6) American Society for Testlng & Materials. ASTM D 2121-84,7985 Annual Book of ASTM Standards, 08.03,703-6. (7) American Society for Testing & Materials. ASTM D 2832-83,7984 Annual Book of ASTM Standards, 06.07, 545-7. (8) American Society for Testing & Materials. ASTM D 3621-84,7985 Annual Book of ASTM Standards, 06.03,509-10. (9) American Society for Testing & Materlals. ASTM D 3723-84,7985 Annual Book of ASTM Standards. 06.07,765-7. (10) American Society for Testlng & Materlais. ASTM D 4727-83,7985 AnnualBook of ASTM Standards, 08.03,553-61. (11) American Society for Testing 8 Materials. ASTM D 4370-84,7985 Annual Book of ASTM Standards, 06.07,1019-22. (12) American Society for Testing & Materials. ASTM D 4415-84,7985 Annual Book of ASTM Standards, 06.03,580-2. (13) Association Francaise de Normalisation. NFT 30-225,1983 BSI Worldwide List Stand. lW4(June), 44. (14) Athey. R. D., Jr. Metal Fin. 1985, 83(6), 71. (15) Athey, R. D., Jr. MetalFln. 1985, 83(8),61 (2 pp). (16) Azzerri, N.; et ai. Materials Chem. 1982, 7(2),221-40. (17) Bogosiovskaya, T. N.; Chemousova, N. I.; Bogoslovskii, V. V. Int. f o lym. Sci. Tech. 1984, 77(5), T117-8. (16) British Standards Institution. BS 684: Section 2.72: 1984;3 pp. (19) British Standards Institution. BS 3900: Part A70 1985, 8 pp (IS0 3233). (20) Carey, M. A.; Weiions, S. L.; Eider, D. K. J. Cell. flast. 1984, 20(1), 42-8. (21) Chatterjee, S. K.; Katyai, A. J. folym. Sci., folym. Chem. lB85, 23(4), 1009-16. (22) Chlu, J.; Fischer, S. G.; Robson, D. E. Thermochim. Acta 1985, 84, 83-7. (23) Deutsches Institut Fuer Normung. DIN IS0 787 13, 1984: BSI Worldwide List Stand. 1984(Aug), 45. (24) Donners. W. A. B.; Peeters, L. G.; Pons, D. A.; Abei, A. Makromol. Chem., Macromol. Chem. fhys. 1985, Suppi. 70177, 297-303. (25) Doubravska, D.; Vondruskova, E. flasty Kaucuk 1984, 27(10),300-3. (26) Edwards, S. J.; Allen, M. Analyst 1984, 709(5),671-2. (27) Ente Nazionab Italian0 de Unificazione. UNI 8561,1983: BSI WorMwMe List Stand. 1984(0ct). 36. (28) Environmental Protection Agency. Code of federal Regulations 1984. 40 Part 60,Appendix A. Method 24, 634-5. (29) Environmental Protection Agency. Code of Federal Regulations 1984, 40 Part 60,Appendix A, Method 24A,635-6. (30) Environmental Protection Agency. Code of Federal Regulatlons 1984, 40 Part 60,Appendix A, Method 258, 659-60. (31) Fischer. J. P.; Lohr, 0. Proc. Xth Int. Conf. in Organic Coatlngs Sclence & Technology, Athens 1984, 21-36. (32) Giockner, 0.; Aibrecht, V.; Francuskiewicz, F.; Ilchmann, D. Angew. Makromol. Chem. 1985, 730,41-54. (33)Hart, G.; Townsend, H. D. R o c . 2nd Automotive Corrosion Conf ., Michigan 1983, 89-98. (34) Hernandez, L.; Procopio, J. R.; Pinilla, J.-M. Analyst 1984, 709(6), 765-7. (35) Isai, R. R.; Rocca, M.; Perez, R. H. CIDEfINT Anales 1984, 35-44. (36) Ivanov, V. N.; Chapianova, A. M. Zavod. Lab. 1983,49(6),5-6. (37) Jordan, J.; Stahi, J. W. Abstracts of Papers; 187th ACS Meeting, St. Louis, 1984;Div. of Anal. Chem. Abs 69. (38) Jura, W. H. J. folym. Scl., f d y m . Lett. 1984, 22(9),501-5. (39) Kelly, T. A.; Christian, G. D. Analyst 1984, 709(4),453-6. (40) Koi’Tsov, Yu I.; Molseev, Yu V.; Bershova, N. V.; Timerova, N. D. Int. Polym. Sci. Tech. 1984, 77(7),Tl70-1. (41) Lloyd, J. B. F. Anal. Chem. 1984, 56(11), 1907-12. (42) Locsei. V. Rev. Roumaine Chim. 1984, 29(5),437-9. (43) Maurice, A. M. J. Appl. folym. Sci. 1985,30(2),473-65. (44) McLean. J. D.; Van Effen, R. M.; Holland, J. F.; Olinger, R. Abstracts of Papers, 186th ACS Meeting, Washington 1983,Div. of Anal. Chem., Abs 73. (45) Prakash, R.; Shukla, I. C. J . Col. SOC. 1983, 22(4),13-5. (46) Reparticao de Normaiizacao (Portugal). NP 2054, 1983: BSI WorldwMe Llst Stand. 1984(Sept). 46. (47) Reparticao de Normalizacao (Portugal). NP 2056, 1983: BSI Worldwide Llst Stand. 1984(Sept). 46. (48) Reparticao de Normaiizacao (Portugal). NP 2057, 1983: BSI WorldwMe List Stand. 1984(Sept). 46. (49) Sakamoto, K.; Yoshioka, M.; Shibamiya, F. J . Jpn. SOC. Coi. Mat. 1985, 58(3), 121-8. (50) Saivago, G. Pitture Vernici 1984, 60(7),66-74. #
(51) Schmitz, F. P.; Windeln, J.; Rossbach, V. Makromoi. Chem., Macromol. Chem. fhys. 1985, 786(3),501-11. (52) Subrahanian, R. V.; Somasekharan, K. N.; Johns, W. E. Holzforschung 1983, 37(3), 117-20. (53) Tamai, H.; Iida, A.; Suzawa, T. Colloid. folym. Sci. 1984, 262(1),
77-82. (54) Thornton, J. I.; et ai. J. Forensic Sci. 1983, 38(4). 1004-7. (55) Tkacheva, L. A. Russian Patent 1019331,3 pp. (56) Urad Pro Normalisaci (Czechoslovakia). CSN 67 3031, 1983: BSI WorMwMe List Stand. 1984(June), 43. ANALYTICAL CHEMISTRY, VOL. 59, NO. 12, JUNE
15, 1987 39R
COATINGS
(57) Verma, K. K.; Tyagi. P. Anal. Chem. 1084, 56(12),2157-60. (58) Vinogradova, N. I.; KorabePNlkova, T. I . Lakokras. Mat. 1984, No. 6,
29-3 1. (59) Vlasova, A. G.; Medvedeva. L. N. Lakokras. Mat. 1085, No. 3,44-5. (60) Vyskocil, R.; Tvrda, L. Chem. Rum. 1984, 34(2),89. (61) Wang, C. N.; Metcalfe, L. D. J. Am. Oil Chem. SOC. 1985, 62(3), 558-60. (62)Wray, H. A. J. Coatings Tech. 1984, 56(717),37-43. (63) Yaroshevskaya. T. M.; Zhukovskaya, L. N.; Birchanskaya, G. 8. Zh. Anal. Khim. 1984, 39(4),746-8. GAS CHROMATOGRAPHY
(1) Achar, B. N.; Fohlen, G. M.; Hsu, M. S.; Parker, J. A. J. Polym. Sci., Polym. Chem. 1084, 22(6), 1471-9. (2) Alder, J. F.; Hildebrand, E. A.; Sykes, J. A. Analyst 1085, 110(7), 769-73. (3) Alessi, P.; Orlandinl, M.; Torriano, G.; Voipe, S. R o c . X V I I FATIPEC Congress, Lugano. Switzerland 1984, 3,365-84. (4) American Society for Testing & Materials. ASTM D 3257-83,1984 Annual Book of ASTM Standards, 06.03,451-6. ( 5 ) American Soclety for Testing 8 Materials. ASTM D 3362-84,1985 Annual Book of ASTM Standad, 06.03,477-80. (6) Amerlcan Society for Testing 8, Materials. ASTM D 3798-83,7984 Annual Book of ASTM Standards, 06.03,817-21. (7) American Society for Testing & Materials. ASTM D 4275-83,1985 Annual Book of ASTM Standards, 08.03.562-5. ( 8 ) Amerlcan Society for Testing & Materials. ASTM D 4367-84,1985 Annual Book of ASTM Standards, 06.03,573-9. (9) Amerlcan Soclety for Testing 8. Materials. ASTM D 4443-84,1985 Annual Book of ASTM Standards, 08.03, 640-4. (10) Anon. Ind. Hyg. News Rept. 1984, 27(7), I. (11) Attygaile, A. B.; Morgan, E. D. Anal. Chem. 1084, 56(8),1530-3. (12) Bahr, U.: Luderwald, I.; Muller, R.; Schulten, H A . Angew. Makromol. Chem. 1984, 120,163-75. (13)Ballistreri, A.; Garozzo, D.; Montaudo, G. Macromolecules 1984, 17(7), 1312-5. (14) Balya, D. R.; Danchik, R. S. Am. Ind. Hyg. Assoc. J . 1984, 45(4), 260-8. (15) Blanchard, R. D.; Hardy, J. K. Anal. Chem. 1984, 56(9),1621-4. (16) Bohov, P.; Balasz, V.; Hrivnak, J. J. Chromatogr. 1084, 286,247-52. (17) Boneva, S.; Kostov, S. Him. Ind. 1984, No. 6,256-8. (18) British Standards Institution. BS 6455: 1084, 6 pp. (19) Chekhuta, 0.M.;Zhukovskaya, L. N. Zavod. Lab. 1984, 50(1),20-1. (20) Chekhuta, 0.M.; Zhukovskaya, L. N.; Pakter. M. F. Int. Polym. Sci. Tech. 1984, 77(9),T/79-80. (21) Chelmus, L.; Craciun, C.; Ciuca, G. Rev. Chim. 1984, 35(3),244-8. (22) Dave, G. R.; Patel, R. M.; Patel. R. J. Fetfe Seifen Anstrich. 1085, 87(3),1 1 1-2. (23) Despotovic, M. B.; Magud, A. Polimeri 1084, No. 112, 17-9. (24) Dhal, P. K.; Babu, G. N. Polymer 1085, 26(5),747-50. (25) Dimov. N.; Mlllna, R. Chromatographh 1983, 17(7),375-8. (26) Dravnieks, A. ASTM Data Series DS61, ASTM PCN 05-061000-36, Philadelphia, 1985,354 pp. (27) Eckschlager, K.; Stuchlik, J.; Prchiik, J.; Vecernikova, E. Chem. Lisfy 1984, 78(6),595-603. (28) Fales. N. J.; Stover, L. C.; Lamm, J. D. Polym. Plast. Techno/. Engn. 1983.21(2).118-28. (29) Foii. S.t et al. Polym. Prepr. 1984, 25(1),83. (30) Frlsina. G.; Sevini, F. J. Chromatogr. 1984. 287(2),323-8. (31) Gensic, J. L.; Szuhaj, B. F.; Endres, J. G. J. Am. OilChem. Soc. 1084, 61(7),1246-9. (32) Gilbert, J.; et al. Eur. Polym. J. 1085, 21(6),555-9. (33) Grassie, N.; Beattie, S. R. Polym. Deg. Stabil. 1984. 7(4),231-50. (34)Guyot, A.; Guillot, J.; Graillat, C.; Llauro, M. F. J. Macromol. Sci. 1984, A21 (6/7), 683-99. (35) Haken, J. K.; Rohanna, M. A. J. Chromatogr. 1084, 298(2),263-71. (36) Herres, W.; Folster, U. Farbe Lack 1085. 91(1),6-11. (37) Jones, S. T. Analyst 1984, 709(7),623-8. (38) Keough, T.; Mihelich, E. D.; Eickhoff, D. J. Anal. Chem. 1984, 56(11), 1649-52. (39) Kollek, H. Int. Adhesion Conf ., Nottingham 1084, 3.1-2. (40)Koning, P.; Ward, T. C.; Alien, R. D.; McGrath. J. E. ACS, Polym. Prepr. 1985, 26(1),189-90. (41) Lorbeer, E.; Traitier, H.; Kratzi, K. R o c . TAPPI Research & Development Conf., Appleton, WI, 1984, 169-71. (42) Marsili, R. T. J. Chromatogr. Sc!. 1084, 22(2).61-7. (43)McCailey, D. V.; Thomas, C. W.; Leveson, L. L. Chromtogfaphia 1984, 18(6),309-12. (44) McFadden, J.; Scheuing, D. R . J. Chromatogr. Sci. 1084, 22(7). 310-2. (45) Menzies, K. T.; Fasano, R. E. RepOrt€PA-600/7-82-063, 1082, 96 pp, (46) Molier, B.; Sandner, B. Plaste Kaufschuk 1084, 31(5),189-91. (47) Novrocik. J. Plasfy Kaucuk 1983, 20(7), 204-6. (48)Ohtani, H.; Asai, T.; Tsuge, S. Macromolecules 1985, fS(6).1148-52. (49)Papirer, E.; Schuitz, J.; Turchi. C. €or. Polym. J. 1984, 20(12),1155-8. (50) Riley, T. L.; et al. Anal. Chem. 1984, 56(12),2145-7. (51)
Rossbach, V.; Windeln, J.; Schmitz, F. P. J. Polym. Sci.. Polym. Chem. 1985, 26(3), 1819-32. (52) Roth, M.; Novak, J. Chem. Lisfy 1984, 78(2),113-33. (53) Royal Society of Chemistry Analytical Methods Committee. Analyst 1984, 109(10), 1343-60. (54) Rusterholz, W. E. Am. Inkmaker 1084, 62(8),18 (8 pp). (55) Schirmer, R. E.; Pahl. T. R.; Phelps, D. W. A m . Ind. Hyg. Assoc. J. 1984, 45(2),95-8. (56) Seiffarth, J.; Soif. I.; Huhn, G.; Hoffmann, W. Plaste Kautschuk 1984, 31(10). 371-4.
