742
J. Chem. Eng. Data 2005, 50, 742-768
Compilation, Evaluation, and Selection of Physical-Chemical Property Data for Organochlorine Pesticides Li Shen and Frank Wania* Department of Chemistry and Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
Accurate physical-chemical properties (aqueous solubility SW, octanol-water partition coefficient KOW, vapor pressure P, Henry’s law constant H, octanol-air partition coefficient KOA, octanol solubility SO) and their temperature dependence are of fundamental importance for interpreting and simulating the environmental fate and transport of organochlorine pesticides (OCPs). A complete set of property data for 14 organochlorine chemicals is derived by evaluating, averaging, and regressing all measured values reported in the literature. The 14 chemicals are hexachlorobenzene (HCB), pentachlorobenzene (PeCB), cis-chlordane, trans-chlordane, 1,1,1-trichloro-2,2-bis-4-chlorophenyl-ethane (p,p′-DDT) and its metabolites 1,1-dichloro-2,2-bis-4-chlorophenyl-ethene (p,p′-DDE) and 1,1-dichloro-2,2-bis-4-chlorophenyl-ethylene (p,p′-DDD), heptachlor and its metabolite heptachlor epoxide, aldrin, dieldrin, endrin, R-endosulfan, and β-endosulfan. Properties for each individual chemical are adjusted to ensure thermodynamic consistency. That adjustment is sized according to, and is usually smaller than, the measurement uncertainty. Internal energies of phase transfer ∆U could be derived only for HCB and PeCB. The lack of property measurements as a function of temperature for the other chemicals prevents their ∆U values from being derived.
Introduction Organochlorine pesticides (OCPs) were extensively used in agriculture from the 1950s to the 1970s. Some have been used longer than others, and some, such as lindane and endosulfan, are still in use. The OCPs comprise a diverse group of chemicals but tend to share certain characteristics and structural features. They typically have an aliphatic or aromatic cyclical structure, which is heavily substituted with chlorines. As a result, most OCPs are sparingly soluble and semivolatile. Early measurements detected OCPs in a wide range of environmental compartments, even in remote regions far from the original site of application.1,2 Because of their high stability, OCPs can remain unchanged for a long time in the environment. Numerous investigations on OCPs have shown their continued and ubiquitous presence around the world (e.g., refs 3 and 4). Because of this persistence, phase distribution and transport processes tend to play a larger role in controlling their environmental fate and bioaccumulation behavior than for other more readily degradable substances.5 Phase distribution and transport processes of pollutants in the environment are often quantified by using key physical-chemical properties such as the aqueous solubility SW, vapor pressure P, octanol-water partition coefficient KOW, Henry’s law constant H, octanol-air partition coefficient KOA, and solubility in octanol SO. Assessment models predicting the fate and behavior of OCPs in the environment require these properties as input parameters. Several OCPs, including HCB, DDT, chlordane, heptachlor, dieldrin, and endrin, are among the first persistent organic pollutants (POPs) to be subjected to global restrictions in the Stockholm Protocol.6 That global treaty also allows for the nomination of additional chemicals if they * Corresponding author. E-mail:
[email protected].
fulfill a number of criteria related to toxicity, bioaccumulation, persistence, and long-range transport potential. Some of these criteria are based on physical-chemical property thresholds, in particular with respect to KOW and vapor pressure. The protocol furthermore allows for the use of models in defining the attributes of candidate substances (e.g., in terms of the long-range transport potential), and physical-chemical properties are key input parameters for such models. Accurate and precise physical-chemical property data for the OCPs are thus required if they are to serve as benchmarks for defining the combination of properties that render a chemical a POP. Considering that the OCPs are among the first detected and most widely studied organic pollutants, one might expect that their partitioning properties are well established. Indeed, a large number of studies have reported physical-chemical properties for the OCPs over the last several decades, and handbooks of property data compile long lists of property values.7 However, the reported values often conflict with each other and may even range over several orders of magnitude. Using the water solubility and KOW of p,p′-DDT and p,p′-DDE as an example, Pontolillo and Eganhouse8 painstakingly documented reporting errors, multilevel referencing, and a common lack of information on precision as well as other problems in both original literature sources and property compilations, which are partly responsible for the intimidating degree of inconsistency. Another reason for the problems in identifying the true value of the partitioning properties of OCPs is the difficulty in reliably measuring SW, H, and KOW of sparingly soluble substances and P, H, and KOA of semivolatile substances.8 Beyer et al.9 suggested that the solution to this dilemma lies in taking advantage of the thermodynamic relationships between the physical-chemical descriptors of an organic chemical. The accuracy of a particular property
10.1021/je049693f CCC: $30.25 © 2005 American Chemical Society Published on Web 03/02/2005
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 743 Table 1. Reported and Selected Physical-Chemical Properties for Hexachlorobenzene (HCB) common name CAS registry no. formula MW/g‚mol-1
hexachlorobenzene 118-74-1 C6Cl6 284.8
tM/°C
228.0 229.7 228.9 228.7 228.0 231.9 44.77 50.16 49.73 48.96 47.23
∆fusS/J‚K-1‚mol-1
23 24 25 26 22 27 23 25 26 22 27
Vapor Pressure t/°C
PS/Pa
PL/Pa
log(PL/Pa)
method
ref
-15 -5 10 25 40 -30 -20 -10 0 10 20 30 15 25 35 45 41.05 50.16 60.3 70.3 80.3 90.4 100.25 10 20 30 40 50 10 20 30 40 50 20 20 40 60 96 105 115 124 114.4 149.3 166.4 185.7 206 219 235.5 258.5 283.5 309.4 -30 0 25 50 75 100 125 LDV at 25 °C FAV at 25 °C
0.0000022 0.000024 0.00026 0.0031 0.012 0.0000026 0.0000073 0.000032 0.00010 0.00036 0.0011 0.0033 0.00053 0.0025 0.0085 0.028 0.021 0.055 0.17 0.45 1.2 2.8 6.3 0.00080 0.0026 0.0081 0.023 0.061 0.00028 0.0011 0.0039 0.013 0.039 0.00046 0.00074 0.0095 0.089 3.4 7.0 15 28 133 667 1333 2666 5333 7999
0.00053 0.0037 0.023 0.16 0.40 0.0012 0.0022 0.0062 0.013 0.032 0.068 0.15 0.039 0.13 0.33 0.80 0.66 1.4 3.1 6.6 13 25 46 0.071 0.16 0.36 0.76 1.5 0.025 0.069 0.18 0.43 0.97 0.029 0.046 0.32 1.7 28 47 82 131 741 1993 3049 4616 7057 9016 13332 26664 53329 101325 0.00024 0.0099 0.12 1.1 6.6 32 130 0.14 0.094
-3.28 -2.43 -1.63 -0.78 -0.40 -2.91 -2.66 -2.20 -1.88 -1.50 -1.17 -0.83 -1.41 -0.87 -0.48 -0.10 -0.18 0.13 0.49 0.82 1.12 1.40 1.67 -1.15 -0.79 -0.44 -0.12 0.18 -1.61 -1.16 -0.76 -0.37 -0.01 -1.54 -1.34 -0.50 0.23 1.44 1.67 1.91 2.12 2.87 3.30 3.48 3.66 3.85 3.96 4.12 4.43 4.73 5.01 -3.62 -2.00 -0.90 0.03 0.82 1.51 2.11 -0.85 -1.03
generator column - GC
28
gas saturation - GC
29
gas saturation - GC
30
gas saturation - GC
31
gas saturation - GC
32
vapor pressure balance
32
relative loss rate evaporation rate
33 34
Rodebush manometer
24
note
calcd from the reported equation log(PS/Torr) ) - 5152.1/(T/K) + 12.237 (20 to 60) °C calcd from the reported equation log(PS/mmHg) ) -4793.6/(T/K) + 11.4 (96 to 124) °C
35
GC - retention time
linear regression
36
calcd from the reported equation log(PL/Pa) ) -3582/(T/K) + 11.11
log(PL/Pa) ) -3530/(T/K) + 10.97 R2 ) 0.974
744
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005
Table 1. (Continued) Aqueous Solubility t/°C
SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
