Comparative toxicology for risk assessment of marine fishes and

Crust aceanst. Glenn W. Suter I I * and Aaron E. Rosen. Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 3783 1...
0 downloads 0 Views 1MB Size
Environ. Sci. Technol. 1988, 22, 548-556

Swackhamer,D. L.; Charles, M. J.; Hites, R. A. Anal. Chem. 1987, 59, 913.

Harvey, G. R.; Steinhauer,W. G. Atmos. Environ. 1974, 8, 777-782.

Bidleman, T. F.; Olney, E. E. Nature (London) 1975,257, 475-477.

Atlas, E.; Giam, C. S. Science (Washington,D E . ) 1981,211, 163-165.

Ballschmiter, K.; Zell, M. Int. J.Enuiron. Anal. Chem. 1980, 8, 15-35.

Swain, W. R. J. Great Lakes Res. 1978, 4, 398-407. Kaminsky,R.; Hites, R. A. Environ. Sci. Technol. 1984,18, 275-279.

Eisenreich, S. J.; Hollod, G. J.; Johnson, T. C. Environ. Sci. Technol. 1979, 13, 569-573. Swackhamer,D. L.; McVeety, B. D.; Hites, R. A. Environ. Sci. Technol., in press. Niimi, A. J. Can. J. Fish. Aquat. Sci. 1983, 40, 306-312. Neely, W. B.; Branson, D. R.; Blau, G. E. Enuiron. Sei. Technol. 1984,8, 1113-1115. Chiou, C. T.; Freed, V. H.; Schmedding, D. W.; Kohnert, R. L. Enuiron. Sei. Technol. 1977, 11, 475-478. Veith, G. D.; DeFoe, D. L.; Bergstedt, B. V. J. Fish. Res. Board Can. 1979, 36, 1040-1048. Kenaga, E. E. Environ. Sei. Technol. 1980,14, 553-556. Konemann, H.; Leeuwen,K. V. Chemosphere 1980,9,3-19. Mackay, D. Environ. Sei. Technol. 1982,16, 274-278. Chiou, C. T. Enuiron. Sei. Technol. 1985, 19, 57-62.

(30) Oliver, B. G.; Niimi, A. J. Environ. Sei. Technol. 1983,17, 287-291. (31) Thomann, R. V.; Connolly, J. P. Environ. Sei. Technol. 1984,18,65-71. (32) Weininger, D. Ph.D. Dissertation, University of Wisconsin, Madison, WI, 1978. (33) Farrington, J. W.; Westall, J. In The Role of the Oceans

as a Waste Disposal Option; Kullenberg, G., Ed.; Reidel Dordrecht, The Netherlands, 1986; pp 361-425. (34) Farrington, J. W.; Davis, A. C.; Brownawell, B. J.; Tripp, B. W.; Clifford, C. H.; Livramento, J. B. In Organic Marine Geochemistry;Sohn, M. L., Ed.; ACS Symposium Series 305; American Chemical Society: Washington, DC, 1986; pp 174-197. (35) Kuehl, D. W.; Cook, P. M.; Batterman, A. R.; Lothenbach, D. B. Chemosphere 1985, 14,427-437. (36) Opperhuizen, A,; van der Velde, E. W.; Gobas, F. A. P. C.; Liem, D. A. K.; van der Steen, J. M. D. Chemosphere 1985, 14, 1871-1896. (37) Opperhuizen, A. Ph.D. Dissertation, University of Amsterdam, Netherlands, 1986. (38) Matsuo, M. Chemosphere 1980, 9, 671-675.

Received for review February 10, 1987. Revised manuscript received November 3, 1987. Accepted December 16, 1987. This work was supported by the US.Environmental Protection Agency through Grant R808865.