40R
ANALYTICAL CHEMISTRY, VOL. 59, NO. 12, JUNE 15, 1987
(57)Shafizadeh, F. Chemlstty of Solid Wood; Rowell, R. M., Ed.; American Chemical Society. 1984;489-529. (58) SMlql, S. F.; et al. J. Am. Oil Chem. SOC. 1084, 67(4), 798-800. (59)Slow, K. S.; Goh, S. H.; Yap, K. S. ACS, Div. PMSE, Papers 1984, 57, 532-6. (60) Sitaramam, B. S.;Krishnamurti, N.; Chatterjee, P. C.; Sivasamban, M. A. Fette Seifen Ansfrlch 1984, 88(4), 151-8. (61) Smith, S. R.; et al. J. Adhes. 1085, 18(3), 157-66. (62) Sorokin, M. F.; Kochnova, 2. A.; Petrova, L. P.; Myagkova, N. K. Lakokras. Mat. 1085, No. 2,20-5. (63) Stepanova, M. I.; Karpova, N. M.; Shaposhnikov, Yu. K. Lakokras. Mat. 1085, NO. 2, 67-8. (64) Stoev, G.; Alaminov, Kh.; Borisov, G. Khim. Ind. 1984, 56(6),267; Anal. Abstr. 1985, 47(4),Abs 4C58. (65) Tong, G.2.; et al. Paint Coatings Ind. 1985, No. 4,43-9. (66) Uma Devi Y.; ZaMI, H. R.; Saiprakash, P. K. Fetfe Seifen Anstrich. 1984, 86(2).74-6. (67)Wttier, P.; Advielb, P. Bull. Liaison Lab. Fonts Chassees 1984, No. 131, 199-1 5. (66) Woollins, A.; Cullen, W. R. Analyst 1084, 109(12),1527-9. (69) Wyatt, D. M. Am. Lab. 1083(April), 66 (5 pp). (70) Yamaguchi, S.; Yokoyama, S. Bunsekl Kagaku 1084, 33(3),153-8. (71) Yasuhara, A.; et al. Chemosphere 1984, 73(3),469-82. GEL PERMEATION CHROMATOGRAPHY (1) Abe, Y.; Sekiguchi, T.; Misono, T. J. Polym. Sci., Polym. Chem. 1984,
22(3),761-7. (2)Amerlcan Society for Testing 8 Materials ASTM D 3593-80,1985 AnnualBook of ASTM Standards, 06.03,169-87. (3) American Soclety for Testing & Materials. ASTM D 4001-81,1985 AnnualBook ofASTM Standards, 08.03,411-24. (4)Anzur, I.; Osredkar, U.; Ukmar, I.; Vizovisek, I.Makromol. Chem., Macromol. Chem. Phys. 1985, Suppl. 10/11, 311-7. ( 5 ) b i n , D. R.; Wagner, J. D. Polymer 1984, 25(3),403-4. (8)Balewski, A.; Leslak, T.; Ciemniak, G. Angew. Makromol. Chem. 1985, 131, 1-14. (7) Bauer, P.; Richter, M. Inf. Chlm. 1983, No. 242, 153-6. (8) Bogunjdci, J. S. T. PhD Thesis, Univ. of Loughborough, 1981, 273 pp. (9) Bouwma, J.; Dletz, R.; Maisey, L. J.; Wrlght, B. Europ. Polym. J. 1984, 20(5),471-4.
(IO) Braun, D.; Rltzert. H.J. Angew. Makromol. Chem. 1684, 125, 1-8. (11) Braun, D.; Rltzert, H.J. Angew. Makromoi. Chem. 1984, 125, 9-26. (12) Chee, K. K. Polymer 1085, 26(4),581-90. (13) Chen, S.-A.; Hu, H.4. J. Polym. Scl., Polym. Chem. 1984, 27(12), 3373-80. (14)Das, P. K.; et al. Polym. Prepr. 1084, 25(1),185-6. (15) Douglas, W. E.; Ghotra, J. S.; Ho, D.; Prithcard. G. Brit. Polym. J. 1984, 16(3), 139-47. (16) Ellis, R. A. Pig. Resin Tech. 1084, 73(11),4-6. (17) Eiiis, R. A. Pig. Resin Tech. 1984, 13(12),4 (4 pp). (18) Ellis, R. A. Pig. Resln Tech. 1985, 14(1),4 (5 pp). (19) Ellis, R. A. Pig. Resin Tech. 1085, 14(2),7 (4pp). (20) Ellis, R. A. Pig. Resin Tech. 1985, 14(3),12-4. (21) Engei, J. J.; Byerley, T. J. J. Coatings, Tech. 1985, 57(723),29-33. (22) Fradet, A.; Marechal, E. Polimery 1984, 29(4/5),141-51. (23) Garcia-Rubio, L. H. ACS, Div. PMSE, Papers 1985, 52,489-96. (24) Guest, M. J.; Hancox, N. L. Report AERE R 71057,HMSO 1984,iii 39 PP. (25)Gujral, A. S. PhD Thesis, Univ. of London, Imperial College of Science & Technology, 1984,253 pp. (26) Hegnauer, G. L.; Pearce. P. J.; LaLiberte, B. R.; Royiance, M. E. Chemorheology of Thermosetfing Polymers, ACS Symposium Series No. 227, 1983;25-47. (27) Hearn. J.; Wilklnson, M. C.; Goodall, A. R.; Chainey, M. J. Polym. Sci., Polym. Chem. 1985, 23(7), 1869-83. (28) Hochmannova, L.; et ai. Chem. Rum. 1085,35(7),358-61. (29)Huisman, H. F.; Sprangers, W. J. J. M.; Roegies, A. J. P.; Plgmans. H. J. M. R o c . X V I I FATIPEC Congress, Lugano, Switzerland, 1984, 2, 447-71. (30) Chromatographic SCA9nCe Serbs Vol. 25,Janca, J., Ed.; Marcel Dekker: New York. 1984; xv 329 pp. (31) Janca, J. Chem. Lisfy 1084, 78(5),449-68. (32)Kiryu, H.; Horiuchi, K.; Sato, K.; Kumanotani, J. J . Jpn. SOC.Col. Mat. 1984, 57(11),597-601. (33) Korus, R. A.; Mousetis, T. L. J. Am. Oil Chem. SOC. 1984, 61(3), 537-40. (34) Kubin, M. J. Appl. POlym. Sci. 1985, 30(5). 2237-52. (35) Laszlo-Hedvig, Z.;Szesztay, M.: Pupek, I . ; Tudos. F. Angew. Makro-
+
+
--.
mol. Chem. 1984., 122. 51-9. -
(36) Lau, W. W.-Y.; Burns, C. M.; Huang, R. Y. M. J. Appl. Polym. Sci. 1985. 30(3). 1187-94. (37) Lau, W. 'W. Y.; Burns, C. M.; Huang, R. Y. M. J. Appl. Polym. Sci. 1984, 29(5),1531-6. (38) Mahabadi, H. Kh. J. Po/ym. Sci., Polym. Phys. 1984, 22(3),449-57. (39)Malihi. F. B.; Kuo, C.-Y.; Provder, T. J. Appl. Polym. Sci. 1984, 29(3), 925-31, (40) Ma, 2.-T.; Dong, L.-C. Radiat. Phys. Chem. 1983, .?2(6),1001-6. (41) Mathias, L. J.; Hutchens, D. E. Polym. News 1984, 9(6),172-3. (42) McFadden, W. H.; Lammert, S. A.; Coeliby, J. Abstracts of Papers, 189th ACS Meeting, Miami, 1985;Div. of Anal. Chem., Abs. 36. (43) Miller, R. L.; Ochsner. T. R o c . Antec '83,Chicago, 1983, 557-9. (44) Misra, N.; Mandai, B. M. Makromol. Chem., Rapid Commun. 1984, 5(8),471-5. (45) Mutschler, H.; et al. Polymer 1085, 26(6),935-9. (46) Mrkvickova, L.; Danheika. J.; Pokorny, S. J. Appl. Polym Sci. 1984, 29(3),803-8.
COATINGS (47) Percec, V.; Auman, B. C. Makromol. Chem., Macromoi. Chem. Phys. 1984, 785(4), 617-27. (48) Pfandi. W.; Schwarzl, F. R. Co/ioid Polym. Sci. 1985, 283(4), 328-34. (49) Raddatz, J.; Franz, J.; Schiilgaiies, J. Plaste Kautschuk 1985, 32(4), 148-51. (50) Reddy, B. S. R.; Arshady, R.; George, M. H. Eur. Polym. J . 1985, 27(6), 51 1-5. (51) Scheuing, 0. R. J. Coatings Tech. 1985, 57(723), 47-53. (52) Sherrington, D. C.; Bonner, P. Polym. Commun. 1984, 25(3), 71-3. (53) Soltes, L.; Berek, D. Plasfy Kaucuk 1983, 20(4), 107-8. (54) Stlckler, M.; Eisenbeiss, F. Eur. Polym. J . 1984, 20(9), 849-53. (55) Szesztay, M.; Foldes-Berezsnigh, T.; Tudos, F.; Laszlo-Hedvig, 2. Eur. Polym. J . 1985, 27(2), 123-9. (56) Teramachi, S.; Hasegawa, A.; Sato, F.; Takemoto, N. Macromolecuies 1885. 78(3), 347-50. (57) Tung, L. H. Polymer Yearbook; Eiias, H.-G.. Pethrick, R. A,, Eds.; Harwood Academic Publishers, 1984 93-100. (58) Weilons, J. D.; Goiiob, L. Proc. Weyefiaeuser Sci. Symp.: Phenolic Resins 1979 (pub1 198T), 2, 121-36. (59) Wu, S. ACS, Div. PMSE 1984, 50, 43-7. HIGH-PERFORMANCE LIOUID CHROMATOGRAPHY
(1) Anon. Hazards Rev. 1884, 5(10), 11. (2) Arens, M.; Kupfer, W. Fette Seifen Anstrich. 1985, 87(8), 303-9. (3) Aserin, A.; Frenkei, M.; Garti, N. J . Am. Oil Chem. SOC. 1884. 67(4), 805-9. (4) Chalmers, J. M.; MacKenzie, M. W. Appl. Spectrosc. 1985, 39(4), 634-41. (5) Duval, D. L.; Rogers, M.; Fritz, J. S. Anal. Chem. 1885, 57(8), 1583-6. (6) Flebig, H.J. Fette Seifen Anstrich. 1985, 87(2), 53-7. (7) Frlck, D. A. J . Coatings Tech. 1984, 58(712), 89-90, (8) HarHn, K. S.; La Velle, M. B.; Arnold, L. D.; Salem, H. Abstract of Papers, 187th ACS Meeting, St. Louis, 1984; Div. of Anal. Chem., Abs 79. (9) Heme-Bazin, B.; Simon, P. Analusis 1983, 77(10), 489-91. (10) Hurst, J. W.; Martin, R. A., Jr. J. Am. Oil Chem. SOC. 1984, 67(9), 1462-3. (11) Jahnova, V.; Janca, J. Chem. Listy 1984, 78(4), 346-56. (12) Jinno, K.; Sato, T. J . Liq. Chromatogr. 1983. 6(9), 1631-43. (13) Joel, D.; Much, H. Plaste Kaotschuk 1985, 32(1), 11-4. (14) Kaliendorf, C. J.; Pansing, H. E. J. Radiation Curlng 1985, 72(2), 18-28. (15) Kirschbaum, J.; Periman, S.; Joseph, J.; Adamovics, J. J . Chromatogr. Sci. 1984, 22(1), 27-30. (16) Kourti, T.; Penlldis, A.; Hamieiec, A. E.; MacGregor, J. F. ACS, Div. PMSE, Papers 1985, 53, 147-51. (17) Kumar, T. N.; Sastry, Y. S. R.; Lakshminarayana, G. J. Chromatogr. 1884, 298, 360-5. (18) Lazaris, A. Ya.; Beioded, L. N. Zh. Anal. Khim. 1983, 38(5), 888-92. (19) Luoma, G. A. J. Chromatogr. 1885, 378(1), 75-84. (20) Marx-Figini, M.; Soubelet, 0. Polym. Bull. 1984, 77(3), 281-6. (21) Masters, M. B. Anal. Proc. 1985, 22(5), 146-7. (22) McDonald, K. L. J . Chromatogr. Sci. 1984, 22(7), 293-5. (23) Mestan, S. A.; Morris, C. E. M. J. Macromoi. Sci. 1984, C24(1), 117-72. (24) Mliler, T. G.; Hronek, R. J. Anal. Chem. 1985, 57(11), 2091-3. (25) Mourey, T. H. Anal. Chem. 1984, 56(11), 1777-81. (26) Oguri, H.; Abo, T. J . Jpn. SOC.Col. Mat. 1984, 57(6), 309-14. (27) Oguri, H. J . Jpn. SOC.Col. Mat. 1984, 57(8), 441-6. (28) Pansing, H. E.; Kallendorf, C. J. Proc. Radcure ‘84, Atlanta 1884, 8, 1-19. (29) Pastuska, G.; Just, U.; Barnheim, D. Kautschuk Gummi Kunststoffe 1983, 36(6), 479-81. (30) Prince, S. E.; McGinnis, G. D. ACS, Div. PMSE, Papers 1985, 53, 196-202. (31) Purneii, C. J.; Walker, R. F. Analyst 1985, 770(8), 893-905. (32) Raie, M. Y.; Muhammad, D.; Khan, S. A. Fefte Seifen Anstrich. 1985, 87(7), 282-3. (33) Rosenberg, C. Analyst 1984, 709(7), 859-66. (34) Rudin, A.; Frick, C. D. ACS, Div. PMSE, Papers 1985, 53, 431-5. (35) Sciarra, G.; Innocenti, A.; Bozzi, N. Med. Lav. 1984, 75(6), 491-6. (36) Sebedio, J. L. Fette Seifen Anstrich. 1985, 87(7), 267-73. (37) Stoiyhwo, A.; Colin, H.; Guiochon, G. Anal. Chem. 1985, 57(7), 1342-54. (38) Takahashi, K.; Hirano, T.; Zama, K. J . Am. Oil Chem. SOC. 1984, 67(7), 1226-9. (39) Tychopouios, V. PhD Thesis, Brunei Univ. 1983, 375 pp. (40) Vargo, J. D.; Olson, K. L. Anal. Chem. 1985, 57(3), 672-5. (41) VR, I.; Popl, M.; Fahnrich, J. Chem. Prum. 1984, 34(12), 642-4. (42) Walker, R. F.; Ellwood, P. A.; Hardy, H. L.; Goldberg, P. A. J. Chromatogr. 1984, 307(2), 485-91. (43) White, P. C. Analyst 1984, 709(6), 677-97. (44) Wong, S.; Frisch, K. C. ACS, Div. PMSE 1984, 50, 480-4. (45) Wu. Y.-P.; Miller, L. G.; Danielson, N. D. Analyst 1985, 770(9), 1073-6. THIN-LAYER CHROMATOORAPHY
(1) Denig, R. Kunststoffe 1985, 75(8), 18-20, 491-5. (2) Homa, A.; Pechova, H.; Tumova, A,; Churacek, J. J. Chromatogr. 1984, 288(1), 230-2. (3) Kiacei, 2.; Filipska, B. Piasty Kaucuk 1984, 27(5), 147-50. (4) Lehmann, G.; Binkie, B.; Bell, V. Fette Selfen Anstrich. 1884, 86(5), 208- 10. (5) Raveendran, B.; Francis. D. J. Indian J. Technoi. 1984, 22(5), 197-6. (8) Read, H. Anal. R o c . 1984. 27(6), 197-9. ATOMIC ABSORPTION SPECTROSCOPY (1) American Society for Testing B Materials. ASTM D 3335-84, 7985 AnnualBook of ASTM Standards, 06.07, 651-4.