5 15 25 35 45 25 25 20 25 23 22 23 23 25 25 24 23 23 23 LDV at 25 °C FAV at 25 °C
0.0000077 0.000012 0.000019 0.000030 0.000049 0.000018 0.000017 0.000019 0.000017 0.000030 0.000014
0.00082 0.00091 0.0010 0.0012 0.0014 0.00093 0.00087 0.0012 0.00092 0.0017 0.00081 0.0027 0.0010 0.00093 0.0011 0.019 0.0029 0.00090 0.000096 0.00096 0.0014
-3.08 -3.04 -3.00 -2.94 -2.85 -3.03 -3.06 -2.93 -3.04 -2.77 -3.09 -2.57 -2.99 -3.03 -2.95 -1.72 -2.54 -3.05 -4.02 -3.02 -2.84
t/°C
H/Pa‚m3‚mol-1
KAW
log KAW
14.8 20.1 22.1 24.2 34.8 50.5 20 25 23 23 25 26 46 LDV at 25 °C FAV at 25 °C
24 30 47 53 88 217 49 172 133 172 24 26 30 52 65
0.0099 0.012 0.019 0.021 0.034 0.081 0.020 0.069 0.054 0.070 0.0096 0.011 0.011 0.021 0.026
-2.01 -1.91 -1.72 -1.67 -1.46 -1.09 -1.70 -1.16 -1.27 -1.15 -2.02 -1.98 -1.95 -1.68 -1.58
0.000018 0.000018 0.000021 0.00035 0.015 0.0045 0.00048
method
ref
generator column - GC
37
generator column - GC generator column - GC generator column - GC shake flask - UV shake flask - UV shake flask - GC shake flask - GC shake flask - HPLC SPME-GC radioassay nethelometric RP-HPLC
38 39 40 41 42 43 44 45 46 47 48 49 49 49
note
log mean of the values at 25 °C
Henry’s Law Constant method
ref
gas stripping - GC
50
gas stripping - GC gas stripping - GC gas stripping - GC
51 19 20
thermodynamic method EPICS - GC
52 53
note
not used, seawater
log mean of the values at (20 to 26) °C
Octanol-Water Partition Coefficient t/°C
KOW
log KOW
5 15 25 35 45 25 25 25 25 25 25 25 25 25 23 23 22 25 25 25 25 25 25 25 25 23 23 23 LDV at 25 °C FAV at 25 °C
5.5 × 4.0 × 105 2.9 × 105 2.0 × 105 1.5 × 105 3.2 × 105 3.2 × 105 2.1 × 105 5.4 × 105 4.0 × 105 3.2 × 105 3.0 × 105 3.5 × 105 4.0 × 105 1.6 × 105 2.0 × 105 1.0 × 105 1.9 × 106 5.6 × 105 2.6 × 107 8.3 × 106 7.9 × 105 4.0 × 106 3.0 × 106 2.6 × 106 1.7 × 105 3.2 × 106 1.5 × 106 3.3 × 105 4.3 × 105
5.74 5.6 5.46 5.3 5.17 5.5 5.5 5.31 5.73 5.6 5.5 5.47 5.55 5.6 5.2 5.3 5 6.27 5.75 7.42 6.92 5.9 6.6 6.47 6.41 5.23 6.51 6.18 5.52 5.64
105
method
ref
shake flask - GC
54
shake flask - GC shake flask - GC shake flask - GC shake flask - GC slow stirring - GC slow stirring - GC generator column - GC dialysis - HPLC
55 56 57 58 59 60 39 61
radioactive analysis GLC analysis shake flask - GC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC
62 63 63 64 65 66 59
RP-HPLC RP-HPLC RP-HPLC RP-HPLC
67 68 69 49
log mean of the values at 25 °C
note
without ultrasonic agitation with ultrasonic agitation
100% water 85% methanol + 15% water
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 745 Table 1. (Continued) Octanol-Air Partition Coefficient t/°C
KOA
log KOA
5 10 15 20 25 -10 0 10 20 LDV at 25 °C FAV at 25 °C
1.2 × 8.0 × 107 5.3 × 107 3.6 × 107 2.4 × 107 4.2 × 108 1.2 × 108 3.7 × 107 1.3 × 107 2.4 × 107 1.6 × 107
8.09 7.90 7.72 7.55 7.38 8.63 8.08 7.57 7.10 7.38 7.21
108
method
ref
note
generator column - GC
12
calcd from the reported equation log KOA ) 2914/(T/K) - 2.39 (5 to 25) °C
generator column - GC
13
calcd from the reported equation log KOA ) 3928/(T/K) - 6.3 (-10 to 20) °C not used
directly taken from the value at 25 °C Octanol Solubility
t/°C
SOS/mol‚m-3
SOL/mol‚m-3
log(SOL/mol‚m-3)
method
ref
note
4 12 20 25
8.5 11 14 15
942 884 861 800
2.97 2.95 2.94 2.90
slow stirring - GC
18
not used for the adjustment
shake flask - GC
70
value can be evaluated by relating it to the values of other associated partitioning properties. They proposed a method to adjust literature-derived property values for one chemical such that they conform to the thermodynamic relationships linking them. Li et al.10 further complemented that approach by developing a rigorous and transparent procedure for compiling and evaluating measured data from the literature, selecting literature-derived values through averaging or linear regression and making estimates of the uncertainty of these values. These uncertainty estimates determine the extent of relative adjustment applied in the adjustment algorithm. The procedure was applied to 16 PCB congeners, and the resulting set of data shows consistency not only among the various partitioning properties for one congener but also for one property across various congeners.10 Recently, an internally consistent set of physical-chemical property data for R-, β-, and γ-hexachlorocyclohexane (HCH) was derived on the basis of all experimentally obtained values reported for these isomers in the literature.11 The final adjusted values indicated that the partitioning behavior of R- and γ-HCH differs from that of β-HCH, which may result in substantially different environmental pathways for β-HCH. The present work’s objective was to use this same approach to derive an internally consistent property data set for 14 additonal OCPs, which makes use of all available measured data. These OCPs are HCB, PeCB, cis-chlordane, trans-chlordane, p,p′-DDT and its metabolites p,p′-DDE and p,p′-DDD, and heptachlor and its metabolites heptachlor epoxide, aldrin, dieldrin, endrin, R-endosulfan, and β-endosulfan. Property measurements for several other OCPs, namely, nonachlor, methoxychlor, and mirex, were found to be too limited to allow this procedure to be applied. Beyer et al.9 already adjusted for consistency property values for six of the OCPs (p,p′-DDT, p,p′-DDE, transchlordane, cis-chlordane, PeCB, HCB) but had used starting values, which were not as rigorously selected as in the current study. Methods The principles and steps involved in the evaluation, selection, and adjustment procedure have been described previously9,10 and will not be repeated here in detail. Briefly, the steps are as follows. Deriving Property Values from Measurements Reported in the Literature. The Chemical Abstracts Service
Source Index (CASSI) and other databases7 are used to obtain and identify all of the published literature on measured physical-chemical properties for the chemicals of interest. Despite our efforts at comprehensiveness, it is likely that additional data sources exist that escaped our attention. To avoid multilevel referencing and reporting errors, only original data sources are considered; that is, no quoted values are included.8 Although we may use handbooks to identify property values, we always consult the original sources to determine if the information is correct and available in the original publications. Values that refer to the same set of experiments, differ substantially from a cluster of other reported values, or are highly inconsistent with respect to the other property values for the same chemical are not used in the derivation of literature-derived values (LDVs). Data measured indirectly, such as those derived from chromatographic retention times, are included only if there are no directly measured data or the directly measured data are inconsistent with the other property data. Theoretically estimated values are excluded. The measured data are converted to appropriate and identical units and compiled in spreadsheets. If no exact experimental temperature is provided, then a temperature of 23 °C is assumed to apply. If the data are reported as a linear equation, then discrete values listed in tables are calculated for four or five temperatures that are either experimental temperatures indicated in the reference or temperatures in the environmentally relevant range. In some cases, values at low or high temperatures are calculated from an equation if it aids in the comparison with other measurements. Because the OCPs are solids at environmental temperatures, experimentally determined properties for the solid state were converted to those of the supercooled liquid. This is discussed in more detail below. If measured values for a property exist at several temperatures, then a linear regression equation between the logarithm of all noneliminated data and the reciprocal absolute temperature is derived. The LDVs for the property at 25 °C are obtained from the regression equation, and the LDVs for the corresponding internal energy of phase transfer are calculated from the slope of the regression line. If measurements had been performed within only a fairly small temperature range (e.g., (20 to 25) °C) and measured data at 25 °C are close to each other, then the LDV at 25 °C is the logarithmic mean of the noneliminated values at