Comparative Toxicology for Risk Assessment of Marine Fishes and Crustaceanst Glenn W. Suter I I * and Aaron E. Rosen

Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 3783 1

The goal of this study was to collect data on the effects of chemicals on marine fishes and crustaceans and to evaluate the predictive power of the data for assessing risks to marine resources. The data sets consisted of acute median lethal concentrations (LC50s)and chronic maximum acceptable toxicant concentrations (MATCs). They were analyzed with regression models and simple comparisons. The conclusions include the following: (1) the variability found in the marine data was comparable to that found in freshwater data; (2) the standard marine test fish Cyprinodon uariegatus appears to be representative of marine fishes; (3) the responses of marine crustaceans are so highly diverse that the concept of a representative crustacean is questionable; (4) mysid and penaeid shrimp appear to be particularly sensitive to toxic chemicals. These conclusions are subject to the constraints of the existing limited data base and should be confirmed by a systematic study of the relative sensitivity of marine organisms to chemicals with diverse modes of action. W

Introduction Fishes and crustaceans inhabiting coastal marine waters are subject to the effects of a variety of pollutants plus habitat loss, harvesting, entrainment in water intakes, and natural stresses. Changes in the abundance of these organisms are apparent but difficult to explain. The goal of this study was to collect data on the effects of chemicals on marine fishes and crustaceans and evaluate the predictive power of the data using environmental risk as‘Publication No. 2792, Environmental Sciences Division, Oak Ridge National Laboratory. 548

Environ. Sci. Technol., Vol. 22, No. 5, 1988

sessment methods developed for the U.S.Environmental Protection Agency (EPA) (1). The results would be a tool for determining where pollutants may be affecting coastal stocks of fishes and crustaceans. The specific objectives were as follows: (1)to evaluate the utility of existing marine toxicity data for developing the types of taxonomic and acute-chronic extrapolation formulas that have been used for risk analysis of toxic effects on freshwater organisms ( 2 , 3 ) ,(2) to examine the representativeness of the standard marine test species, (3) to compare the relative sensitivities of toxicants of different marine species, (4)to evaluate the feasibility of extrapolating from freshwater to marine species. Methods Data Sets. We used four data sets in this study. The first is a marine chronic toxicity data set consigting of data from studies reporting acceptable life cycle, partial life cycle, or early life stage maximum acceptable toxicant concentrations (MATCs) for marine or estuarine fishes or crustaceans. The MATC is the geometric mean of the lowest concentration producing a statistically significant effect and the highest concentrationproducing no such effect on survival, growth, or fecundity in any life stage in a life cycle, partial life cycle, or early life stage test. It is used as a threshold for toxic effects in exposures of indefinite duration but does not correspond to any particular level or type of effect on any particular life stage. The MATCs and associated 96-h median lethal concentrations (LC508) for 114 species-chemical pairs are listed in Table I. The second is an equivalent set of chronic data for freshwater fishes, containing the results of 177 chronic tets (1). The third is a set of chronic data (MATCs and

0013-936X/88/0922-0548$01.50/0

@ 1988 American Chemical Society

Table 1. Marine Chronic Data Set LCW, MATC, MATC speciesa CCgIL CCglL typeb ELS cv 1.1 0.04 AC 222, 705 ELS cv 3 100 710 acenaphthene LC MB 7 3000 900 acephate LC MB 249 19 silver nitrate LC MB 141 15 LC 59 MB LC MB 300 53 LC 1.2 MB 16 aldicarb cv 500000 BO 000 ELS ammonium jarosite ELS 7.1 cv Aroclor 1016 ELS 0.098 cv Aroclor 1254 LC MB 1740 893 arsenic LC MB 1000 123 atrazine cv 16000 2 542 ELS LC 0.96 3.7 bis(tributy1tin) oxide cv cv 7 1000 6 400 ELS bromoform LC cv 386 19 carbofuran LC PP 2.9 0.28 carbophenothion 0.76 LC MB 3.0 ELS cv 2.8 1.9 LC MB 15.5 5.5 cadmium LC MB 110 . 7.1 LC cv 12.5 0.6 chlordane ELS cv 24.5 11 ELS MP 0.054 0.072 oxidants ELS MM 1.7 0.37 chlorpyrifos 1.3 ELS 1.2 LT 4.2 ELS MY 0.54 46 1.3 ELS MP ELS cv 2.3 ELS