(2) American Society for Testing 8 Materials. ASTM D 3624-84, 7985 Annual Book of ASTM Standanis, 08 .O 1I 743-7. (3) American Society for Testlng & Materials. ASTM D 3717-84, 7985 Annual Book of Standards, 06.07, 755-8. (4) American Society for Testing 8 Materiais. ASTM D 3718-84, 7985 Annual Book of ASTM Standards 06 .O 7. (5) Association Francaise De Normalisation. NF T 30-219, 1984: BSI Worldwide List Stand. 1#84(Oct), 36. (6) Barrett, P.; Pruszkowska, E. Anal. Chem. 1984, 56(11), 1927-30. (7) British Standards Institution. BS 3900: Part 84, 1986, 7 pp (IS0 65031984.). (8) British Standards Institution. BS 8534: 1984, 5 pp. (9) Dornemann. A,; Kieist, H. Farbe Lack 1884, 90(9). 750-2. (10) Krasii’nikova, M. F.; Lenev, L. Lakokras. Mat. 1983, No. 6, 35. (1 1) International Standards Organisation. IS0 3856/3-1984, I S 0 Standards Handbook 24: Paints and Varnishes, 475-8. (12) International Standards Organisation. I S 0 3856/4-1984, I S 0 Standards Handbook 24: Paints and Varnishes 479-84. (13) International Standards Organisation. I S 0 385616-1984, I S 0 Standards Handbook 24: Palnts and Varnishes, 488-90. (14) International Standards Organisation. I S 0 3856/8-1984, I S 0 Standards Handbook 24: Paints and Varnishes, 491-8. (15) International Standards Organisation. IS0 6503-1984, I S 0 Standards Handbook 24: Paints and Varnishes, 557-82. (16) International Standards Organisation. IS0 7252-1984, I S 0 Standards Handbook 24: Paints and Varnishes, 603-8.
.
I
INFRARED SPECTROSCOPY
(1) Aleksandrova, G. V.; Zhdanov, S. I.; Zhdanov, 8. V. Zh. Priki. Khim. 1984, 57(5), 1024-31. (2) Alien, N. S.; Kotecha, J.; Luc-Gardette, J.; Lemaire, J. Polym. Comm. 1984, 25(8),235-7. (3) Alien, N. S.; Robinson, P. J.; White, N. J.; Skelhorne, G. Eur. Polym. J . 1884, 20(1), 13-8. (4) Alien, N. S.; Robinson, P. J.; White, N. J.; Skeihorne, G. Eur. Polym. J . 1885, 27(2), 107-15. (5) Bansieben, D. A.; Vogi, 0. J . Polym. Sci., Polym. Chem. 1985, 23(3), 673-701., 703-2 .- - 1 (6) -BarbettawA. J. Appi. Spectrosc. 1984, 38(1), 29-31. (7) Bershtein, V. A.; Ryzhov. V. A. J. Macromol. Sci. 1984, 823(2), 271-87. (8) Bertie, J. E.; Eysei, H. H. Appl. Spectrosc. 1985, 39(3), 392-401. (9) Bertie, J. E.; Jones, R. N.; Behnam, V. Appi. Spectrosc. 1985, 39(3), 401-4. (10) Braun, D.; Ritzert, H.J. Angew. Makromol. Chem. 1984, 725, 27-36. (1 1) Brozoski, B. A.; Coleman, M. M.; Painter, P. C. Macromoiecuies 1984, 77(2), 230-4. (12) Camino, G.; et ai. Polym. Deg. Stabil. 1984, 8(1), 13-22. (13) Carison, G. M.; Provder, T.; Neag, C. M. Proc. 72th Water-Borne B Higher-Solids Coatings Symp ., New Orleans 1985, 44-58. (14) Cawse, J. L.; Stanford, J. L.; Still, R. H. Makromol. Chem., Macromoi. Chem. Phys. 1984, 785(4), 697-707. (15) Chalmers, J. M.; MacKenzie, M. W.; Willis, H. A. Appl. Spectrosc. 1984, 38(6), 768-73. (16) Cicek, A,; Guthrie, J. T.; Squires, L. J. Dyes Pigments 1984, 5(3), 225-37. (17) Cooper, P. J. Standard. News 1984, 72(2), 24-7. (18) Cousin, P.; Prud’Homme, R. E. ACS, Div. PMSE 1984, 57, 291-4. (19) Culler, S. R., et ai. Appl. Spectrosc. 1984, 38(6), 791-5. (20) Davidson, R. G. ACS, Div. PMSE 1984, 50, 194-8. (21) Davies, A. M. C.; Grant, A.; Gavrei. G. M.; Steeper, R. V. Analyst 1885, 770(6), 643-7. (22) Davis, 1. L. JOCCA 1985. 68(5), 109-15. (23) Decker, C.; Bendaikha, T. Eur. Polym. J . 1984, 20(8),753-6. (24) Decker, C.; Jenkins, A. D. Macromoiecules 1985, 78(6), 1241-4. (25) Deco, J.; Lodes, A.; Lapcik, L.; Biecha, J. Chem. Zvesti 1984, 38(4), 463-70. (26) De La GuardiaGirugeda, M.; Carrion-Dominguez, J.-L.; Medina-Escriche, J. Analyst 1984, 709(4), 457-9. (27) Desor, U.; Pauly, S. Farbe Lack 1985, 97(6), 500-4. (28) Dickie, R. A.; et ai. ACS, Div. PMSE 1984, 50, 475-9. (29) Ferraro, J. R.; Martin, K. Appl. Spectrosc. 1984, 38(2), 270-5. (30) Fowkes, F. M.; et al. J. Polym. Sci., Polym. Chem. 1984, 22(3), 547-66. (31) Fukui, H.; Tanaka, M.; Fujiyama, Y. J. Jpn. SOC. Coi. Mat. 1984, 57(9), 487-91. (32) Gardelia, J. A., Jr.; Grobe, G. L.; Hopson, W. L.; Eyring, E. M. Anal. Chem. 1984, 56(7), 1169-77. (33) Gardette, J. L.; Robin, J.; Lemaire, J. Caout. Plast. 1983, 60(635), 77-81. (34) Garton, A,; Daly, J. H. J. Polym. Sci., Polym. Chem. 1885, 23(4), 1031-41. (35) Golden, W. 0.;Saperstein, D. D. ACS, Abstracts of Papers, 186th ACS Meeting, Washington 1983; Div. of Phys. Chem., Abs. 112. (36) Grasse, N.; Mendoza. G. A. P. Polym. Deg. Stabil. 1984, 9(3), 155-58. (37) Grasselii. J. G. Fourier Transform Infrared Spectroscopy; Theophanides, T., Ed.; D. ReMel Publishing Co.: Dordrecht (Holland) 1984; 55-82. (38) Griffith, G. W. Ind. Eng. Chem., Product RBD 1984, 23(4), 590-3. (39) Guiarie, E.; McKelgue, K.; Ng, K. Y. S. Macromolecules 1984, 77(9), 1822-5. (40) Harrison, N.; Biien, C. S.; Morantz, D. J. Polym. Commun. 1884, 25(1), 15-7. (41) Hatakeyema, T.; Yamauchi, A.; Hatakeyema, H. Eur. Polym. J. 1984, 20(1), 61-4. (42) Hikita, K.; Okamoto, S.; Ohya-Nishiguchi, H. J. Jpn. SOC. Col. Mat. 1985, 58(6), 323-33. ANALYTICAL CHEMISTRY, VOL. 59, NO. 12, JUNE 15, 1987
41 R
COATINGS (43) Mlndb, P. H. Paper 22, 'Convertex 84' Conf. Blackpool 1984,31 pp. (44) Hon, D. N.-S.; Chang, S.-T. J. palym. Sci., folym. Chem. 1984,22(9), 2227-41. (45) Horalek. J.; Krejcar, E.; Dobas. I.; Lunak, S. flasfy Kaucuk 1984, 27(12), 364-6. (46) Horalek, J.; Krejcar, E. Chem. frum. 1985,35(4), 201-4. (47) Horabk, J.; Smrcka, J.; Slachtova, J.; Eichler, J. Chem. f r u m . 1985, 35(6), 309-11. (48) Hummel, D. 0. 2nd Revised ed.; Carl Hanser Verlag: Weinheim 1984; 1030 pp. (49) HVllSted, S. frog. Org. Coat. 1985, 73(3/4), 253-71. (50) Iwamoto, R.; Ohta, K. Appl. Spectrosc. 1984,38(3), 359-65. (51) Iwanska, S.; Urbanski, J. follmery 1984. 29(1), 17-6. (52) Karapetyan, 2. A.; Atovmyan, E. 0.;Roshchupkin, V. P.; Smlrnov, B. R. fowm. sci. USSR 1983,25(2). 350-7. (53) Kendall, D. N. Tech. Six Industty Technical Conf., Illinois 1983, 147-61. (54) Kettle, S.F. A. Fourier Transform Infrared Spectroscopy; TheophanIdes, T., Ed.; D. Reidel Publishing Co.: Dordrecht (Holland), 1984; 17-22. (55) Kharas, G. B.; Lltt, M. H. J. Polym. Sci., folym. Chem. 1984,22(6), 1231-41. (56) Klshore, K.; Pai Verneker, V. R.; Varghese Dharumaraj, G. J. folym. Scl., Palym. Chem. 1984,22(6), 1481-6. (57) Koenlg, J. L. A&. Palym. Scl. 1984, No. 54, 67-154. (58) Kozlova, N. V.; et ai. Zavod. Lab. 1983,49(6), 40-2. (59) Kushel. D. A. Studies Conservat. 1985,30(1), 1-10, (60) Lai, J. H. Macromolecules 1984, 77(5), 1010-2. (61) Ll, P.; Shi, Y. Hoaxue Tongbao 1983,No. 6, 20-2. (62) Lercher, J. A,; Colombler, C.; Noller, H. J . Chem. Soc., Far. Trans. 1 1984,80(4), 949-59. (63) Li, P.; Shi, Y. Fenxi Huaxue 1984, 12(5), 458-61. (64) Low, M. J. D.; Morterra, C.; Severdia, A. G. Mat. Chem. Phys. 1984, 70(6), 519-26. (65) Manov, V. Izv. Him. 1983,No. 112, 7-12. (66) Mathlas, L. J. Proc. 72th Water-Borne Higher-Solids Coatings Symp., New Orleans 1985,25-43. (67) Maudlgal, S.J. Macromol. Sci. 1984,A21(5), 631-8. (68) Messerschmidt, R. G. Appl. Spectrosc. 1985,39(4), 737-9. (69) Mlrgel, V.; Nachtkamp, K. flnturas Acabados 1984, 26(136), 57-64. (70) Monteiro, E. E. C.; Mano, E. B. J . folym. Sci., Polym. Chem. 1984, 22(3), 533-45. (71) Monterra, C.; Chiorino, A,; Borello, E. Mat. Chem. fhys. 1084, 10(2), 119-36. (72) Monterra, C.; Mirra, C.; Borello, E. Mat. Chem. fhys. 1984. 70(2), 139-54. (73) Morgan, R. J.; Kong, F.