746
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005
Table 2. Reported and Selected Physical-Chemical Properties for Pentachlorobenzene (PeCB) common name CAS registry no. formula MW/g‚mol-1
pentachlorobenzene 608-93-5 C6HCl5 250.3
tM/°C ∆fusS/J‚K-1‚mol-1
84.6 57.74
23 23
Vapor Pressure t/°C
PS/Pa
PL/Pa
log(PL/Pa)
30 40 50 60 30.3 40.3 50.2 60.2 70.1 80.0 98.7 108.7 118.8 128.9 138.9 149.0 159.1 169.1 179.1 98.6 129.7 144.3 160 178.5 190.1 205.5 227 251.6 276 20 LDV at 25 °C FAV at 25 °C
0.55 1.8 5.3 15 0.39 1.2 3.2 8.5 20 47
1.9 4.7 11 25 1.4 3.1 6.7 14 27 52 168 285 471 756 1189 1821 2731 4010 5751 133 667 1333 2666 5333 7999 13332 26664 53329 101325 0.25 1.2 1.0
0.28 0.68 1.05 1.39 0.13 0.49 0.83 1.15 1.44 1.71 2.22 2.45 2.67 2.88 3.08 3.26 3.44 3.60 3.76 2.12 2.82 3.12 3.43 3.73 3.90 4.12 4.43 4.73 5.01 -0.60 0.07 0.01
0.055
method
ref
note
71
pressure gauge
72
35
relative loss rate linear regression
33
outlier log(PL/Pa) ) -3220/(T/K) + 10.87 R2 ) 0.997
Aqueous Solubility t/°C
SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
25 22 5 15 25 35 45 25 25 25 25 22 23 23 23 23 23 LDV at 25 °C FAV at 25 °C
0.0033 0.00072 0.00058 0.0010 0.0017 0.0025 0.0034 0.0018 0.0035 0.0022 0.0053 0.0010
0.013 0.0031 0.0042 0.0054 0.0067 0.0075 0.0081 0.0071 0.014 0.0090 0.021 0.0046 0.0066 0.0037 0.058 0.053 0.0015 0.011 0.014
-1.88 -2.50 -2.37 -2.27 -2.17 -2.12 -2.09 -2.15 -1.86 -2.05 -1.67 -2.34 -2.18 -2.43 -1.23 -1.27 -2.82 -1.96 -1.85
0.00088 0.014 0.013 0.00035
method
ref
generator column - GC generator column - GC generator column - GC
39 73 37
shake flask - GC shake flask - GC/MS shake flask - UV shake flask - LSC shake flask - GC shake flask - GC shake flask - HPLC RP-HPLC
37 74 41 75 43 44 45 49
note
not used, indirect
log mean of the values at 25 °C
Henry’s Law Constant t/°C
H/Pa‚m3‚mol-1
KAW
log KAW
20 14.8 20.1 22.1 24.2 34.8 50.5 LDV at 25 °C FAV at 25 °C
72 37 49 68 67 124 276 74 72
0.030 0.016 0.020 0.028 0.027 0.048 0.10 0.030 0.029
-1.53 -1.81 -1.69 -1.56 -1.57 -1.31 -0.99 -1.52 -1.54
method gas stripping gas stripping
linear regression
ref
note
51 50
log KAW ) -2026/(T/K) + 5.27 R2 ) 0.957
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 747 Table 2. (Continued) Octanol-Water Partition Coefficient t/°C
KOW
log KOW
5 15 25 35 45 25 25 22 25 23 25 25 22 25 23 23 23 18 23 LDV at 25 °C FAV at 25 °C
1.6 × 1.1 × 105 8.7 × 104 6.2 × 104 4.6 × 104 1.5 × 105 1.6 × 105 1.6 × 105 8.7 × 104 8.7 × 104 1.1 × 105 1.5 × 105 7.6 × 104 1.5 × 105 1.1 × 105 4.9 × 105 3.0 × 105 1.3 × 106 5.5 × 105 1.2 × 105 1.6 × 105
5.20 5.06 4.94 4.79 4.66 5.17 5.20 5.20 4.94 4.94 5.03 5.18 4.88 5.18 5.06 5.69 5.47 6.12 5.74 5.08 5.19
105
method
ref
shake flask - GC
54
shake flask - GC shake flask - GC shake flask - GC shake flask - HPLC shake flask - LSC generator column - GC slow stirring - GC shake flask - GC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC log mean of the values at 25 °C
57 56 44 64 75 39 58 63 64 76 77 78 66 49
note
Octanol-Air Partition Coefficient KOA
log KOA
-10 0 5 10 20 25 25
t/°C
8.8 × 107 2.7 × 107 1.5 × 107 8.8 × 106 3.1 × 106 1.9 × 106 3.3 × 107
7.94 7.43 7.18 6.94 6.50 6.28 7.52
generator column - GC
LDV at 25 °C FAV at 25 °C
8.0 × 106 5.4 × 106
6.90 6.73
log mean of the values at 25 °C
method
GC - retention time
Octanol Solubility
25 °C. If there is an insufficient number of values at 25 °C or if data at 25 °C are scattered, then the LDV at 25 °C has to be derived using the logarithmic mean of the noneliminated values at (20 to 25) °C, assuming that in such cases the temperature dependence is minor compared to the uncertainty of the measurements. The arithmetic mean would give undue weight to higher values. If property values for selected chemicals had been measured by only a single study, then the LDVs for the property and the corresponding internal energy of phase transfer are taken directly from the relevant studies. If there are multiple data sets from the same author or research group, then the latest data take precedence. For example, most of the LDVs for KOA, except those for heptachlor epoxide and β-endosulfan, are taken from the study by Shoeib and Harner.12 Harner and Mackay13 had previously reported KOA values for HCB and p,p′-DDT. The more recent values are higher and more consistent with other properties and are thus considered to be more reliable and served as LDVs. Assigning Uncertainty Estimates to the LiteratureDerived Values. For each LDV value of the six evaluated properties PL, SWL, KOW, H or KAW, KOA, and SOL of a particular chemical, a relative uncertainty estimate, uX, is required to avoid the undue adjustment of a well-established property value to conform to a poorly characterized one.9 To minimize ambiguity in deciding on the value of uX for a property, a uX value between 1 and 5 is assigned by comparing the size of the database, the technique employed in a measurement, the deviations between dif-
ref
note
13
calcd from the reported equation log KOA ) 3722/(T/K) - 6.3 (-10 to 20) °C extrapolated Li, unpublished indirect, used anyhow
not found
ferent literature data, and the general reliability of data reported by a particular research group. For example, a relatively large uX, indicating high uncertainty, is assigned to properties for which few or no directly measured data exist (e.g., KAW for most selected chemicals), whereas properties that had been measured directly several times with accepted techniques yielding comparable values would deserve a low uX (e.g., PL for HCB). Adjusting the Literature-Derived Values to Conform to Thermodynamic Constraints. The LDVs were adjusted on the basis of their assigned uncertainties using the algorithm by Beyer et al.9 This technique adjusts a set of physical-chemical property values in such a way that they conform to thermodynamic constraints yet deviate as little as possible from the original values. The adjusted values are referred to as final adjusted values (FAVs). Missing property values are calculated at the same time. For the selected chemicals, KOW is assumed to be equal to SOL/SWL on the basis of the belief that for the OCPs the uncertainty caused by the effect of the mutual solubility of octanol and water on KOW is less than that of experimentally measured data reported in the literature. Beyer et al.9 provided a detailed account of the thermodynamic basis of the adjustment procedure and the equations on which it is based. A computer program with the algorithm is available from www.usf.uos.de/projects/elpos/download/ adjust.en.html. Conversion of Properties of the Solid to Those of the Supercooled Liquid. As mentioned above, the vapor pressure and solubility values reported for the solid phase
748
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005
Table 3. Reported and Selected Physical-Chemical Properties for p,p′-DDT common name CAS registry no. formula MW/g‚mol-1
p,p′-DDT 50-29-3 C14H9Cl5 354.5
tM/°C
∆fusS/J‚K-1‚mol-1
108.7 109.8 108.9 111.7 71.2 68.8 68.8 79.4
79 27 22 16 36 27 22 16
Vapor Pressure t/°C
PS/Pa
PL/Pa
log(PL/Pa)
method
ref
20 25 30 40 50 60 70 80 20 30 40 0 10 20 30 40 50.1 60.1 80.4 88.8 90.2 0 10 20 30 40 50 60 70 80 90 100 20 20 20 50 100 0 25 50 75 100 25 25 LDV at 25 °C FAV at 25 °C
0.000029 0.000057 0.00012 0.00053 0.0020 0.0064 0.020 0.060 0.000020 0.000097 0.00044 0.00000050 0.0000025 0.000017 0.000081 0.00038 0.0020 0.0071 0.078 0.20 0.23 0.00000059 0.0000036 0.000020 0.000096 0.00043 0.0018 0.0067 0.023 0.074 0.22 0.64 0.000043 0.000033 0.000017 0.000063 0.000090