-M.; Walkup. C. M. Polymer 1984, 25(3), 375-66. (74) Moruan, J.; Camelot, M.; Zecchini, P.; Roques-Carmes, C. J. Colloid Interface Sci. 1984,97(1), 149-56. (75) Moskala, E. J.; Varnell, D. F.; Coleman. M. M. Polymer 1985. 26(2), 226-34. (76) McKenzie, M. T.; Koenlg, J. L. folym. frepr. 1984,25(2), 180-1. (77) McKenzie, M. 1.;Koenlg, J. L. Appl. Spectrosc. 1985,39(3), 408-12. (76) Nakamichl. T.; Sakurai, F.: Ohe, 0. J. Jpn. SOC. Col. Mat. 1985, 58(9). 552-7. (79) Narayan, R.; Krauss, M.; Tsao, G. T. ACS, Div. fMSE, Papers 1985, 52, 112-5. (80) Naviroj, S.;Koenig, J. L.; Ishida, H. J. Adhes. 1985, 18(2), 93-110. (81) Nazir, M. Anal. Chem. 1985,57(6), 1110-2. (62) Nguyen, T. frog. Org. Coat. 1985, 73(1), 1-34. (83) Nguyen, T.; Byrd, W. E. R o c . XIth Internat. Conf. Organic Coatings Science & Technology, Athens 1985,235-52. (84) Ohta, K.; Iwamoto, R. Appl. Spectrosc. 1985,39(3), 418-25. (85) Patel, H. S. Angew. Makromol. Chem. 1984, 726,11-8. (86) Patel, K.; Desal, T.; Suthar, B. Makromol. Chem., Macromol. Chem. fhys. 1985, 786(6), 1151-6. (67) Pearce, E. M.; Kwei, T. K.; Min, B. Y. J. Macromol. Sci. 1984.A21(8/9), 1161-216. (88) Phien, V.; Hlen, L. H.; Quang, N.; Minh, V. T. Plaste Kautschuk 1985, 32(3). 88-8. (89) Provder. T.; Carlson, G. M.; Neag, C. M. folym. frepr. 1085,26(1), 19-20. (90) Reddy, B. S. R. Indian J. Chem., Sect. A 1983,22(7), 603-4. (91) Rockley, M. G.; Ratcllffe, A. E.; Davis, D. M.; Woodward, M. K. Appl. Spectrosc. 1984,38(4), 553-6. (92) Sack, S.;Schsr, S.; Steger, E.; Wagner, H. Polym. Deg. Stabil. 1984, 7(4), 193-203. (93) Sapersteln, D. D. Appl. Spectrosc. 1985.39(4), 615-7. (94) Shuvalova, G. I.; Pshenitslna. V. P.; Pakhomov, V. I.; Perevertov, A. S. Int. folym. Sci. Tech. 1983, 70(10), T/43-4. (95) Simlonescu, C. R.; Slk, K. G.; Comanita, E.; Dumitriu, S.€or. folym. J , 1984,20(5), 467-70. (96) Smith, R. E.; Larsen, F. N.; Long, C. L. J. Appl. folym. Sci. 1984, 29(12), 3713-26. (97) Stobie, I.PhD Thesis, Univ. of Edinburgh 1983, 170 pp. (98) Tajlma, I.; Yamamoto, M. J. folym. Sci., folym. Chem. 1985,23(3), 615-22. (99) Tripathy. S. S.; Jena, S.; Patnaik, M. P.; Singh, B. C. J . Macromol. Sci. 1984,AZ0(9), 895-905. (100) Turley. P. A.; Pietrantonio, A. froc. Polyurethane. 6th Int. SPI Technical Marketing Conf. San Diego 1983,49-52. (101) Valenty, S. J.; et ai. ACS, Div. f M S f , Papers 1985, 53, 288-91. (102) Valletrlsco, M.; Niola, I.fitture Vernici 1984,60(9). 29-31. (103) Williams, R . L. Anal. Proc. 1085, 22(6), 169-76.
42R
ANALYTICAL CHEMISTRY, VOL. 59, NO. 12, JUNE 15, 1987
(104) Yong, G. H. PhD Thesis, Univ. of Nottlngham 1980, 257 pp. (105) Yudina, L. V.; Levshanov, V. S.: Dolmatov, S. A. Int. f o l p . Sci. Tech. 1984, 77(1), T/18-20. (106) Zhdankov, R. G.; Tretlnnikov, 0. N. Int. folym. Sci. Tech. 1984, 17(6), T/81-3. NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
(1) America1 Society for TestIng 8 Materials. ASTM D 4273-83, 7985 Annual Book of ASTM Standards 08.03 I 544-52. (2) Andrels, M.; Veksll, 2.; Meic. 2. Polymer 1985,26(7), 1099-104. (3) Bascetta, E. PhD Thesis, Univ. of St. Andrews. 1983, 545 pp. (4) Bauer, D. R.; Dickle, R. A.; Koenig, J. L. J. folym. Scl., folym. Phys. 1984,22(12), 2009-20. (5) Bauer, D. R.; Dickie, R. A.; Koenlg, J. L. ACS, Div. fMSE 1984, 50, 275-9. (6) Bevington, J. C.; Ebdon, J. R.; Huckerby, T. N. Eur. folym. J. 1985. 27(8), 665-94. (7) Bevlngton, J. C.; Breuer, S. W.; Hucherby, T. N. polvm. Commun. 1984, 25(9), 260-1. (8) Bezdadea, M.; Cascaval, C. N. Brit. folym. J. 1984, 76(3), 151-4. (9) Biswas, M.; Uryu, T. folym. Commun. 1984,25(9), 286-8. (10) Blum, F. D.; Dickson, J. E.; Miller, W. G. J. folym. Sci., folym. fhys. 1984,22(2), 211-21. (11) Boxall, J. fig. Resin Tech. 1985, 74(9), 4. (12) Boxall, J. fig. Resln Tech. 1985, 74(11), 7-10. (13) 2547-51. Bruch, M. D.; Bovey, F. A.; Cais, R. E. Macromolecules 1984, 77(12), ~
(14) Bugada, D. C.; Rudin, A. Polymer 1984,25(12), 1759-66. (15) Bugada, D. C.; Rudin, A. ACS, Div. fMSE 1984,50, 280-4. (16) Cais, R. E.; Bruch, M. D.; Kometanl. J. M.; Bovey, F. A. Abstracts of Papers, 188th ACS Meeting, Philadelphia 1984; Dlv. of Anal. Chem., Abs 38. (17) Chachaty, C. Abstracts of Papers, 189th ACS Meeting, Miami 1985; Div. of Colloid & Surface Chem., Abs 145. (18) Charlesby, A. froc. Plastics Rubber Inst. Annual National Conf., London 1982, 76-81. (19) Cheng, H. N.; Bennett, M. A. Anal. Chem. 1984, 56(13), 2320-7. (20) Chevalier, Y.; Chachaty, C. CollOMPalym. Sci. 1984,262(6), 469-96. (21) Choudhary, V.; Bhaskar, V. U.; Varma, I.K. Angew. Makromol. Chem. 1985, 729, 189-97. (22) Chuang, 1 . 6 , ; Maclel, G. E.; Myers, G. E. Macromolecules 1984, 77(5), 1087-90. (23) Corno, C.; Ghelli, S. Chim. Ind. 1985,67(6), 332-5. (24) Corno. C.; Platone, E.; Ghelli, S. folym. Bull. 1984, 11(1), 69-73. (25) Corno, C.; Platone, E.; Ghelli, S. Colloid folym. Scl. 1984, 262(6), 667-9. (26) Dambatta, B. B.; Ebdon, J. R. Brit. folym. J. 1984, 76(2), 69-70. (27) Deffieux, A.; Subira, F.; Stannett, V. T. Polymer 1984,25(8), 1131-5. (28) Dhal, P. K.; Babu, G. N.; Nanda, R. K. Macromolecules 1984. 77(6), 1131-5. (29) Dhal, P. K.; Babu, G. N. J. folym. Sci., folym. Chem. 1984, 22(8), 1817-29. (30) Duralraj, B.; Blum, F. D. ACS, folym. frepr. 1985, 26(1), 239-40. (31) Ebdon, J. R.; et ai. Polymer 1984,25(6), 821-5. (32) Fawcett, A. H.; Guthrie, J.; Lo, K.-W.; Pyszora, H. Polymer 1985,26(9), 1369-71. (33) Ferguson, R. C.; Ovenall, D. W. folym. frepr. 1984. 25(1), 340-1. (34) Ferguson, R. C.; Ovenall, D. W. ACS, folym. frepr. 1985, 26(1), 182-3. (35) Fleming, W. W. J . Appl. folym. Sci. 1985,30(7), 2853-62. (36) Fu, B.; Feger, C.: MacKnight, W. J.; Schneider, N. S. Polymer 1985, 26(6). 889-94. (37) Gajsler, L. PhD Thesis, Univ. of Edinburg 1963, 171 pp. (38) Gebregiocgis, T. PhD Thesis, Univ. of Essex 1982, 296 pp. (39) Gevert, T. U.; Svanson, S. E. Eur. folym. J. 1985,21(4), 401-4. (40) M e n , R.; Winslow, F. H.; Hutton, R. S.; Hellman, M. Y. folym. frepr. 1984.25(1), 50-1. (41) Grenler-Loustalot, M.-F. Eur. folym. J. 1985. 27(4), 361-9. (42) Grenier-Loustalot, M.-F.; Grenier, P. J. folym. Sci., folym. Chem. 1984,22(12), 4011-33. (43) Gulino, D.; Galy, J.; Pascault, J.-P.; Pham, Q. T. Makromol. Chem., Macromol. Chem. fhys. 1984, 785(2), 297-316. (44) Gulino, D.; Galy. J.; Pascauit, J.-P.; Pham, Q. T. Makromol. Chem., Macromol. Chem. fhys. 1984, 785(11), 2269-81. (45) Harris, R. K. Analyst 1985, 770(6), 649-55. (46) Hearmon, R. A. Anal. R o c . 1985,22(5), 147-9. (47) Hill, D. J. T.; O'Donneli, J. H.; O'Sullivan, P. W. Macromolecules 1985, 18(1), 9-17. (48) Holmes, B. S.; Keller, T. M. folym. frepr. 1984. 25(1), 336-9. (49) Holton, D. M. PhD Thesis, Univ. of London, Bedford College 1961, 187 PP.
(50) Humphreys, J. PhD Thesis, Univ. of Leeds 1983, 267 pp. (51) Hvllsted, S. Rept. T 7-84 M T, Scandinavian faint Print. Ink R . I . , Horsholm (Denmark) 1984;36 pp. (52) Jada, S.S. J. Macroml. Sci. 1985,A22(1), 57-73. (53) Jayasuriya, R. M.; Klein. A.; El-Aasser, M. S.; Vanderhoff, J. W. ACS, Div. fMS€ 1984,51, 766-77. (54) Judas, D.; Fradet, A.; Marechal, E. Makromol. Chem.. Macromol. Chem. f h y s . 1984, 785(12), 2583-97. (55) Kamlde, K.; Saito. M. Eur. folym. J. 1984,20(0),903-14. (56) Kaplan, S. folym. Prepr. 1984,25(1), 356-7. (57) Kennedy, J. F.; et ai. Brit. folym. J. 1984, 16(1), 5-10. (58) Kim, M. G.; Tiedeman, G. T.; Amos, L. W. R o c . Weyerhaeuser Sci. Symp: Phenolic Reslns 1979 (pub1 1981). 2, 263-89. (59) Kricheldorf, H. R.: Mang. T.; Jonte, J. M. Macromolecules1984,77(10), 2173-81.
+
COATINGS
(60) Kumar, V. 0.; Venkatachaiam, S.; Reo, K. V. C. J. fwm. Sci.. folym. Cheffl. 1984,22(10),2317-27. (61) Kmfoglu, S.H. J. fwm. SCl., folym. Chem. 1984,22(10),2551-7. (62) Lazzara, M. G. J . Coatings Tech. 1984,56(710), 19-27. (63) LeBas, C. L.; Turley, P. A. froc. 'Polyurethane', 6th Int. SPI Technical Marketing Conf., San Diego 1983. 43-8. (64) Maciel, G. E.; Chuang, 1 . 4 . ; Gollob. L. Macromolecules 1984, 77(5), 1081-7. (65) Makanl, S.;et al. J . Appi. folym. Scl. 1984,29(12), 4081-9. (66) Mechin, B.; Hanton, D.; LeGoff, J.; Tanneur. J. P. Eur. folym. J . 1984, 20(4),333-41. (67) Miyamoto, T.; et ai. J. folym. Sci., folym. Chem. 1985, 23(5), 1373-81. (68) Mozayeni, F.; Plank, C.; Gray, L. Appl. Spectrosc. 1984, 38(4), 518-21. (69) MacCall, D. W.; et al. Macromolecules 1984. 77(9),1644-9. (70) Neumann, D. L.; Harwood, H. J. ACS Symp. Ser. 1981, No. 795, 43-60. (71) Newmark. R. A. Appl. Spectrosc. 1985,39(3),507-12. (72) Newmark, R . A.; Copley, B. C. Macromolecules 1984, 17(10), 1973-80. (73) Paci, M.; Campana, F. Eur. folym. J . 1985,27(8),717-21. (74) Patterson, P. et al. J. folym. Sci., folym. fhys. 1985, 23(3), 483-92. (75) Peemoeller, H.; Schneider, M. J.; Sharp, A. R.; Kydon, D. W. J. Coatings Tech. 1984,56(715),67-72. (76) Phai, L. T.; Camberlin, Y.; Pascault, J.-P.; Pham, Q. T. Makromol. Chem., Macromol. Chem. fhys. 1985, 786(6),1189-202. (77) Ponnusamy. E.; Baiakrishnan, T. J . Makromol. Sci. 1985, A22(3), 373-8. (78) Poparic, N.; Milun, M. folimeri 1984,No. 1/2,5-6. (79) Reuben, J. ACS, Div. PMSE 1984,57,263-7. (80) Schilling, F. C.; Bovey, F. A.; Bruch, M. D.; Kozlowski, S. A. Macromolecules 1985, 76(7), 1418-22. (81) Schlothauer, K.; Horing, S.; Wulff, D. fiaste Kautschuk 1984, 37(5), 183-6. (82) Sebenik, A.; Kastellic, C.; Osredker, U. folym. frepr. 1984,25(1),120. (83) Sebenik, A.; Osredkar, U.; Vizovisek, J . Angew. Makromol. Chem. 1985, 737, 203-12. (84) Shuang, I.-S.; Hawkins, 8. L.; Maciel, G. E.; Myers, G. E. Macromolecules 1985, 78(7),1482-5. (85) Smith, R. E.; Larsen, F. N.; Long, C. L. J. Appl. folyrn. Sci. 1984, 29(12),3697-71 1. (86) Tanzi, M. C.; et al. Polymer 1984,25(6),863-8. (87) Tchir, M. F.; Rudln, A. ACS, Dlv. PMSE 1984,50,271-4. (88) Tomita, B.; Matsuzaki, T. Ind. Eng. Chem., Product RbD 1985,24(1), 1-5. (89)Tong, S.N.; Park, K. Y.; Harwood, H. J. J. folym. Sci., folym. Chem. 1984,22(5), 1097-113. (90) Yue, H.; et ai. ACS, Div. PMSE 1984,50, 261-70. (91) Yue, H. J.; et el. ACS, Div. PMSE. Papers 1985,52, 537-44. (92) Zaper, A. M.; Koenig, J. L. Adv. Colloid Interface Scl. 1985,22(2/4), 113-50. (93) ZeMin, M.; Lin, J. J. J. folym. Sci., folym. Chem. 1985, 23(9), 2333-40. (94) Zetta, L.; et al. Macromolecules 1985, 18(6),1095-100. (95) Zurimendi, J. A.; Guerrero, S. J.; Leon, V. Polymer 1984, 25(9), 1314-6.
v.;
(23) Fad, J. R.: Morfesis, A. A.; Rowell, R. L. J. Colioid Interface Sci. 1985, 705(2),516-20. (24) Fousse, D.; De Kalnlls, G. Bulbffn CRFB 1981/1982,12-6. (25) Garardelia, J. A., Jr. TrAC, Trends Anal. Chem. 1984. 3(5),129-33. (26) Hennemann, 0.D. Int. Adhesion Conf., Nottlngham, 1984;'4.1-4. (27) Hon, D. N.4. J. Appl. P o r n . SCl. 1984,29(9),2777-84. (28) Huh, A.; Ranby, B. fwm.Deg. Stabil. 1984,8(2),89-105. (29) Inagaki, N.; Yamazakl. H. J. Appl. fo/ym. Sci. 1984,29(4),1369-79. (30) Kampf, G. Roc. X V I I FATIPEC Congress, Lugano, Swltzeriand 1984, 2,81-118. (31)Matsuda. H.; Nakanlshi, H.; Kato, M. J . folym. Sci., folym. Left. 1984, 22(2), 107-11. (32) Mirabella. F. M.; Jr. J . folym. Sci., P o r n . fhys. 1985,23(5),861-71. (33) Munro, H. S.;Clark. D. T.; Peeling, J. folym. Deg. Stabll. 1984,9(3), 185-91. (34) McGuire, G. E.; Murr, L. E. Thln Solid Films 1983, 708(l),47-59. (35) McNell. R. J. A&. Chem. Ser. 1984,No. 205,255-69. (36) Nikolaeva, N. D.; Khromov, S. M. Lakokras, Mat. 1984,No. 2, 23-4. (37) Pekala, R. W.; Merrill, E. W. J. Colloid Interface Sci. 1984, 707(l), 120-8. (38) Pijpers, A. P.; Donners, W. A. B. J. folym. Sci., folym. Chem. 1985, 23(2),453-62. (39) Puderbach, H. Mlkrochlm. Acta, Suppl. 1984,No. 10, 103-10. (40) Romand, M. Double Liaison 1985,32(354/5),XVII-XXIII; 47-53. (41) Sherwood, P. M. A. Chem. SOC.Rev. 1985, 74(1),1-44. (42) Simko, S.J.; et ai. Anal. Chem. 1985,57(7),1198-202. (43) Smith, G. W.; Falk, N. A. R. faint R . A . Tech. Rept. 1984,No. TR/ 1/84,129 pp. (44) Sohn, J.; Ree, T. J. Appl. folym. Sci. 1984,29(12),4237-45. (45)Somorjai, 0. A.; Bent, B. E. frog. Colioidfolym.Sci. 1985,70,38-56. (46) Song, 2.; et al. folym. Bull. 1984, 72(3),245-51. (47) Szalkowski, F. J. Corrosion '82, Paper 268: Corros. Abs. 1984, 23(1), 13. (48) Thompson, M.; Baker, M. D.; Christie, A.; Tyson, J. F. Auger Nectron SmctrmGwDY; Wiiev: New York. 1985:Chemical Analvsls Series No. 74, vi1 394 pi. (49) Valenty, S. J.; et ai. J. folvm. Sci., folvm. Chem. 1984, 22(11), 3387-81 .-
+
(50) Van Ooji, W. J.; Visser, T. H.; Biemond, M. E. F. Surf. Interface Anal. 1985,6(5), 197-214. (51) Van Ooi], W. J. ACS, Div. PMSE, Papers 1985,53,698-702. (52)Varma, A. J.; Manale, A. B.; Badrinarayan, S.Mat, Chem, fhys , 1984,
10(6),585-9. (53) Watts. J. F.; Castle, J. E. J . Mat. Sci. 1984, 79(7),2259-72. (54) Watts, J. F. J. Mat. Sci. 1984, 19(10),3459-65. (55) Watts, J. F. Anal. froc. 1984,27(7),255-9 (56) Wllllams, R. S.;Feist, W. C. Colioids Surfaces 1984, 9(3). 253-71. ULTRAVIOLET-VISIBLE SPECTROSCOPY
(1) Agrawal, V. P.; Blagrove, R. J. J. Am. Oil Chem. Sac. 1984, 67(4), 768-8. (2) Bendalkha, T. V.; Decker, C. J . Radiation Curing 1984, 71(2),6-13. (3) Bogatyreva, S.A.; Valuev, V. I.; Nasonova, T. P.; Safronova, T. V. Int. Polym. Sci. Tech. 1984, 71(4),T/94-5. (4) Cameron, G. 0.; Chisholm, M. S. Polymer 1985,26(3),437-42. (5) COUSlnS. D. R.: Platonl, C. R.; Russell, L. W. Forensic Sci. Int. 1984. 24(3), 183-96. (6)Dulog, L. Makromol. Chem., Macromol. Chem. fhys. 1985, 72, Suppl.
---
285-91
SURFACE ANALYSIS
(1) American Society for Testing & Materials. ASTM E 673-84,7984 Annual Book Of ASTM Standards, 03.06,305-9. (2) American Society for Testing & Materials. ASTM E 827-83,7984 Annual Book Of ASTM Standards, 03.06,333-5. (3) American Society for Testing & Materials. ASTM E 983-84,1984 Annual BoOk Of ASTM Standards, 03.06,366-9. (4) American Society for Testing & Materials. ASTM E 984-84,7984 Annual BOOk Of ASTM Standards, 03.06,370-5. (5) Avouris, P.; Demuth, J. Annu. Rev. fhys. Chem. 1984, 35, 49-73. (6) Auerri, N.; et ai. Surf. Techno/. 1984,27(4),391-404. (7) Briggs, D. Surf. Interface Anal. 1982,4(4),151-5. (8) Briggs, D. Polymer 1984,25(10), 1379-91. (9) Practical Surface Analysis by Auger and X-Ray photoelectron Spectroscopy; Briggs, D.. Seah, M. P., Eds.; Wiley: Chichester 1983;xlv 533
+
PP. (10) Briggs, D.;Wootton, A. B. Surf. Interface Anal. 1982, 4(3),109-15. (11) Brown, A.; Vickerman, J. C. Analyst 1984, 709(7),851-7. (12) Buckley, D. H. SURTEC 7983,Roc. 2nd Int. Congress For Surface Technology. Berlin, 501-16. (13) Castle, J. E.; Watts, J. F. Ind. Eng. Chem., Product RbD 1985,24(3),
361-9. (14) Champlgny, F.; Buscarlet, E.; Coddet, C. Rev. Metall. Cah. Inform. Tech. 1983,80(12),963-75. (15) Chew, A.; et ai. Int. Adhesion Conf., Nottingham, 1984, 73, 1-4. (18) Clark, D. T.; Munro, H. S. folym. Deg. Stabll. 1984, 8(4), 195-211. (17) Clark, D. T.; Munro, H. S. folym. Deg. Stabil. 1984, 6(4),213-27. (18) Clark, D.T.; Munro, H. S. folym. Deg. Stabll. 1984,9(2),63-71. (19)Clark, D. T.; Munro, H. S.; Recca, A.; Stille, J. K. Macromdecules 1984, 17(9),1871-3. (20) Diiks, A. Degradation and Stabilisation of Polymers: A Series of Comprehensive Reviews, Vol 7 ; Jellinek H. 0. G., Ed.; Elsevler Science Pub-
lishers BV 1983;600-28. (21) Echlin, P. CHEMT€CH 1984, 74(6),356-71. (22) Eland, J. H. D. fhotoelectron Spectroscopy, 2nd ed., Butterworths: London, 1984;271 pp.
(7) Fairman, H. S. Col. Res. Appl. 1983,8(4),245-6. (8) Garcia, Rubio, L. H.; Ro. N.; Patel, R. D. Macromolecules 1984, 77(10), 1998-2005. (9)Gothe, S.R o c . S V I I FATIfEC Contress, Lugano, Swltzerland 1984,2, 13-57. (10) Hakes, D. C.; Johnson, 0. D.; Marhevka, J. S. Am. Ind. Hyg. Assoc. J . 1984. 4514).274-7. (11) Interiational Standards Organisation. IS0 385615-1984,I S 0 Standards Handbook 2 4 : faints and Varnishes, 485-7. (12) Kaiiendorf, C. J.; Singleton, M. R o c . Radcure '84,Atlanta 1984, 8.56-72. (13) Konakahara, T.; Kawashima, M.; Sato, K. Makromol. Chem., Rapid Commun. 1985,6(2),65-9. (14) Kumar. R.; Saltzman, M.; Biiimeyer, F. W., Jr. J . Coatings Tech. 1985, 57(720),49-54. (15) Matthes, I. fiaste Kautschuk 1984,37(9),355-6. (16) Matthews, T. G.; et al. Anal. Chem. 1984,56(3),448-54. (17) Merle, Y.; MerleAubry, L.; Guillet, J. E. Macromolecules 1984, 77(3), 288-92. (18) Morse, G. A. J. folym. Sci., folym. Chem. 1984, 22(11),3611-5. (19) Punger, G. N.; Mukhovlkova, N. P.; Slmanovich, M. B. Lakokras. Mat. 1984,No. 1, 42. (20) Zhang, L.-F.; et ai. faint Coatings Ind. 1985, No. 1, 51-7. (21) Zil'berman, 2. G.; Sedov, L. N. Int. folym. Sci. Tech. 1984, 71(10), T/85-6.