0.00042 0.00067 0.0012 0.0037 0.0099 0.023 0.055 0.12 0.00029 0.00095 0.0031 0.000016 0.000054 0.00024 0.00079 0.0027 0.0099 0.026 0.16 0.33 0.36 0.000019 0.000076 0.00028 0.00094 0.0029 0.0088 0.024 0.063 0.15 0.36 0.80 0.00061 0.00047 0.00024 0.00031 0.00011 0.000016 0.00050 0.0092 0.11 0.96 0.00083 0.00047 0.00056 0.00048
-3.38 -3.17 -2.92 -2.43 -2.00 -1.63 -1.26 -0.90 -3.54 -3.02 -2.52 -4.79 -4.27 -3.61 -3.10 -2.58 -2.00 -1.59 -0.80 -0.48 -0.44 -4.72 -4.12 -3.55 -3.03 -2.53 -2.05 -1.61 -1.20 -0.81 -0.44 -0.10 -3.21 -3.32 -3.61 -3.51 -3.95 -4.79 -3.30 -2.03 -0.95 -0.02 -3.08 -3.33 -3.25 -3.32
gas saturation - HPLC
80
gas saturation - GC
81
gas saturation - GC
29
gas saturation - GC
82
effusion manometer
83
relative loss rate gas saturation - LSC
33 84 85
GC - retention time
36
calcd from the reported equation log(PL/Pa) ) -4865/(T/K) + 13.02
GC - retention time
86
BP-1 column Apolane-87 column log(PL/Pa) ) -4666/(T/K) + 12.40 R2 ) 0.995
linear regression
note
outlier
Aqueous Solubility t/°C 25 23 24 20 24 25 15 25 35 45 15 25 35 45 15
SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
method
ref
0.000014 0.0000088 0.000015 0.00011 0.000011 0.000015 0.000048 0.000071 0.00010 0.00013 0.0000071 0.000017 0.000037 0.000078 0.0000028
0.00017 0.00011 0.00019 0.0016 0.00014 0.00018 0.00083 0.00083 0.00086 0.00074 0.00012 0.00020 0.00030 0.00045 0.000049
-3.77 -3.95 -3.73 -2.79 -3.86 -3.74 -3.08 -3.08 -3.07 -3.13 -3.91 -3.70 -3.52 -3.34 -4.31
generator column - GC shake flask - UV shake flask - GC shake flask - HPLC shake flask - nephelometry centrifuge - GC shake flask - GC
46 42 87 88 48 55 89
particle size, 5 µm
shake flask - GC
89
not used, small particle size, 0.05 µm
shake flask - GC
89
not used, small particle size, 0.01 µm
note
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 749 Table 3. (Continued) Aqueous Solubility t/°C
SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
25 35 45 25 25 2 25 37.5 23 25 25 25 LDV at 25 °C FAV at 25 °C
0.0000048 0.0000073 0.000011 0.0000048 0.000085 0.0059 0.037 0.045 0.0016 0.0045 0.0023 0.020
0.000056 0.000060 0.000064 0.000056 0.00100 0.00016 0.00044 0.00035 0.000020 0.000053 0.000027 0.00023 0.00027 0.00042
-4.25 -4.22 -4.19 -4.25 -3.00 -3.80 -3.36 -3.45 -4.70 -4.28 -4.57 -3.63 -3.56 -3.37
method
ref
ultracentrigfugation - GC RP-HPLC shake flask - radiometric
90 49 91
shake flask - GC shake flask - LSC generator column RP-HPLC log mean of the values at (20 to 25) °C
92 93 94 94
note
outlier no isomer specified no isomer specified no isomer specified no isomer specified no isomer specified no isomer specified no isomer specified
Henry’s Law Constant t/°C
H/Pa‚m3‚mol-1
KAW
log KAW
25 25 22-24 23 23 LDV at 25 °C FAV at 25 °C
1.3 0.84 0.86 1.3 1.3 1.1 1.1
0.00052 0.00034 0.00035 0.00052 0.00054 0.00043 0.00043
-3.28 -3.47 -3.46 -3.28 -3.27 -3.37 -3.37
method thermodynamic method wetted-wall column fog chamber (drain) fog chamber (cyclone) log mean of the values at (23 to 25) °C
ref
note
84 52 95
not at 25 °C, used anyhow
Octanol-Water Partition Coefficient t/°C
KOW
log KOW
method
ref
note
25 25 25 23 23 23 25 25 18 25 17 23 23 23 23 23 LDV at 25 °C FAV at 25 °C
8.7 × 105 2.3 × 106 8.2 × 106 1.6 × 106 2.0 × 106 1.7 × 106 1.0 × 106 4.0 × 105 4.3 × 105 2.4 × 106 1.3 × 105 3.2 × 105 1.6 × 106 2.8 × 105 3.3 × 105 3.9 × 105 1.9 × 106 2.5 × 106
5.94 6.36 6.91 6.20 6.31 6.24 6.00 5.60 5.63 6.38 5.13 5.50 6.21 5.44 5.52 5.59 6.28 6.39
shake flask - GC shake flask - GC slow stirring - GC slow stirring - GC slow stirring - GC slow stirring - GC SPMD - GC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC log mean of the values at (23 to 25) °C
88 55 58 59
average of four replicates
60 46 65 66 76 96 97 68 67 98 85
Octanol-Air Partition Coefficient t/°C
KOA
log KOA
5 15 25 35 45 -10 0 10 20 LDV at 25 °C FAV at 25 °C
8.3 × 2.2 × 1010 6.4 × 109 2.0 × 109 6.9 × 108 6.7 × 1011 1.9 × 1011 5.8 × 1010 1.9 × 1010 6.4 × 109 5.4 × 109
10.92 10.34 9.81 9.31 8.84 11.83 11.28 10.76 10.29 9.81 9.73
1010
method
ref
note
generator column - GC
12
calcd from the reported equation log KOA ) 4603/(T/K) - 5.63 (5 to 45) °C
generator column - GC
13
calcd from the reported equation log KOA ) 3954/(T/K) - 3.2 (-10 to 20) °C not used
directly take the value at 25 °C Octanol Solubility
t/°C
SOS/mol‚m-3
SOL/mol‚m-3
4 12 20 20
76 123 162 99
2074 2403 2306 1404
log(SOL/mol‚m-3)
ref
note
slow stirring - GC
method
18
not used for the adjustment
shake flask - HPLC
88
750
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005
Table 4. Reported and Selected Physical-Chemical Properties for p,p′-DDE common name CAS registry no. formula MW/g‚mol-1
p,p′-DDE 72-55-9 C14H8Cl4 319
tM/°C
88.6 89.9 87.3 88.5 66.9 65.3 65.4
∆fusS/J‚K-1‚mol-1
79 27 22 16 27 22 16
Vapor Pressure t/°C
PS/Pa
PL/Pa
log(PL/Pa)
method
ref
note
15 25
0.00097 0.0033
-3.01 -2.48
GC - retention time
36
35 45 30 30 30 25 25 LDV at 25 °C FAV at 25 °C
0.010 0.030 0.0040 0.0080 0.0019 0.0027 0.0021 0.0033 0.0034
-1.99 -1.52 -2.40 -2.10 -2.73 -2.57 -2.68 -2.48 -2.47
calcd from the reported equation log(PL/Pa) ) -4554/(T/K) + 12.79 used anyhow
gas saturation - GC gas saturation - GC GC - retention time GC - retention time
81 99 100 86
0.00087 0.0017
BP-1 column Apolane-87 column
directly take the value at 25 °C Aqueous Solubility
SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
method
ref
20 24 25 15 25 35 45 25
0.00013 0.00020 0.000044 0.00017 0.00038 0.00074 0.0014 0.00013
0.00080 0.0011 0.00024 0.0013 0.0020 0.0029 0.0042 0.00068
-3.10 -2.94 -3.62 -2.89 -2.69 -2.54 -2.38 -3.17
shake flask - GC shake flask - nephelometry generator column - GC shake flask - GC
101 48 38 89
25
0.000031
0.00017
-3.77
25 23 23 25 25 LDV at 25 °C
0.0000041 0.0039 0.000074 0.0000034 0.000019
0.000022 0.021 0.00040 0.000018 0.00010 0.00081
-4.66 -1.68 -3.40 -4.74 -4.01 -3.09
0.00079
-3.10
t/°C
FAV at 25 °C
note
shake flask - GC
89
shake flask - LSC RP-HPLC RP-HPLC generator column RP-HPLC log mean of the values at (20 to 25) °C
47 49
used anyhow particle size, 5 µm
not used, small particle size, 0.05 µm not used, small particle size, 0.01 µm outlier
94
no isomer specified no isomer specified
Henry’s Law Constant t/°C
H/Pa‚m3‚mol-1
KAW
log KAW
25 23 23 LDV at 25 °C FAV at 25 °C
4.2 123 369 4.2 4.2
0.0017 0.05 0.15 0.0017 0.0017
-2.77 -1.30 -0.82 -2.77 -2.77
method thermodynamic method gas stripping - UV
ref
note
52 20 20
not consistent with other properties not used, seawater
directly take the value at 25 °C Octanol-Water Partition Coefficient
t/°C
KOW
log KOW
method
ref
note
25 23 25 18 23 23 23 23 LDV at 25 °C FAV at 25 °C
9.0 × 106 6.8 × 105 7.8 × 105 1.2 × 106 6.0 × 105 1.9 × 106 4.9 × 105 4.3 × 105 9.0 × 106 8.6 × 106
6.96 5.83 5.89 6.09 5.78 6.29 5.69 5.63 6.96 6.93
slow stirring RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC directly take the value at 25 °C
58 69 65 66 97 49 69 94
no isomer specified
Octanol-Air Partition Coefficient t/°C
KOA
log KOA
5 15 25 35 LDV at 25 °C FAV at 25 °C
8.4 × 1010 1.9 × 1010 4.9 × 109 1.4 × 109 4.9 × 109 5.0 × 109
10.92 10.28 9.69 9.13 9.69 9.70
method generator column - GC
ref
note
12
calcd from the reported equation log KOA ) 5116/(T/K) - 7.47 (5 to 35) °C
directly take the value at 25 °C Octanol Solubility
t/°C
SOS/mol‚m-3
SOL/mol‚m-3
log(SOL/mol‚m-3)
method
ref
note
4 12 20
138 138 200
1546 1157 1271
3.19 3.06 3.10
slow stirring - GC
18
not used for the adjustment
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 751 Table 5. Reported and Selected Physical-Chemical Properties for p,p′-DDD common name CAS registry no. formula MW/g‚mol-1
p,p′-DDD 72-54-8 C14H10Cl4 321
tM/°C
109.2 109.0 81.0 71.5
∆fusS/J‚K-1‚mol-1
27 22 27 22
Vapor Pressure t/°C 15 25 35 45 30 25 25 LDV at 25 °C FAV at 25 °C
PS/Pa
PL/Pa
log(PL/Pa)
0.000136