X-RAY ANALYSIS (1) American Society for Testing 8 Materials. ASTM D 3720-84. 7985 Annual Book of ASTM Standards, 06.02, 476-9. (2) Andermann, G.; Fujlwara, F. Anal. Chem. 1984,56(9),1711-5. (3) Babchinitser. T. M.; et al. Polym. Commun. 1984,25(8),229-31. (4) Cernla, E.;D'Ilarlo, L. J. folym. Sci., folym. fhys. 1985,23(1),49-57. (5) Dockal, M.; Batek, K. Chem. frum. 1984,34(8), 426-8. (6) Hutton, R. C. Anal. f r o c . 1984,21(9),317-9. (7) Kuang, S.J.; Ferguson, C. A.; Rezanowich, A.; Lepoutre, P. Tappi 1984,
67(8),86-8. (8) Mann, J. A., Jr. Langmulr 1985, 7(1),10-23. ANALYTICAL CHEMISTRY, VOL. 59, NO. 12, JUNE 15, 1987
43R
COATINGS
(9) Mitchell, G. R. PhD Thesis, Clty of London Polytechnic 1983, 289 pp. (10) Morales. J.; Tlrado, J. L. Mat. Chem. Phys. 1984, 10(3), 225-35. (11) Petrovic, 2. S.; Fajnik, D. J. Appl. Polym. Sci. 1984, 29(4), 1031-40. (12) Reka, B. A.; Prostyakov, V. M.; Dorochenko, V. G.; Ellsavetskil, A. M. Lakokras. Mat. 1985, No. 1, 16-8. (13) Russell, T. P.; Hadziioannou, G.; Warburton, W. K. Macromolecules 1985, l8(l),78-83. (14) Shilov, V. V.; et al. Polym. Commun. 1985, 26(1), 28-30. (15) Twieg, R.; Rabolt. J.; Russell, T. Polym. Prepr. 1984, 25(1),154-5. (16) Vilgor, I.; et al. Polymer 1984, 25(12), 1800-6, 1807-16. (17) Worthy, W. Chem. Eng. News 1985, 63(14). 28-30. SPECTROSCOPY-MISCELLANEOUS
TECHNIOUES
(1) Abu-Zeid, M. E.; et al. J. Appl. Polym. Sci. 1984, 29(8), 2431-42. (2) Alien, E. M. Abstracts of Papers, 188th ACS Meeting, Philadelphia 1984; Div. of Ind. Eng. Chem. Ab. 113. (3) Anani, A.; Mobasher, A.; Rasoul, F. A. J. Appi. Polym. Sci. 1984. 29(5). 1491-7. (4) Ashworth, C. M. PhD Thesis, Univ. of London, Imperial College of Science & Technology 1982, 175 pp. (5) Bai, S. J. Polymer 1985, 26(7), 1053-7. (6) Balducci, L.; et al. R o c . X V I I FATIPEC Congress, Lugano. Switzerland 1984, 1, 175-91. (7) Ballard, M. J.; et al. Macromolecules 1984, 17(3), 504-6. (8) Birchali. T.; Hodgson, D.; Merchant, H. D. J. Mat. Sci., Left. 1985, 4(9), 1147-5 1 ... (9) Callow. L. M.; Scantlebury, J. D. JOCCA 1984, 67(3), 70-1. (IO) Cebula. D. J.; et al. Far. Discuss. 1983, No. 76, 37-52. (11) Comyn, J. Adhesion 9 ; Allen, K. W.. Ed.; Elsevier Applied Science, 1984; 147-82. (12) Comyn, J.; et al. Int. Adhesion Conf.. Notringham 1984, 7.1-4. (13) Dembrovskii, M. A.; et al. Prof. Metals 1983. 19(3), 294-300. (14) Eggleston, H. S. RID Thesis, Univ. of Durham 1982, 175 pp. (15) Fedorova. V. N.; Valueva, L. F. Pleste Kautschuk 1985, 32(5), 171-3. (16) Fedorova, V. N.; Valueva, L. F.; Remizov, A. N.; Reznikov, I. I . Plasfe Kautschuk 1985, 32(9), 339-41. (17) Fizet, M.; Decker, C.; Faure, J. Eur. Polym. J. 1985, 21(5), 427-34. (18) Gerlock, J. L.; Bauer. D. R.; Briggs, L. M. Polym. Prepr. 1984, 25(1), 30-1. (19) Gerlock, J. L.; Bauer, D. R.; Briggs, L. M.; Dickie, R. A. J. Coatings Tech. 1985, 57(722), 37-46. (20) Gerrard, D. L. Chem. Brit. 1984, 20(8), 715 (5 pp). (21) Gerrard, D. L.; Maddam, W. F. Polym. Commun. 1984, 25(6),185-6. (22) Goswami, D. N.; Kumar, S. Angew. Makromol. Chem. 1984, 126, 145-52. (23) Goswami, D. N.; Kumar, S. Angew. Makromol. Chem. 1984, 727, 211-4. (24) Guineau, B. Studies Conservat. 1984, 29(1), 35-41. (25) Hansmann, H. Ind. Eng. Chem., Product R&D 1985, 24(2), 252-7. (26) Harwood, B. PhD Thesis, Univ. of Salford, 1981, 151 pp. (27) Henry, F.; Berteaud, A.J. Angew. Makromoi. Chem. 1985, 130, 1-19. (28) Hlgglns, J. S. Developments in Polymer Characterisation 4; Dawkins, J. V., Ed.; Applied Science Publishers, 1983; 131-76. (29) Hikita, K.; Okamoto, S.; Ohya, H. J. Jpn. SOC. Col. Mat. 1984, 57(2), 49-55. (30) Hill, C. G.; Jr.; Hedren, A. M.; Myers, G. E.; Koutsky, J. A. J. Appi. Polym. Sci. 1984, 29(9), 2749-62. (31) James, N. R. PhD Thesis, Univ. of Leeds, 1981, 265 pp. (32) Keiser, J. T.; Brown, C. W.; Heidersbach, R. H. Corros. Sci. 1983, 23(3), 251-9. (33) Krassowski, G. Angew. Makromol. Chem. 1985, 134, 195-212. (34) Leidheiser, H., Jr.; Czako-Nagy, I.Corros. Sci. 1984, 24(7), 569-77. (35) Lipka. J.; et al. Chem. Prum. 1984, 34(8), 411-3. (36) Lucki, J.; Rabek, J. F.; Ranby. B. Polym. Photochem. 1984, 5(1/6), 351-84. (37) Lucki, J.; Rabek, J. F.;Ranby, E.; Dai, G. S. Polym. Photochem. 1984, 5(1/6), 385-409. (38) Maiorova, G. V.; Afanas'ev, A. V.; Yakovlev. A. D. Lakokras. Mat. 1985, No. 1, 32-4. (39) Masui. A.; Yonemori, S.;Noshiro, M. Bunseki Kagaku 1983, 32(6), 387-90. (40) Merino, J. C.; Pastor, J. M.; De Saja, J. A. Polymer 1985, 26(3), 383-6. (41) Minato, H.; Nanjo. M.; Nayatani. Y. Col. Res. Appl. 1983, 8(4),238-44. (42) Monnerie, L. Far. Symp. 1983, No. 18, 57-81. (43) Mosle, H. G.: Hansmann, H. SURTfC 1983, Proc. 2nd Int. Congress for Surface Technology, Berlin, 119-30. (44) Oprea. C. V.; Neguiianu. C.; Weiner, F. Rev. Roumaine Chim. 1984, 29(8), 683-92. (45) Ouchi, T.; Hosaka, Y.; Imoto, M.; Konaka, R. J. Polym. Sci.. Polym. Chem. 1984, 22(6),1507-14. (46) Sandreczki, T. C.; Brown, I. M. Macromolecules 1984, 17(9), 1789-98. (47) Storp, S.; Bock, M. R o c . XIth Int. Conf. in Organic Coatings Science Technology, Athens 1985. 389-405. (48) Thorp, J. S.; Eggleston, H. S. J . Mat. Scl. 1985, 20(7), 2369-76. (49) Tkac, A. Developments in Polymer Stabilisation 5; Scott, G.. Ed.; Applied Science Publishers, 1982; 153-231. (50) Wang, F. W.; Lowry, R. E.; Fanconi, 8. M. ACS. Div. PMSE, Papers 1985, 53, 180-4. (51) Werrett, C. R.; et ai. Inf. Adhesion Conf. Nottingham 1984, 2.1-3. (52) Wolf, C. J.; Fanter, D. L.; Grayson, M. A. Chemorheology of Thermosetting Polymers. ACS Symposium Series No. 227, 1983, 121-39. MICROSCOPY
(1) Annighofer. F.; Gronskl, W. Makromol. Chem., Macromol. Chem. Phys. 1984, 785(10). 2213-31. (2) Arnold. A. Studies Conservat, 1984, 29(3), 129-38.
44R
ANALYTICAL CHEMISTRY, VOL. 59, NO. 12, JUNE 15, 1987
(3) Arnold, W.; Reiter, H. Adheslon 9; Allen, K. W., Ed.; Elsevier Applied Science, 1984; 85-94. (4) AssefpourDezfuly, M.; Vlachos, C.; Andrews, E. H. Int, Adhesion Conf., Nottingham 1984. 29.1-4. (5) Balcerzyk, E.; Flochstim, J.; Wlodarczyk. S. Pollmery 1984, 29(8), 213-5. (6) Betzold, J. Mlkrochlm. Acta 1983, f1(5/6), 391-400. (7) Blanco, M. T.; Andrade, C.; Macias, A. Brit. Corros. J. 1984, 19(1), 41-8. (8) Blaschke, R.; Dingerdlssen, N.; Gocke, R.; Franke, K. Proc. X V I I FATIP-
EC Congress, Lugano, Switzerland 1984, 2, 383-87. (9) Bukowska, M.; Makaruk, L. Int. Polym. Scl. Tech. 1984, 11(1l), T/869. (10) Bukowska, M.; Makaruk, L. Polimery 1984, 29(1), 28-31. (11) Chalykh, A. E.; Aliev, A. D.; Rubtsov, A. E. Polym. Sci. USSR 1983, 25(10), 2579-89. (12) Christensen, L. H.; Drabak, I. Proc. X V I I FATIPfC Contress, Lugano, Switzerland 1984, 1, 327-45. (13) Cintl, G.; Renni, L.; Gombach, M. L. Piftwe Vernici 1984, 60(11), 21-6. (14) Cottrell, H.; Patel, S.; Falla, N. A. R. Paint R.A. Tech. Rept. 1985, No TR/1/85, 37 pp. (15) Davis, G. D.; Ahearn, J. S.; Venables, J. D. Int. Adhesion Conf., Nottingham 1984, 12a.l-4. (16) Dorner, W. G. Kunst. Plast. 1984, 31(9), 31 (4 pp). (17) Ferch, H.; SelboM. K. Farbe Lack 1984, 90(2), 88 (1 1 pp). (18) Fernandez, A. M.; Manson, J. A,; Sperling, L. H. ACS, Div. PMSE, Papers 1985, 52, 169-76. (19) Oavrllova, 0. N.; Verkholantsev, V. V.; Biryukova, G. P. Lakokras Mat. 1984, NO. 4, 34-6. (20) Groves, M. J. Modern Methods of Particle Size Analysis; Barth, H. G., Ed.; Wiley: 1984; 43-91. (21) Hayes, M. Surf. Techno/. 1983, 20(1),3-27. (22) Hine, P. J.; El Muddarrls, S.; Packham, D. E. J . Adhes. 1984, 77(3), 207-29. (23) Hine, P. J.; Packham, D. E.; El Muddarris, S. Int. Adhesion Conf., Nottingham 1984, 10.1-4. (24) Kharitonov, N. P.; et al. Zh. Prikl. Khim. 1983, 56(7), 1638-42. (25) Kollek, H. SURTEC 1983, Proc. 2nd Int. Congress for Surface Technology, Berlin, 603-7. (26) Kordomenos, P. I.; Frisch, K. C.; Xiao, H. X.; Sabbah. N. J. Coatings Tech. 1985, 57(723), 23-8. (27) Laout, J. C.; et al. Bull. du CERIPEC 1985, No. 62, 1-55. (28) Latter, T. D. T. Product Fin. 1984, 37(3), 21 (6 pp). (29) Little, B. J.; Zsolnay, A. J. ColloM Interface Sci. 1985, 104(1),79-86. (30) Manson, J. A.; Ramirez, A.; Hertzberg, R. W. ACS, Div. PMSE 1984, 50, 106-10. (31) Motohasi, K.; Nireki, T. VTT Symposium 49, Proc. 3rd Internat. Conf. on Durabillty of Building Materials & Components, 2, Espoo (Finland) lg84. - - - - , 241-53. - . -(32) Okubo, M.; Kojima, M.; Mizushima, Y.; Matsumoto. T. KobunshiRonbun. 1984. 411111. 673-8. (33) Palenik, 5.' J. Abstracts of Papers, 186th ACS Meeting, Washington 1983; Div. of PMSE, Abs. 110. (34) Piotrowska, 2. Pollmery 1984, 29(8), 317-20. (35) Quackenbush, D. W. Tappi 1984, 67(5), 72-5. (36) Schdsky, K. M.; FRch, R. M. J. Colloid Interface Sci. 1985, 104(2), 595-5. (37) Varma, A. J.; Deshpande, M. D.; Nadkarni, V. M. Angew. Makromol. Chem. 1985, 132, 203-9. (38) Victorova, T. I.; Verkholantsev, V. V. Lakokras. Mat. 1984, No. 4, 49-50. (39) Ward, R. J. PhD Thesis, Univ. of Brlstol 1983, 264 pp. (40) Watanabe, J.; Seibel, G.; Inoue, M. J. Polym. Sci., Polym. Lett. 1984, 22(1),39-41. (41) Wolski, W. Farbe Lack 1985, 9f(3), 184-9. (42) Zorll, U. Mefali 1984, 38(12), 1184-7. ~
THERMAL ANALYSIS (1) Alberda Van Ekenstein, G. 0. R.; Tan, Y. Y. Polym. Commun. 1984, 25(4), 105-7. (2) Allen, P. E. M.; Host, D. M.; Truong, V. T.; Williams, D. R . G. Eur. Polym. J. 1985, 21(7), 603-10. (3) Amerlcan Society for Testlng 8 Materlals. ASTM D 3418-82, 1985 Annual Book of ASTM Standards, 08.03, 112-7. (4) Beldie, C.; Onu, A.; Bourceanu, G.; Poinescu. I.C. f u r . Polym. J. 1985, 21(3), 321-3. (5) Bhateja, S.K. J. Thermal Anal. 1984, 29(2), 297-300. (6) Bhatnagar, V. M.; et al. J. Anal. Appl. Pyrolysis 1984, 6(1), 81-93. (7) Bowmer, T. N.; Tonelli, A. E. Polymer 1985, 26(8), 1195-201. (8) Boyer, R. F. J. Polym. Sci. Polym. Phys. 1985, 23(1), 1-2. (9) Cain, C. Paint R . A . Tech. Rept. 1983, No. TR/4/83, 22 pp, (IO) Calahorra, E.; Cortazar. M.; Guzman, G. M. J. Polym. Sci., Po/ym. Lett. 1985, 23(5), 257-80. (11) Carlson, G. M.; Neag, C. M.; Kuo, C.; Provder, T. Polym. Prepr. 1984, 9.5191 -\-,.
171-3 , . , -.
(12) Castles, J. L.; Valance, M. A.; Cooper, S. L.; McKenna, J. M. ACS, Div. PMSE 1984. 51. 387-91. (13) Chee. K. K. Eur. bol~m.J. 1985. 27(1), 29-31 i14j Chiou, J. S.; Barlow, J. W.; Paul, D.'Fi. J. Appl. Polym. Sci. 1985, 30(6), 2633-42. (15) Cho, I.; Lee, J.-Y. Makromol. Chem., Rapid Commun. 1984, 5(5). 263-7. (16) Choudhary, M. S.;Varma, I. K. J. Macromol. Sci. 1984, A 2 0 ( 9 ) , 941-56. (17) Chrlstiansen, A. W. Int. J. Adhes. Adhesives 1984, 4(3), 198-19. (18) Christiansen. A. W.; Gollob, L. J. Appi. Polym. Sci. 1985, 30(6), 2279-89.
COATINGS (19) Coates, C. E. C M m . Ind. 1984, No. 6, 212-6. (20) Dassanayake, N. L.; Phillips, R. W. AM/. Chem. 1984, 56(0), 1753-5. (21) Delessus, P. T.; Wallace, K. L.; Townsend, H. J. P o r n . Prepr. 1985, 26(1), 116-7. (22) Egboh, S. H.; George, M. H.; Banie, J. A. Polymer 1984, 25(8). 1157-60. (23) Flynn, J. H. Polym. Prepr. 1985, 26(1). 6-7. (24) Foun, C. C.; Moroni, A.; Pearce, E. M.; Mijovic, J. ACS, Div. PMSE 1984, 57, 411-9. (25) Gilbert, M. D.; MacKnight, W. J.; Schneider, N. S. Polym. Prepr. 1984, 25(2), 203-4. (26) Grassie. N. &if. Polym. J . 1984, 76(4), 244-52. (27) Grebowicz, J.; b u , S.-F.; Wunderlich, B. J . polvm. Sci.. Polym. Symp. 1984, NO. 71, 19-37. (28) Greenberg, A. R.; Kusy, R. P. Polymer 1984, 25(7), 927-34. (29) Gu, J.; Narang, S. C.; Pearce, E. M. J . Appl. Polym. Sci. 1985, 30(7), 2997-3007. (30) Han, C. D.; Lem, K. W. J . Appl. Polym. Scl. 1984, 29(5), 1879-902. (31) b r a , M.; Smith, P.; Eisenberg, A. ACS, Div. PMSE 1984, 57, 726-31. on Macromolecules, Strasboura (32) Huane, 2. Prm. 27th Int. S~muoslum . . 1981, 5,1251-9. (33) Huguenin, F. 0. A. E.; Klein, M. T. Ind. Eng. Chem. Product R&D 1985, 24(1); 166-71. (34) Hulden, M. Farg Lack 1985, 37(3), 61 (6 pp). (35) I z u m , T.; Yamamto, S. J . Coatlngs Tech. 1984, 56(710), 39-43. (36) Jeicic, 2.; Hedvig, P.; RanogaJec, F.; Dvornik, I. Proc. 5th TIHANY Symp. on Radiation ChemlsWy, Siofok (Hungary) 1982, 2 , 805-11. (37) Jelcic, 2.; W i g , P.; Rancgajec, F.; Dvornik, I.Angew. Makromol. Chem. 1985, 730, 21-40. (38) Jeicic. 2.; Ranogajec, F. Pollmeri 1984, 5(3-4), 49-51. (39) Kamon, T.; Salto, K. Kobunshi Ronbun. 1984, 47(5), 293-9. (40) Kbsterboer, J. G.; Van De Hei, G. M. M.; Boots, H. M. J. Polym. Common. 1984, 25(12), 354-7. (41) Kontou, E.; Spathis, G.; Thocaris, P. S. J . Polym. Sci., Polym. Chem. 1985, 23(5), 1493-503. (42) Kumanotani, J.; Inoue, K.; Chen, L. W. ACS, Dlv. PMSE, Papers 1985, 52, 163-7. (43) Kusy. R. P.; Greenberg, A. R. Polymer 1984, 25(5), 800-8. (44) Lau, S.-F.; Wesson, J. P.; Wunderiich, B. Macromolecules 1984, 77(5), 1102-4. (45) Lin. I . S.; Gromeiski. S. J., Jr. Proc. Polyurethane, 6th Int. SPI Technical Merkeffng Conf., San Diego 1983, 603-9. (46) Lin, S.-B.; Koenig, J. L. J . Polym. Sci., Polym. Symp. 1984, No. 71, 121-35. (47) Malavasic, T.; Osredkar, U.; Anzur, I.; Vizovisek, I . J . Thermal Anal. 1984, 29(4), 697-700. (48) Masiulanis, B.; Karoiewski, K. Polknery 1084, 29(3), 105-10. (49) McNeii. I. C.; McGuiness, R. C. Polym. Deg. Stab//. 1984, 9(3), 167-83. (50) Mikes, F.; Morawetz, H.; Dennis, K. S. Macromolecuoles 1984, 77(1), 60-3. (51) Miiis, G. D. Corrosion '83, Paper 112, 7 pp. (52) MOnteudo, G.; Pugiisi, C.; Scamporrino, E.; Vitaiini, D. Macromolecules 1984, 77(8), 1605-14. (53) Morris, C. E. M.; Ennis, B. C.; Davison, R. G.; Bandyopadhyay, S. Int. Adhesion Conf., Nottingham 1984, 2.1-4. (54) Muizebelt. W. J. J . Coaffngs Tech. 1985, 57(725), 43-9. (55) Mulier. P. C.; Keiiey, S. S.; Glasser, W. G. J . Adhes. 1984, 77(3), 165-206. (56) Muzafarova, M. N.; Bebchuk, T. S.; Matyukhin, V. V. Zh. Prikl. Khim. 1983, 56(8), 1852-6. (57) Naoki, M.; Owada, A. Polymer 1984. 25(1), 75-83. (58) Papkov, V. S.; et ai. J . Polym. Sci., Polym. Chem. 1984, 22(12), 3617-32. (59) %I, L. T.; et ai. Mekromol. Chem., Macromol. Chem. Phys. 1984, 185(2), 261-95. (60) Price. H. L.; Ku, J. Ind. Eng. Chem.. Product R&D 1985, 24(2), 185-6. (61) Prime, R. B.; Shushan, 6. Polym. Prepr. 1985, 26(1), 15-6. (62) Rabinovich, I. B.; et ai. Acfa Polym. 1983, 34(8). 482-8. (63) Reichert, K.4. W.; Donnebrink. G. R o c . Xth Int. Conf. in Organic Coatings Science & Technology, Athens 1984, 229-40. (64) Richardson, M. J. Polym. Test. 1984, 4(2/4), 101-15. (65) Rowe, A. M. PhD Thesis, Univ. of Loughborough, 1982. 313 pp. (66) SaMo, K.; Kuroki, T.; Ikemura, T.; Kirisawa, M. J. Am. Oil Chem. SOC. 1984, 67(5), 945-9. (67) Savos'kin, V. M.; Lunev, L. V.; Protsenko, E. I . Pkrst. Massy 1984, No. 5, 32-3. (68) Schiraldi, A.; Baidini, P. J . 7bermal And. 1983, 28(2), 295-301. (69) Shah, P. P.; Parsania, P. H.; Patei, S. R. Brit. Polym. J . 1985, 77(1), 64-8. (70) Sircar, A. K. J . Scl. Ind. Res. 1982. 47(9), 536-60. (71) Stark. E. B.; Seferis. J. C. Polym. Prepr. 1985, 26(1), 23-6. (72) Stephenson, D. K. PhD Thesis, Huddersfleld Polytechnic 1963, 409 pp. (73) Toussaint, A.; Cuypers. P.; DHmt, L. J. Coatings Tech. 1985, 57(728), 71-8. (74) Vellckovic, J.; Djukanovic, D. P ~ o c .27th Int. Symposium on Macromoleeoles, Strasbourg 1981, 2 , 1220-4. (75) Vilcu, R.; Olteanu, M.; Mandru, I. Eur. Polym. J . 1985, 27(1), 61-3. (76) Weiii, A.; Paniez, P.; Dechenaux, E. Angew. Makromol. Chem. 1984, 122, 101-11. (77) Wendiandt, W. W. Anal. Chem. 1984, 56(5). 250R-61R. ENVIRONMENTAL AND INDUSTRIAL HYGIENE (1) Blsgaard, P.; Moelhave. L.; Rletz, B.; Wllhardt, P. Anal. Lett. 1983, 76 No. A17iA18. 1457-68.
.
(2) Carson, K. A. Ah Force Occup Environ. Health Lab. Report 1982, No OEHL-82-022EH163HAE, 24 pp. (3) Fregett, S.; Dahlquist, I.; Gruvberger, B. Conect DemratmS 1984. 70(3), 132-4. (4) Qlinsmann, P. W.; Rosenthai, F. S. Am. Ind. Hyg. Assoc. J . 1985, 46(7), 391-5. (5) Health & Safety Executive, MDHS 70, HSE 1981, 3 pp. (6) Health & Safety Executlve, MDHS 7 7 , HSE 1981, 3 pp. (7) Health & Safety Executive, MDHS 72, HSE 1961, 3 pp. (8) Health & Safety Executive, MD" 73,HSE 1981, 3 pp. (9) Health & Safety Executive, MDHS 14, HSE 1983, 5 pp. ( I O ) Health & Safety Executive, MDnS 76, HSE 1983, 4 pp. (11) Health & Safety Executive, MDHS 77, HSE 1963, 4 pp. (12) Health & Safety Executive, MDHS 19, HSE 1983, 5 pp. (13) Health 8. Safety Executive, MD" 20, HSE 1983, 4 pp. (14) Health & Safety Executive, M H S 27, HSE 1963, 7 pp. (15) Health & Safety Executive, MDHS 22, HSE 1963, 5 pp. (16) Health & Safety Executive, MDHS 23, HSE 1983, 7 pp. (17) Health & Safety Executive, MDHS 2 4 , HSE 1983, 4 pp. (18) Health 8. Safety Executive, MDHS 28, HSE 1983, 6 pp. (19) Health & Safety Executive, MDHS 30, HSE 1983, 3 pp. (20) Health & Safety Executive, MDHS 37,HSE 1983, 4 pp. (21) Health & Safety Executive, MD" 32. HSE 1983, 5 pp. (22) Ho, M. H. Abstracts of f'apers, 166th ACS Meeting, Washington 1983; Div. of Chem. Health & Safety, Abs. 23. (23) Kennedy, E. R.; Smith, D. L.; Geraci, C. L., Jr. Abstracts of Papers, 186th ACS Meeting, Washington 1983; Div. of Chem. Health & Safety, Abs. 20. (24) Rando. R. J.; Hammad, Y. Y. Am. Ind. Hyd. Assoc. J . 1985, 46(4), 206-10. (25) Rosenberg, C.; Tuomi, T. Am. Ind. Hyg. Assoc. J . 1984, 45(2), 117-21. (26) Schwar. M. J. R. London Mvlron. Suppl. 1983, No. 1, 16 pp. (27) Taylor, D. Q.; Baron, P. A.; Shuiman, S. A,; Carter, J. W. Am. Ind. Hyg. ASSOC.J . 1084, 45(2), 84-8. MISCELLANEOUS TECHNIQUES (1) Askadskii, A. A.; et ai. Polym. Sci. USSR 1982, 24(11), 2813-26. (2) Barnett, S. A.; Strivens, T. A.; Williams-Wynn, D. E. A. JOCCA 1984, 67(1 l ) , 275-9. (3) Bartoszek-Loza, R.; Butler, R. J. R o c . XIth Int. Conf. in Organic Coatlngs Sclence & Technology, Athens 1984, 191-201. (4) Beck, F. Farbe Lack 1985, 97(2), 92-3. (5) Boxaii, J. Polym. Paint Col. J . 1985. 775(4149), 597-9. (6) Brltish Standards Institution. BS 684: Section 7.2: 1984, 4 pp (IS0 6320-1 983). (7) Butler, R. J.; Bartoszek, Loza, R. ACS, Dlv. PMSE, Papers 1985, 53, 383-7. (6) Campbell, D.; Michinson, M. Coatlngs & Surface Treatment of Corrosion & Wear Reslstance; Inst. Corros. Sci. Tech. Symp. 1983 (Pubi. by Eiiis Horwood Lts.), 336-59. (9) Cerisola, G.; Agrigento, V.; Bonora, P. L.; Sibiiie, E. Pltture Vernici 1984, 60(7), 64-5. (IO) Cerisola. G.; Bonora, P. L. Meterials Chem. 1982, 7(2), 241-8. (1 1) Drazic, D. M.; Vasclc, V. PItture Vernlci 1984, 60(7), 52-4. (12) Fissan, H. J.; Heisper, C.; Thieien, H. J. J . Aerosol Sci. 1983, 74(3). 354-7. (13) Forbes, A. BSC Thesis, Trent Polytechnic 1984, 76 pp. (14) Funke, W. Pifture Vernici 1984, 60(7), 42-3. (15) Garai, T.; Meszaros, L.; Janaszik, F. Materlals Chem. 1982, 7(2), 195-8. (16) Hausier, K.-G.; Wohifahrt, C.; Bischof, G. J. Plaste Kautschuk 1984, 37(12), 447-8. (17) Hepburn, B. J.; Callow, L. M.; Scantiebury, J. D. JOCCA 1984, 67(7), 193-7 (18) -Kaiser, W.-D. Korrosion 1984, 75(2), 71-84. (19) Kendig, M. W.; Meyer, E. M.; Lindberg, G.; Mansfeid, F. Corros. Sci. 1983. 23(9). 1007-15. (20) Kratochvi; P.; Strakova, D.; Stejskai, J. Polym. Commun. 1985, 26(7), 202-4. (21) Lengyei, B.; Meszaros, L.; Janaszik, F. Pifture Vernici 1984, 60(7), 44-6. (22) Lindqvist, S. A.; Meszaros, L.; Svenson, L. JOCCA 1985, 68(1), 10-4. (23) Lunazzi, G. C.; Maja, M. Pitture Vernici 1984, 60(7), 55-9. (24) Lynde Anderson, J.; Russel, R. F.; Slover, C. C. J . Radiation Curing 1985, 72(2), 10 (5 pp). (25) Mansfeld, F.; Kendig, M. Prox. Xth Int . Conf. in Organic Coatings Science & Technology, Athens 1984, 181-97. (26) Maiavoiti, D. 0. Riv. del Col. 1984, 77(191), 105-7. (27) Meszaros, L.; Lengyei, B.; Janaszik, F. Materials Chem. 1982, 7(2), 165-82. (28) Metikos-Hukovic, M.; Zevnik, C. Werkstoffe Korrosion 1984, 35(3), 116-2. (29) Mieczkowskl, R. Polinwry 1984, 29(8), 320-1. (30) Mills, D. J. Coatings & Surface Treatment for Corrosion 8 Wear Resistance, Inst. Corros. Sci. Tech. Symp. 1983, (Publ. by Ellis Horwood Ltd.), 3 15-30. (31) Miiis. D. J. Pltture Vernici 1984, 60(7), 102-4. (32) Montanari, A.; Massini, R.; Milanese, G.; Cassara, A. Pifture Vernici 1084, 60(7), 47-51. (33) Pinney, S. G. J. Protect. Coat. Linings 1985, 2(2), 7. (34) Repettl, G. Meterlels Chem. 1082, 7(2), 249-64. (35) Roiiand, P. PmUre Vernici 1984, 60(7), 38-41. (36) Rowlands, J. C.; Chuter, D. J. Corros. Sci. 1984, 23(4), 331-40. (37) Schuiz, 0.;Wehrstedt, C.; Gnauck, R. Pkste Kautschuk 1985, 32(4). 153-5.