0.00028 0.00097 0.0031 0.0092 0.0015 0.0016 0.00062 0.00097 0.0012
-3.55 -3.01 -2.51 -2.04 -2.83 -2.79 -3.21 -3.01 -2.93
method
ref
note
GC - retention time
36
calcd from the reported equation log(PL/Pa) ) -4622/(T/K) + 12.49
gas saturation - GC GC - retention time
81 86
BP-1 column Apolane-87 column
directly take the value at 25 °C
Aqueous Solubility t/°C
SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
method
ref
25 24 15 25 35 45 25 25 LDV at 25 °C
0.000062 0.00050 0.00016 0.00028 0.00047 0.00075 0.000047 0.000016
0.00083 0.0069 0.0031 0.0037 0.0042 0.0047 0.00062 0.00021 0.0028
-3.08 -2.16 -2.51 -2.43 -2.37 -2.32 -3.21 -3.68 -2.56
generator column - GC shake flask - nephelometry shake flask - GC
38 48 89
0.0023
-2.64
FAV at 25 °C
note
particle size, 5 µm
not used, small particle size, 0.05 µm not used, small particle size, 0.01 µm log mean of the values at (24 and 25) °C
Henry’s Law Constant t/°C
H/Pa‚m3‚mol-1
KAW
log KAW
method
ref
25 LDV at 25 °C FAV at 25 °C
0.67 0.67 0.50
0.00027 0.00027 0.00020
-3.57 -3.57 -3.69
thermodynamic method directly take the value at 25 °C
52
note
Octanol-Water Partition Coefficient t/°C
KOW
log KOW
method
ref
note
25 25 18 23 23 LDV at 25 °C FAV at 25 °C
1.6 × 106 5.4 × 104 1.0 × 105 6.6 × 104 1.5 × 105 1.6 × 106 2.2 × 106
6.217 4.73 5 4.82 5.19 6.22 6.33
slow stirring RP-HPLC RP-HPLC RP-HPLC RP-HPLC directly take the value at 25 °C
58 65 66 97 49
from regression
Octanol-Air Partition Coefficient t/°C 5 15 25 35 LDV at 25 °C FAV at 25 °C Octanol Solubility
KOA
log KOA
1.3 × 3.8 × 1010 1.2 × 1010 4.4 × 109 1.2 × 1010 1.1 × 1010
11.11 10.58 10.10 9.64 10.10 10.03
1011
method generator column - GC
ref
note
12
calcd from the reported equation log KOA ) 4185/(T/K) - 3.94 (5 to 35) °C
directly take the value at 25 °C
not found
752
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005
Table 6. Reported and Selected Physical-Chemical Properties for cis-Chlordane (CC) common name CAS registry no. formula MW/g‚mol-1
cis-chlordane 5103-71-9 C10 H6 Cl8 409.8
tM/°C ∆fusS/J‚K-1‚mol-1
104.1 106.8 74.3 60.9
14 22 14 22
Vapor Pressure t/°C
Ps/Pa
25 50 75 100 125 25 50 75 100 125 20 25 LDV at 25 °C FAV at 25 °C
PL/Pa
log(PL/Pa)
method
ref
0.008 0.11 0.98 6.7 36 0.0047 0.061 0.54 3.6 19 0.0029 0.0073 0.0080 0.0073
-2.10 -0.96 0.01 0.83 1.56 -2.33 -1.22 -0.27 0.56 1.28 -2.54 -2.14 -2.10 -2.14
gas saturation - GC
note Rordorf, unpublished
GC - retention time
36
GC - AA GC - retention time linear regression
102
calcd from the reported equation log(PL/Pa) ) -4284/(T/K) + 12.04
Li, unpublished log(PL/Pa) ) -4331/(T/K) + 12.43 R2 ) 1.000
Aqueous Solubility SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
method
ref
note
25
0.00014
0.0015
-2.83
shake flask - GC
103
24 25 LDV at 25 °C
0.000078 0.0045
0.00084 0.048 0.0011
-3.08 -1.32 -2.96
batch solubility generator column - GC log mean of the values at (24 and 25) °C
104 38
mixture of 3:1 cis/trans, used anyhow no isomer specified, used anyhow not consistent with other properties
0.0013
-2.89
ref
note
t/°C
FAV at 25 °C
Henry’s Law Constant t/°C
H/Pa‚m3‚mol-1
KAW
log KAW
25 22-24 23 23 23 23 LDV at 25 °C FAV at 25 °C
4.9 8.4 5.4 5.9 89 419 6.0 5.7
0.0020 0.0034 0.0022 0.0024 0.036 0.17 0.0024 0.0023
-2.71 -2.47 -2.66 -2.62 -1.44 -0.77 -2.61 -2.61
method gas stripping - GC wetted-wall column fog chamber (drain) fog chamber (cyclone) gas stripping - GC
19 95
no isomer specified, used anyhow τ-chlordane, used anyhow
20
not consistent with other properties not used, seawater
log mean of the values at (23 to 25) °C Octanol-Water Partition Coefficient
t/°C
KOW
log KOW
method
ref
note
25 25 23 LDV at 25 °C FAV at 25 °C
1.3 × 106 6.0 × 102 1.2 × 105 1.3 × 106 1.6 × 106
6.10 2.78 5.08 6.10 6.20
slow stirring - GC shake flask - GC RP-HPLC directly take the value at 25 °C
105 103 97
not used, 3:1 cis-to trans-chlordane no isomer specified
Octanol-Air Partition Coefficient t/°C
KOA
log KOA
5 15 25 35 25 LDV at 25 °C FAV at 25 °C
1.4 × 3.2 × 109 8.1 × 108 2.2 × 108 8.3 × 108 8.1 × 108 6.8 × 108
10.14 9.50 8.91 8.35 8.92 8.91 8.83
1010
method generator column - GC
ref
note
12
calcd from the reported equation log KOA ) 5127/(T/K) - 8.29 (5 to 35) °C
GC - retention time directly take the value at 25 °C
Li, unpublished
Octanol Solubility t/°C
SOS/mol‚m-3
SOL/mol‚m-3
log(SOL/mol‚m-3)
method
ref
note
4 12 20
138 151 209
3483 2715 2714
3.54 3.43 3.43
slow stirring - GC
18
not used for the adjustment
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 753 Table 7. Reported and Selected Physical-Chemical Properties for trans-Chlordane (TC) common name CAS registry no. formula MW/g‚mol-1
trans-chlordane 5103-74-2 C10H6Cl8 409.8
tM/°C ∆fusS/J‚K-1‚mol-1
101.1 75.4
14 14
Vapor Pressure t/°C
Ps/Pa
25 50 75 100 125 25 50 75 100 125 20 25 LDV at 25 °C FAV at 25 °C
PL/Pa
log(PL/Pa)
method
0.013 0.16 1.4 9.3 48 0.0066 0.082 0.71 4.6 23 0.0039 0.0098 0.013 0.010
-1.89 -0.80 0.15 0.97 1.68 -2.18 -1.09 -0.15 0.66 1.37 -2.41 -2.01 -1.89 -1.99
gas saturation - GC
ref
note Rordorf, unpublished
GC - retention time
36
GC - AA GC - retention time linear regression
102
calcd from the reported equation log(PL/Pa) ) -4216/(T/K) + 11.96
Li, unpublished log(PL/Pa) ) -4238/(T/K) + 12.32 R2 ) 1.000
Aqueous Solubility t/°C
SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
method
ref
note
25 24 25 LDV at 25 °C
0.00014 0.000078 0.0045
0.0014 0.00080 0.046 0.0011
-2.86 -3.10 -1.34 -2.96
shake flask batch solubility generator column - GC log mean of the values at (24 and 25) °C
103 104 38
mixture of 3:1 cis/trans, used anyhow no isomer specified, used anyhow not consistent with other properties
0.0015
-2.82
FAV at 25 °C
Henry’s Law Constant t/°C
H/Pa‚m3‚mol-1
KAW
log KAW
25 23 23 23 23 23 LDV at 25 °C
4.9 8.4 5.4 5.9 135 566 6.0
0.0020 0.0034 0.0022 0.0024 0.055 0.23 0.0024
-2.71 -2.47 -2.66 -2.62 -1.26 -0.64 -2.62
FAV at 25 °C
6.8
0.0027
-2.56
method
ref
gas stripping - GC wetted-wall column fog chamber (drain) fog chamber (cyclone) gas stripping - GC
note
19 95
no isomer specified, used anyhow τ-chlordane, used anyhow
20
not consistent with other properties not used, seawater
log mean of the values at (23 and 25) °C
Octanol-Water Partition Coefficient t/°C
KOW
log KOW
method
ref
note
25 25 23 LDV at 25 °C FAV at 25 °C
1.7 × 6.0 × 102 1.2 × 105 1.7 × 106 1.8 × 106
6.22 2.78 5.08 6.23 6.27
slow stirring shake flask RP-HPLC directly take the value at 25 °C
105 103 97
not used, 3:1 cis-to trans-chlordane no isomer specified
106
Octanol-Air Partition Coefficient t/°C
KOA
log KOA
5 10 15 20 25 25 LDV at 25 °C FAV at 25 °C
1.2 × 5.7 × 109 2.8 × 109 1.4 × 109 7.3 × 108 5.9 × 108 7.3 × 108 6.7 × 108
10.08 9.76 9.45 9.15 8.86 8.77 8.86 8.83
1010
method generator column - GC
ref
note
12
calcd from the reported equation log KOA ) 5036/(T/K) - 8.03 (5 to 25) °C
GC - retention time directly take the value at 25 °C
Li, unpublished
Octanol Solubility t/°C
SOS/mol‚m-3
SOL/mol‚m-3
log(SOL/mol‚m-3)
method
ref
note
4 12 20
204 275 347
4912 4699 4274
3.69 3.67 3.63
slow stirring - GC
18
not used for the adjustment
754
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005
Table 8. Reported and Selected Physical-Chemical Properties for Heptachlor (HEPT) common name CAS registry no. formula MW/g‚mol-1
heptachlor 76-44-8 C10H5Cl7 373.4
tM/°C ∆fusS/J‚K-1‚mol-1
93 98 69.64 70.96
14 15 14 15
Vapor Pressure t/°C
Ps/Pa
PL/Pa
log(PL/Pa)
method
25 50 75 100 125 25 50 75 100 125 25 LDV at 25 °C FAV at 25 °C
0.021 0.41 5.1
0.16 1.35 8.38 46 320 0.030 0.33 2.5 15 70 0.036 0.13 0.13
-0.81 0.13 0.92 1.66 2.51 -1.52 -0.48 0.41 1.17 1.85 -1.44 -0.87 -0.87
gas saturation - GC
ref
GC - retention time
note Rordorf, unpublished
36
calcd from the reported equation log(PL/Pa) ) -3995/(T/K) + 11.88
GC - retention time linear regression
Li, unpublished log(PL/Pa) ) -3870/(T/K) + 12.11 R2 ) 0.996
Aqueous Solubility t/°C
SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