ANALYTICAL CHEMISTRY, VOL. 59, NO. 12, JUNE 15, 1987
45 R
Anal. Chem. 1987, 59, 46 R-67 R (38) Shcherbakov. V. M.; Mnatsakanov, S. S. Lakokras. Met. 1984, No. 3, 40-2. , J. MapftW SegLVllled 1984, 4(14),51-7. (39) T r ~ J l l b M. (40) Vartv, P. D. BSc Thesis, Trent Polytechnic 1983,91 pp. (41) Verkholantsev, V. V. Lakokras. Met. 1985, No. 4, 49-53. MISCELLANEOUS MEASUREMENTS (INCLUDINQ PHYSICAL TESTS)
(1) Aboukhashaba, A. A.; Rabah, M. A.; Aly, M. S. JOCCA 1984. 67(9), 239-41. (2) American Society for Testing & Materials. ASTM D 1005-84,7985 AnnuaiBookofASTMStamrds, 06.01,164-7. (3) American Society for Testlng & Materials. ASTM D 1044-82,7985 Annual Book of ASTM standi?& I 08 .O 1, 543-7. (4) American Society for Testing & Materials. ASTM D 3359-63,7964 Annual Book of ASTM Standerds 08.01 668-72. (5) American Society for Testlfig & Materials. ASTM D 4060-84,7965 AnnuaiBook ofASTMStandemk, 06.01, 879-81. (6)American Society for Testlng & Materials. ASTM Res. Rept . No RR D -7 7037, 1984. 13 pp. (7) Anon. flastverarbelter 1984. 35(1),94-5. (8) Anon. f/g. Resh Tech. 1985, 14(6), 14-8. (9) Basin, V. E. Frog. Ckg.Coat. 1984, 72(3),213-50. (lo) Bell, R. T. Surface Coat@$ Austral. 1984, 27(8). 8-10. (11) Bonora, P. L.; Fenu, F.; Cerkola, G.; Balboni, P. fmUre Vernici 1984. 60(7),60-3. (12) Bradshaw, R. L.; Amksakis. C. Roc. Xth Internat. Conf. in Org'enic Coathgs Science & Technorogy, Athens 1884, 429-46. (13) Brann, B. L. J . Radlstbn Curing 1985, 72(3),4-10. (14) Braun, R.; Malltschek, 0. Fetfe Selfen Ansfrich. 1984, 86(2),76-82. (15) Chan, H. L. W.; Unsworth, J. Eur. folym. J . 1985, 27(4),377-82. (16) Chee. K. K. J . Appl. fo/ym. Scl. 1985, 30(4), 1359-63. (17) Chee. K. K. J . Appl. folym. Scl. 1885. 30(8). 2607-14. (18) Cipolla, B. G. Rlv. del Col. 1984, 17(195/196),214-6. (19) Coil, H.; Haseier, S. C. J . Co//okj Interface Sci. 1984, 99(2),591-2. (20) Coucoulas, L. M.; Dawe, R. A. J . Co/lokj Interface Sci. 1985, 703(1), 230-6. (21) Crewdson, M. J.; Lane, S. G. Metal Fin. 1984, &(lo), 83-8. (22) Deutsches lnstitut Fuer Normung. DIN 55 680, 1983: BSI WorMwMe List Stand. 1984 (May), 41. (23) Dixon, D. J. Coatings Tech. 1984, 56(717),60. (24) Eshuis, A.; Mellem, J. J . ColloM folym. Scf. 1984, 262(2), 159-70. (25) Ettei. W.-P.; Weske, M. flssfe Kaulschuk 1984, 37(1),30-2. (26) Fox, R. B.; Bitner, J. L.; Hinkiey, J. A,; Carter, W. folym. Engng. Sci. 1985, 25(3),157-63. (27) Funke, W. JOCCA 1985. 68(9),229-32. (28) Fytas, G.;Wang, C. H.; Meler, G.; Fkcher, E. W. h4acromoiecuies 1985, 78(7), 1492-6. (29) Gieldowski, L. Frzem. Drzew. 1983, No. 9,7-10. (30) Goodwin, J. W.; Gregory, T.; Miles. J. A.; Warren, B. C. H. J. Colloid Interface S o . 1984, 97(2). 488-95. (31) Guerdoux, L.; Duckett, R. A.; Froelich, D. Polymer 1984, 25(10), 1392-6. (32) Hecht, P.; Otto, R.; Qerber, K. Plsste Kautschuk 1984, 31(11),436-7 (33) Hopman, P. C. JOCCA 1984. 67(7), 179-84. (34) Hopman, P. C.; Burgmeyer, J. W. Farbe L8Ck 1984, 90(7), 556-9. (35) Hourston, D. J.; Klein, P. G. ACS, Div. fMSE 1984, 51, 488-93. #
I
(36) Huisman, H. F. J . Coatlngs Tech. 1984, 56(712). 85-79 (37) Hulden, M.; Hansen, C. M. Prog. Org. Coat. 1985, 73(3/4),171-94. (38) HuyskBns, P. L.; Hauialt-Plrson, M. C. Roc. Xth Internet. Conf. In Organic Coatings Science & Techndogy. Athens 1984, 125-37. (39) Ishida, S.;Kltagawa, T.; Nakamoto, Y.; Kaneko. K. folym. Bull. 1983, 70(1 I/ 12),533-7. (40)Katlme, I.; Ochoa, J. R.; Cesteros, L. C. €ur. folym. J. 1983, 79(12), 1167-9. (41) Kiempner, D.; et ai. ACS, Div. fMSE 1984, 57, 503-11. (42) Kuo, H.-H. J . Coatings Tech. 1085, 57(727),57-61. (43) Lee, G. F.; Hartmann, B. J . Appl. folym. Sci. 1984, 29(4), 1471-4. (44) Lowell, S.;Shieldsk. J. E. 2nd ed.;Powder Technolcgy Series; Chapman 8. Hall: London, 1984;xiii 4- 234 pp. (45)Massouda, D. F. J. Coatings Tech. 1985, 57(722),27-36. (46) Mekenyan, 0.; Dimkrov, S.; Bonchev, D. Eur. folym. J . 1983, 79(12), 1185-93. (47) MueHer, K. Kunststoffberater 1983, 28(11/12),28-35. (48) Nakamae, K.; Sumwa, K.; Tall, Ta.; Matsumoto, T. J . Polym. Sci., folym. S C P p . 1984, NO.71, 109-19. (49)Nakamichi, T. J . Jpn. Sco. Col. Mat. 1984, 57(12),843-51. (50) Newey, H. A.; Busso, C. J.; Beck, T. R.; Wedgewood, A. R. J. Appl. folym. Scl. 1985, 30(2),875-94. (51) OHara, K.; Gordon, W. P. Roc. XIth Int. Conf. in Organic Coatings Science & Technology, Athens 1985, 273-92. (52) Orbon, S . J.; Plazek, D. J. J . folym. Sci., folym. Phys. 1982, 20(9),
1575-83. (53) OtSubo, Y.; Amarl. T.; Watanabe, K. J. A m / . folym Sci. 1984, 29(12). 4071-80, (54) Perera, D. Y. JOCCA 1985, 67(11),275-81. (55) Perera, D. Y. J . Coatings Tech. 1984, 56(716),111-8. (56) Perera, D. Y.; Vanden Eynde, D. J . Coatlngs Tech. 1984, 56(718),
__
69-76 ._
(57) Pinks, W.; Schubert, H. Swiss Plastics 1984, 6(1/2),21-3. (58) Ponce, S.; &met, D.; Schreiber, H. P. J. Coatings Tech. 1985, 57(728),37-42. (59) POniZOvskii, V. M.; Spelkov, G. P.; Gor'kii, A. M. Prof. Metals 1983, 19(5),686-8. (60) Prttykin, L. M.:Vakula, V. L. Adhaesion 1883, 27(12),14-9. (61)Ram Mohan Reo, M. P.; Shareef, K. M. A.; Yaseen, M. fahtindla 1984, 34(12),7-14. (62) Shebeko, Hu N.; Korol'chenko, A. Ya. Lakokras. Mat. 1985, No. 3, 55-6. (63) Shimbo. M.; Ochi, M.; Arai, K. J . Coatings Tech. 1985, 57(728),93-9. (64) Sickfeld, J. Deutsche Malerblatf 1984, 55(9),993-6. (65) Slhrentoinen, I. J . CoaHngs Tech. 1985, 57(722),55-60. (66) Simpson, L. A. froc. X V I I FATIPEC Congress, Lugano, Switzerland 1984, 3,453-85. (67) Szilas. A. Rheol. Acta 1984, 23(1),70-4. (68) Tant, M. R.: Wlkes, G. L.; Storey, R. F.; Kennedy, J. P. folym. frepr. 1984, 25(2), 118-9. (69) Urad Pro Normalisaci (Czechoslovakia). CSN 67 3082, 1983: BSI WwMwMe List Stand. 1884 (June), 43. (70) Wallace, B. A.; Thompson, J. C. Pipe Line Ind. 1984,6 0 , 37 (5 pp). (71) Yaseen, M.; Raju, K. v. s . n. JOCCA 1984, 67(7),185-93. (72) Zukas, W. X.; Schneider, N. S.; MacKnight, W. J. folym. frepr. 1984, 25(2),205-6.
Ferrous Analysis William A. Straub USS Technical Center, Monroeville, Pennsylvania 15146
This review is the seventh in the series compiled by using the Dido on-line CA Search facilities at the Information Resource 8enter of USS Technical Center covering the period from Oct. 1984 to Nov. 1,1986. I would like to make special note of the fact that my colleague in the writing of the previous six ferrous analysis reviews, Dr. J. K. Hurwitz, has retired and is moving on to other opportunities. I wish to thank him for his many contributions to our previous efforts and wish him well. Our industry, particularly the American steel-producing segment, continues to struggle with the related problems of over-capacity and decreasing markets. Coupled with the reality that steel is increasingly being sold as a commodity and that it can be supplied from almost everywhere in the industrial world, we fine that our research efforts are tending toward the development and control of continuous steel 46 R
making processes in order to reduce costs. The analytical effort that has accompanied this change of direction is clear; fewer papers are being published and research efforts are b e i i more narrowly focused on the development and adaptation of methods that are most amenable to automation. The quest for better surface properties, through the application of various electrochemical and other coating techniques, seems to have increased and reinforces the notion that only through the value added to a steel by proper fiihing steps can a major supplier hope to compete profitably. The detection, determination, and control of microalloying constituents has also been generating a lot of interest as evidenced by the number of publications devoted to this subject in the last few years. Several recent review articles, one from Japan (339), from the UK. (27),from France (204),and from Germany (252), amplify on the recent trends in the application of modern analytical
0003-2700/87/0359-46U$06.50/~ 0 1987 American Chemical Society