method
ref
15 25 35 45 25 25 27 LDV at 25 °C FAV at 25 °C
0.00027 0.00048 0.00084 0.0013 0.00033 0.00008 0.00015
0.0028 0.0036 0.0044 0.0050 0.0025 0.00059 0.0010 0.0035 0.0035
-2.55 -2.45 -2.35 -2.30 -2.61 -3.23 -2.99 -2.45 -2.45
shake flask - GC
89
shake flask - GC linear regression
106
note particle size, 5 µm
not used, small particle size 0.05 µm not used, small particle size 0.01 µm not used, outlier log(SWL/mol‚m-3) ) -770/(T/K) + 0.13 R2 ) 0.990
Henry’s Law Constant t/°C
H/Pa‚m3‚mol-1
KAW
log KAW
method
ref
note
25 25 LDV at 25 °C FAV at 25 °C
30 150 30 38
0.012 0.060 0.012 0.015
-1.92 -1.22 -1.92 -1.81
thermodynamic method gas stripping - GC directly take the value at 25 °C
52 19
not consistent with other properties
Octanol-Water Partition Coefficient t/°C
KOW
log KOW
method
ref
25 18 23 23 25 LDV at 25 °C FAV at 25 °C
1.3 × 3.8 × 105 1.7 × 105 2.8 × 105 1.9 × 105 1.3 × 106 8.8 × 105
6.1 5.58 5.24 5.44 5.27 6.10 5.94
slow strirring - GC RP-HPLC RP-HPLC RP-HPLC RP-HPLC directly take the value at 25 °C
105 66 97 69 65
106
note from regression
Octanol-Air Partition Coefficient t/°C
KOA
log KOA
5 10 15 20 25 25 LDV at 25 °C FAV at 25 °C
3.0 × 1.8 × 108 1.1 × 108 6.9 × 107 4.3 × 107 4.3 × 107 4.3 × 107 5.7 × 107
8.47 8.25 8.04 7.84 7.64 7.64 7.64 7.76
108
method generator column - GC
ref
note
12
calcd from the reported equation log KOA ) 3455/(T/K) - 3.95 (5 to 25) °C
GC - retention time directly take the value at 25 °C
Octanol Solubility t/°C
SOS/mol‚m-3
SOL/mol‚m-3
log(SOL/mol‚m-3)
method
ref
note
4 12 20
182 219 234
2960 2596 2065
3.47 3.41 3.31
slow stirring - GC
18
not used for the adjustment
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 755 Table 9. Reported and Selected Physical-Chemical Properties for Heptachlor Epoxide (HEPX) common name CAS registry no. formula MW/g‚mol-1
heptachlor epoxide 1024-57-3 C10H5Cl7O 389.2
tM/°C
166 161.7 61.56 55.62
∆fusS/J‚K-1‚mol-1
14 15 14 15
Vapor Pressure t/°C
PS/Pa
25 LDV at 25 °C FAV at 25 °C
PL/Pa
log(PL/Pa)
method
ref
0.013 0.013 0.022
-1.88 -1.88 -1.65
GC - retention time directly taken
note Li, unpublished indirect, used anyhow
Aqueous Solubility SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
25 15 25 35 45 25
0.00090 0.00028 0.00051 0.00090 0.0015 0.00031
0.024 0.011 0.014 0.017 0.021 0.0082
-1.62 -1.97 -1.86 -1.77 -1.67 -2.09
25
0.000064
0.0017
-2.77
27
0.000090
0.0022
-2.65
shake flask - GC
0.018 0.013
-1.74 -1.88
log mean of the values at 25 °C
t/°C
LDV at 25 °C FAV at 25 °C
method
ref
generator column - GC shake flask - GC
38 89
106
note particle size, 5 µm
not used, small particle size, 0.05 µm not used, small particle size, 0.01 µm not used, small particle size, 0.05 µm
Henry’s Law Constant t/°C
H/Pa‚m3‚mol-1
KAW
log KAW
method
ref
note
25 25 LDV at 25 °C FAV at 25 °C
2.1 3.2 2.1 1.7
0.00086 0.0013 0.00086 0.00068
-3.07 -2.88 -3.07 -3.17
thermodynamic method gas stripping - GC directly take the value at 25 °C
52 19
not consistent with other properties
Octanol-Water Partition Coefficient t/°C
KOW
log KOW
method
ref
note
25 23 LDV at 25 °C FAV at 25 °C
3.6 × 2.5 × 105 2.5 × 105 2.6 × 105
4.56 5.4 5.4 5.42
shake flask - GC RP-HPLC directly taken
107 69
not consistent with other properties indirect, used anyhow
104
Octanol-Air Partition Coefficient t/°C
KOA
log KOA
method
25 LDV at 25 °C FAV at 25 °C
4.2 × 108 4.2 × 108 3.9 × 108
8.62 8.62 8.59
GC - retention time directly take the value at 25 °C
ref
note Li, unpublished indirect, used anyhow
Octanol Solubility t/°C
SOS/mol‚m-3
SOL/mol‚m-3
log(SOL/mol‚m-3)
method
ref
note
4 12 20
87.10 81.28 120.23
5076 3468 3820
3.71 3.54 3.58
slow stirring - GC
18
not used for the adjustment
PS, SWS, and SOS need to be converted to the properties of the supercooled liquid PL, SWL, and SOL. This is done by using compound-specific entropy of fusion values, ∆fusS, and melting temperatures, TM, in eq 1:
SWS/mol‚m-3 SWL/mol‚m-3
)
)
SOS/mol‚m-3 SOL/mol‚m-3 PS/Pa PL/Pa
[
) exp
(
- ∆fusS/J‚K-1‚mol-1 TM/K -1 T/K R/J‚K-1‚mol-1
)]
(1)
where R is the ideal gas constant and T is the experimental temperature in K. ∆fusS can be calculated from the compound-specific enthalpy of fusion, ∆fusH, and TM. The literature search revealed that TM values reported for a particular OCP can show large discrepancies. For example, TM values compiled by Mackay et al.7 are in the range of (70 to 109) °C for R-endosulfan and (108 to 213) °C for β-endosulfan. In addition, aldrin, dieldrin, heptachlor, and heptachlor epoxide have multiple phase transitions between the solid and liquid states. Different phasetransition energies are cited by different authors, referring to different articles. The molecules in an ideal crystal acquire both translational and rotational energy as they change from the solid to the liquid state and show only one melting temperature TM.14 However, for some OCPs,
756
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005
Table 10. Reported and Selected Physical-Chemical Properties for Aldrin common name CAS registry no. formula MW/g‚mol-1
aldrin 309-00-2 C12H8Cl6 364.9
tM/°C
99 103.1 52.17 56.37
∆fusS/J‚K-1‚mol-1
14 16 14 16
Vapor Pressure t/°C
PS/Pa
PL/Pa
log(PL/Pa)
method
ref
35.3 41 41.6 45.6 50.8 63.3 70 25 50 75 100 125 20 30 40 50 20 25 50 75 100 125 25 25 LDV at 25 °C FAV at 25 °C
0.063 0.10 0.11 0.16 0.33 1.0 2.2 0.0081 0.19 2.8
0.25 0.35 0.38 0.51 0.91 2.1 4.0 0.043 0.53 4.6 29 220 0.019 0.030 0.036 0.038 0.0061 0.076 0.79 5.9 33 153 0.023 0.033 0.061 0.064
-0.60 -0.45 -0.42 -0.29 -0.04 0.33 0.60 -1.37 -0.27 0.66 1.46 2.34 -1.73 -1.52 -1.45 -1.41 -2.22 -1.12 -0.10 0.77 1.52 2.18 -1.64 -1.48 -1.21 -1.20
generator column - GC
108
0.0031 0.0065 0.010 0.014 0.0010
note
gas saturation - GC
Rordorf, unpublished
109
outlier
relative loss rate GC - retention time
33 36
outlier calcd from the reported equation log(PL/Pa) ) -3924/(T/K) + 12.04
GC - retention time
86
BP-1 column Apolane-87 column log(PL/Pa) ) -4106/(T/K) + 12.56 R2 ) 0.990
linear regression Aqueous Solubility
t/°C
SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
25 35 45 15 25 35 45 15 25 35 45 15 25 35 45 27 25 LDV at 25 °C FAV at 25 °C
0.20 0.39 0.79 0.11 0.18 0.35 0.60 0.052 0.14 0.24 0.46 0.0055 0.013 0.030 0.065 0.027 0.017
0.0029 0.0043 0.0068 0.0020 0.0026 0.0039 0.0052 0.0010 0.0020 0.0026 0.0039 0.00011 0.00019 0.00033 0.00056 0.00037 0.00025 0.0029 0.0027
-2.54 -2.36 -2.17 -2.69 -2.58 -2.41 -2.28 -3.00 -2.69 -2.58 -2.41 -3.98 -3.73 -3.48 -3.25 -3.43 -3.61 -2.55 -2.56
method
ref
note
shake flask - UV
110
shake flask - GC
89
particle size, 5 µm
shake flask - GC
89
not used, small particle size, 0.05 µm
shake flask - GC
89
not used, small particle size, 0.01 µm
shake flask - GC generator column - GC linear regression
106 38
outlier outlier log(SWL/mol‚m-3) ) -1480/(T/K) + 2.42 R2 ) 0.948
Henry’s Law Constant t/°C
H/Pa‚m3‚mol-1
KAW
log KAW
method
ref
25 25 LDV at 25 °C
50 4.5 15
0.020 0.0018 0.0060
-1.69 -2.74 -2.22
gas stripping - GC thermodynamic method log mean of the values at 25 °C
19 52
FAV at 25 °C
23
0.0094
-2.03
note
none above are consistent with other properties
Octanol-Water Partition Coefficient t/°C
KOW
log KOW
method
ref
25 20 23 LDV at 25 °C FAV at 25 °C
3.1 × 106 2.5 × 107 5.5 × 105 3.1 × 106 1.7 × 106
6.50 7.4 5.74 6.50 6.24
slow stirring - GC RP-TLC RP-HPLC directly take the value at 25 °C
58 111 97
note
Octanol-Air Partition Coefficient t/°C 5 10 15 20 25 25 LDV at 25 °C FAV at 25 °C Octanol Solubility
KOA
log KOA
9.2 × 108 5.4 × 108 3.2 × 108 1.9 × 108 1.2 × 108 2.0 × 108 1.2 × 108 1.8 × 108
8.96 8.73 8.50 8.28 8.07 8.31 8.07 8.26
method generator column - GC
ref 12
GC - retention time directly take the value at 25 °C
note calcd from the reported equation log KOA ) 3709/(T/K) - 4.37 (5 to 25) °C Li, unpublished
not found
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 757 Table 11. Reported and Selected Physical-Chemical Properties for Dieldrin common name CAS registry no. formula MW/g‚mol-1
dieldrin 60-57-1 C12H8Cl6O 380.9
tM/°C ∆fusS/J‚K-1‚mol-1
175 180 180 45.69 52.04 54.37
14 14 15 14 14 15
Vapor Pressure t/°C
PS/Pa
PL/Pa
log(PL/Pa)
method
ref
35 38.2 51.5 62.8 70 75.2 20 30 40 25 50 75 100 125 20 20 30 40 50 25 50 75 100 125 25 25 LDV at 25 °C FAV at 25 °C
0.0026 0.0042 0.017 0.059 0.11 0.18 0.00037 0.00135 0.00452 0.00079 0.018 0.25 2.6 19 0.000387 0.00010 0.00019 0.00037 0.00071
0.044 0.065 0.18 0.48 0.78 1.1 0.010 0.027 0.067 0.018 0.20 1.5 9.3 43 0.010 0.0028 0.0038 0.0054 0.0079 0.010 0.13 1.2 8.1 43 0.0053 0.0060 0.016 0.014
-1.35 -1.19 -0.74 -0.32 -0.11 0.04 -2.00 -1.58 -1.18 -1.74 -0.69 0.18 0.97 1.63 -1.98 -2.55 -2.42 -2.27 -2.10 -2.00 -0.88 0.08 0.91 1.63 -2.27 -2.22 -1.78 -1.84
generator column - GC
108
gas saturation - GC
112
gas saturation - GC
note
Rordorf, unpublished
84 109
outlier
GC - retention time
36
calcd from the reported equation log(PL/Pa) ) -4310/(T/K) + 12.46
GC - retention time
86
BP-1 column Apolane-87 column log(PL/Pa) ) -3995/(T/K) + 11.62 R2 ) 0.998
linear regression
Aqueous Solubility t/°C
SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
method
ref
25 10 15 20 25 30 35 40 25 35 45 25 27 10 20 30 15 25 35 45 15 25 35 45 15 25 35 45 25 LDV at 25 °C FAV at 25 °C
0.00053 0.00025 0.00029 0.00032 0.00040 0.00054 0.00064 0.00076 0.00066 0.0014 0.0026 0.00047 0.00049 0.00021 0.00037 0.00053 0.00024 0.00051 0.0011 0.0017 0.00017 0.00039 0.00071 0.0013 0.000026 0.000058 0.00012 0.00024 0.00037
0.012 0.0093 0.0091 0.0086 0.0092 0.011 0.011 0.011 0.015 0.024 0.034 0.011 0.011 0.0079 0.0099 0.010 0.0075 0.012 0.018 0.022 0.0054 0.0090 0.012 0.016 0.00083 0.0013 0.0021 0.0030 0.0084 0.012 0.013
-1.92 -2.03 -2.04 -2.06 -2.03 -1.97 -1.96 -1.95 -1.82 -1.62 -1.47 -1.96 -1.98 -2.10 -2.00 -1.98 -2.13 -1.93 -1.75 -1.66 -2.27 -2.04 -1.92 -1.79 -3.08 -2.88 -2.68 -2.52 -2.07 -1.94 -1.88
generator column - GC slow stirring - GC
38 113
shake flask - UV
110
shake flask - GC shake flask - GC shake flask - GC
92 106 114
particle size, 5 µm
shake flask - GC
89
particle size, 5 µm
shake flask - GC
89
not used, small particle size, 0.05 µm
shake flask - GC
89
not used, small particle size, 0.01 µm
shake flask - GC linear regression
92
not used, small particle size, 0.4 µm log(SWL/mol‚m-3) ) -1158/(T/K) + 1.94 R2 ) 0.595
note
758
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005
Table 11. (Continued) Henry’s Law Constant t/°C
H/Pa‚m3‚mol-1
KAW
log KAW
method
ref
note
25 25 20 LDV at 25 °C FAV at 25 °C
1.0 5.9 3.2 1.0 1.1
0.00041 0.0024 0.0013 0.00041 0.00044
-3.39 -2.63 -2.89 -3.39 -3.36
thermodynamic method gas stripping - GC gas stripping - UV directly take the value at 25 °C
52 19 115
not consistent with other properties not consistent with other properties
Octanol-Water Partition Coefficient KOW
log KOW
method
ref
25 25
t/°C
2.5 × 105 3.4 × 104
5.40 4.54
slow stirring - GC slow stirring - GC
58 59
20 23 18 18 LDV at 25 °C FAV at 25 °C
1.6 × 106 5.8 × 104 3.2 × 104 4.5 × 104 2.5 × 105 3.1 × 105
6.2 4.76 4.51 4.65 5.40 5.48
RP-TLC RP-HPLC RP-HPLC
note average of four measures not consistent with other properties
111 97 66
directly taken
Octanol-Air Partition Coefficient t/°C
KOA
log KOA
5 15 25 35 45 25 LDV at 25 °C FAV at 25 °C
6.4 × 2.2 × 109 7.8 × 108 3.0 × 108 1.2 × 108 1.0 × 109 7.8 × 108 6.9 × 108
9.81 9.33 8.89 8.48 8.09 9.02 8.89 8.84
109
method generator column - GC
ref
note
12
calcd from the reported equation log KOA ) 3790/(T/K) - 3.82 (5 to 45) °C
GC - retention time directly take the value at 25 °C
Li, unpublished
Octanol Solubility t/°C
SOS/mol‚m-3
SOL/mol‚m-3
log(SOL/mol‚m-3)
method
ref
note
4 12 20
91 105 107
4218 3665 2882
3.63 3.56 3.46
slow stirring - GC
18
not used for the adjustment
such as aldrin, dieldrin, β-endosulfan, heptachlor, and its metabolite heptachlor epoxide, a characteristic transition phase between the ordered solid phase and the liquid phase exists just below the melting points. In this rotator or plastic phase, the molecules are weakly ordered and behave as if they were in a liquid state. The phase-transfer process of such chemicals can be described as Ttr(∆trH)
and rotator-liquid-phase transitions correspond to the energy of fusion:14
∆fusH/kJ‚mol-1 ) ∆trH/kJ‚mol-1 + ∆MH/kJ‚mol-1 ∆fusS/J‚mol-1‚K-1 ) ∆trS/J‚K-1‚mol-1 +
∆MS/J‚K-1‚mol-1
TM(∆MH)
solid phase 98 transition phase 98 liquid phase and a temperature of transition Ttr from the solid to the rotator phase can then be observed. The existence of such an intermediate phase for aldrin, dieldrin, heptachlor, and β-endosulfan during their solid-liquid phase transition is clearly shown by endothermic peaks in their differential scanning calorimetry (DSC) curves.15-17 During phase transfer from solid to liquid, chemicals that have characteristic rotator phases acquire only translational energy upon melting because they have already acquired rotational energy at a lower temperature.14 The values of the melting entropies ∆MS are usually small and equal to the gas constant R;15 the sums of the energies of solid-rotator
(2)
)
10-3∆trH/kJ‚mol-1 + Ttr/K 10-3∆MH/kJ‚mol-1 (3) TM/K
The ∆fusH and ∆fusS values for aldrin, dieldrin, heptachlor, heptachlor epoxide, and β-endosulfan listed in Tables 8, 9, 11, 12, and 14 were calculated according to eqs 2 and 3 on the basis of Ttr, TM, ∆trH, and ∆MH values found in the literature.14-16 We believe that one reason for the large discrepancies in reported TM values in the literature is that transition temperatures Ttr have been cited erroneously as melting temperatures TM in some literature sources. In
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 759 Table 12. Reported and Selected Physical-Chemical Properties for Endrin common name CAS registry no. formula MW/g‚mol-1
endrin 72-20-8 C12H8Cl6O 380.9
tM/°C
110.5 110.2 43.24 40.73
∆fusS/J‚K-1‚mol-1
15 16 15 16
Vapor Pressure t/°C
PS/Pa
25 LDV at 25 °C FAV at 25 °C
PL/Pa
log(PL/Pa)
method
ref
0.0052 0.0052 0.0031
-2.29 -2.29 -2.50
GC - retention time directly taken
note Li, unpublished indirect, used anyhow
Aqueous Solubility t/°C
SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
method
ref
25 25 35 45 25 15 25 35 45 15 25 35 45 15 25 35 45 25 LDV at 25 °C FAV at 25 °C
0.00068 0.00060 0.0010 0.0013 0.00068 0.00034 0.00066 0.0011 0.0016 0.00024 0.00047 0.00083 0.0014 0.000026 0.000064 0.00015 0.00032 0.00050
0.0030 0.0027 0.0036 0.0039 0.0030 0.0019 0.0029 0.0039 0.0048 0.0013 0.0021 0.0030 0.0040 0.00015 0.00029 0.00054 0.00092 0.0022 0.0027 0.0030
-2.52 -2.57 -2.45 -2.41 -2.52 -2.72 -2.53 -2.40 -2.32 -2.88 -2.68 -2.53 -2.40 -3.83 -3.54 -3.26 -3.04 -2.65 -2.57 -2.53
generator column - GC shake flask - UV
38 110
note
shake flask - GC shake flask - GC
92 89
particle size, 5 µm particle size, 5 µm
shake flask - GC
89
not used, small particle size, 0.05 µm
shake flask - GC
89
not used, small particle size, 0.01 µm
shake flask - GC linear regression
92
not used, small particle size, 0.06 µm log(SWL/mol‚m-3) ) -1022/(T/K) + 0.86 R2 ) 0.893
Henry’s Law Constant t/°C
H/Pa‚m3‚mol-1
KAW
log KAW
25 LDV at 25 °C FAV at 25 °C
0.63 0.64 1.1
0.00026 0.00026 0.00043
-3.59 -3.59 -3.37
method
ref
thermodynamic method
note
52
directly take the value at 25 °C
Octanol-Water Partition Coefficient t/°C
KOW
log KOW
method
ref
25 23 23 LDV at 25 °C FAV at 25 °C
1.6 × 3.6 × 104 5.1 × 104 1.6 × 105 8.8 × 104
5.20 4.56 4.71 5.20 4.94
slow stirring - GC RP-HPLC RP-HPLC directly take the value at 25 °C
58 69 97
105
note
Octanol-Air Partition Coefficient t/°C
KOA
log KOA
5 10 15 20 25 30 35 25 LDV at 25 °C FAV at 25 °C
1.6 × 8.3 × 108 4.4 × 108 2.4 × 108 1.3 × 108 7.6 × 107 4.4 × 107 1.2 × 109 1.3 × 108 2.1 × 108
9.20 8.92 8.64 8.38 8.13 7.88 7.65 9.09 8.13 8.32
109
method generator column - GC
ref
note
12
calcd from the reported equation log KOA ) 4436/(T/K) - 6.75 (5 to 35) °C
GC - retention time directly take the value at 25 °C
Li, unpublished
Octanol Solubility t/°C
SOS/mol‚m-3
SOL/mol‚m-3
log(SOL/mol‚m-3)
method
ref
note
4 12 20
95 100 115
705 603 572
2.85 2.78 2.76
slow stirring - GC
18
not used for the adjustment
760
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005
Table 13. Reported and Selected Physical-Chemical Properties for r-Endosulfan R-endosulfan 959-98-8 C9H6Cl6O3S 406.9
common name CAS registry no. formula MW/g‚mol-1
tM/°C
106.8 (not used) 85.9 26.32 (not used) 46.02
∆fusS/J‚K-1‚mol-1
22 17 22 17
Vapor Pressure t/°C
PS/Pa
5 15 25 35 45 25 LDV at 25 °C FAV at 25 °C
PL/Pa
log(PL/Pa)
0.00058 0.0020 0.0060 0.017 0.046 0.0086 0.0060 0.0044
-3.23 -2.71 -2.22 -1.76 -1.33 -2.06 -2.22 -2.35
method
ref
note
GC - retention time
36
calcd from the reported equation log(PL/Pa) ) -4201/(T/K) + 11.87 used anyhow
GC - retention time directly take the value at 25 °C
Li, unpublished
Aqueous Solubility t/°C
SWS/mol‚m-3 SWL/mol‚m-3 log(SWL/mol‚m-3)
20 25 20 LDV at 25 °C
0.0013 0.0013 0.00016
FAV at 25 °C
0.0043 0.0040 0.0006 0.0042
-2.36 -2.39 -3.25 -2.38
0.0063
-2.20
method
ref
note
shake flask - GC 116 generator column - GC 38 liquid-liquid etraction-GC/MS 117 not consistent with other properties log mean of the values at (20 and 25) °C Henry’s Law Constant
t/°C 25 20 20 LDV at 25 °C FAV at 25 °C
H/Pa‚m3‚mol-1
KAW
log KAW
0.72 6.6
0.00029 0.0027
-3.54 -2.57
thermodynamic method wetted- wall column
13 0.72 0.70
0.0053 0.00029 0.00028
-2.28 -3.54 -3.55
directly take the value at 25 °C
method
ref
note
52 118
distilled water, not consistent with other properties seawater
118
Octanol-Water Partition Coefficient t/°C
KOW
log KOW
method
ref
note
25 25 LDV at 25 °C FAV at 25 °C
5.5 × 6.8 × 103 5.5 × 104 8.7 × 104
4.74 3.83 4.74 4.94
shake flask - GC shake flask - GC directly take the value at 25 °C
107 119
not consistent with other properties
104
Octanol-Air Partition Coefficient t/°C
KOA
log KOA
5 10 15 20 25 25 LDV at 25 °C FAV at 25 °C
4.8 × 2.5 × 109 1.4 × 109 7.6 × 108 4.3 × 108 6.8 × 108 4.3 × 108 3.1 × 108
9.68 9.40 9.14 8.88 8.63 8.83 8.63 8.49
109
method generator column - GC
ref
note
12
calcd from the linear eq log KOA ) 4333/(T/K) - 5.9 (5 to 25) °C
GC - retention time directly take the value at 25 °C
Li, unpublished
Octanol Solubility not found
other cases, the true melting temperature TM was not observed properly. No articles reporting measured data for the melting point and the heat fusion of endrin have been found. Plato reported that endrin decomposes when it is heated to the melting point.14 In a study by Ksiazczak and Nagata,15 endrin showed an endothermic peak and a large exothermic peak during heating. The endothermic peak was assigned to a solid-rotator transition, and the exothermic peak was assigned to decomposition. In a DSC curve for endrin by Rodante et al.,16 two endothermic peaks occur before endrin decomposes. The reported onset temperature and enthaly
change of the first and larger of these two peaks are in agreement with the results by Ksiazczak and Nagata, but unfortunately, no thermodynamic information is provided for the second tiny peak. To convert its solid properties into those of the supercooled liquid, the melting temperature and entropy of fusion were estimated. Ttr was taken as the TM value, and ∆fusS was calculated from Ttr and ∆trH taken from the literature.15,16 Results and Discussion The physical-chemical properties for 14 OCPs are compiled in Tables 1 to 14. At the top of each Table are
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 761 Table 14. Reported and Selected Physical-Chemical Properties for β-Endosulfan common name CAS registry no. formula MW/g‚mol-1
tM/°C ∆fusS/J‚K-1‚mol-1
β-endosulfan 33213-65-9 C9H6Cl6 O3S 406.9
213.1 51.89
15 15
Vapor Pressure t/°C
PS/Pa
5 15 25 35 45 LDV at 25 °C FAV at 25 °C
PL/Pa
log(PL/Pa)
0.00040 0.0014 0.0043 0.0013 0.0035 0.0043 0.0040
-3.40 -2.86 -2.36 -1.89 -1.45 -2.36 -2.40
method
ref
note
GC - retention time
36
calcd from the reported equation log(PL/Pa) ) -4306/(T/K) + 12.08 used anyhow
directly take the value at 25 °C Aqueous Solubility
t/°C 20 25 20
SWS/mol‚m-3
SWL/mol‚m-3
log(SWL/mol‚m-3)
0.0011 0.00069 0.00028
0.11 0.057 0.028
-0.96 -1.25 -1.56
shake flask - GC generator column - GC liquid-liquid extraction - GC/MS
0.079 0.089
-1.10 -1.05
log mean of the values at 20 and 25 °C
LDV at 25 °C FAV at 25 °C
method
ref 116 38 117
note
not consistent with other properties
Henry’s Law Constant t/°C 25 20 20 LDV at 25 °C FAV at 25 °C
H/Pa‚m3‚mol-1
KAW
log KAW
0.72 6.6
0.000016 0.000360
-4.80 -3.44
thermodynamic method wetted-wall column
13 0.040 0.045
0.000870 0.000016 0.000018
-3.06 -4.80 -4.74
directly take the value at 25 °C
method
ref
note
52 118
distilled water, not consistent with other properties seawater
118
Octanol-Water Partition Coefficient t/°C
KOW
log KOW
method
ref
note
25 25 LDV at 25 °C FAV at 25 °C
6.0 × 4.2 × 103 6.0 × 104 6.0 × 104
4.78 3.62 4.78 4.78
shake flask - GC shake flask - GC directly take the value at 25 °C
107 119
not consistent with other properties
104
Octanol-Air Partition Coefficient not found Octanol Solubility not found Table 15. Literature-Derived Values (LDVs) and Assigned Uncertainty Estimates (u) for the Physical-Chemical Properties of 14 Organochlorine Pesticides at 25 °C SWL/mol‚m-3
PL/Pa
H/Pa‚m3‚mol-1
log KOW
log KOA
compound
LDV
uA
LDV
uW
LDV
uAW
LDV
uOW
LDV
uOA
HCB PeCB p,p′-DDT p,p′-DDE p,p′-DDD CC TC HEPT HEPX aldrin dieldrin endrin R-endo β-endo
0.14 1.2 0.00056 0.0033 0.00097 0.0080 0.013 0.13 0.013 0.061 0.016 0.0052 0.0060 0.0043
1 1 1 3 3 3 3 3 5 1 1 5 3 3
0.00096 0.011 0.00027 0.00081 0.0028 0.0011 0.0011 0.0035 0.018 0.0029 0.012 0.0027 0.0042 0.079
1 2 3 3 3 5 5 2 3 2 2 2 5 5
52 74 1.1 4.2 0.67 6.0 6.0 30 2.1 15 1.0 0.64 0.72 0.040
3 3 3 5 5 5 5 5 4 5 4 4 4 4
5.52 5.08 6.28 6.96 6.22 6.10 6.22 6.10 5.40 6.50 5.40 5.20 4.74 4.78
1 1 3 5 5 4 4 4 3 4 5 4 4 4
7.38 6.90 9.81 9.69 10.10 8.91 8.86 7.64 8.62 8.07 8.89 8.13 8.63
3 3 2 3 3 3 3 3 5 3 3 3 3
the data that are included in the derivation of the LDVs, including the experimental temperature, the method used, and the literature reference. For comparison and completeness, the data that are not included in the derivation of the LDVs are also listed, together with the reason for
exclusion. The LDVs and FAVs at 25 °C for each property are given at the bottom of Tables 1 to 14. A summary of the LDVs for the 14 chemicals at 25 °C is presented in Table 15 along with the uncertainty estimates uX assigned to each property. The corresponding FAVs and the required
762
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005
Table 16. Internally Consistent Physical-Chemical Properties (Final Adjusted Values, FAV) at 25 °C and the Percent Required Adjustment (adj) for 14 Organochlorine Pesticides SWL/mol‚m-3
PL/Pa
H/Pa‚m3‚mol-1
log KOW
SOL/mol‚m-3
log KOA
compound
FAV
adj/%
FAV
adj/%
FAV
adj/%
FAV
adj/%
FAV
adj/%
FAV
HCB PeCB p,p′-DDT p,p′-DDE p,p′-DDD CC TC HEPT HEPX aldrin dieldrin endrin R-endo β-endo
0.094 1.0 0.00048 0.0034 0.0012 0.0073 0.010 0.13 0.022 0.064 0.014 0.0031 0.0044 0.0040
-33 -13 -14 3 20 -9 -19 0 69 4 -12 -40 -26 -9
0.0014 0.014 0.00042 0.00079 0.0023 0.0013 0.0015 0.0035 0.013 0.0027 0.013 0.0030 0.0063 0.089
49 31 55 -3 -16 16 43 0 -27 -4 14 11 51 13
65 72 1.1 4.2 0.50 5.7 6.8 38 1.7 23 1.1 1.1 0.70 0.045
26 -4 0 0 -25 -6 13 28 -21 55 8 64 -2 13
5.64 5.19 6.39 6.93 6.33 6.20 6.27 5.94 5.42 6.24 5.48 4.94 4.94 4.78
30 30 30 -5 31 25 11 -30 4 -45 22 -44 58
7.21 6.73 9.73 9.70 10.03 8.83 8.83 7.76 8.59 8.26 8.84 8.32 8.49 9.53
-32 -33 -16 3 -15 -15 -8 31 -7 57 -11 54 -29
618 2212 1053 6830 4986 2017 2783 3099 3466 4720 4027 262 546 5357
Table 17. Sample Calculation for Obtaining Internally Consistent Final Adjusted Values (FAV) of Hexachlorobenzene SA/mol‚m-3
PL/Pa LDV log LDV uX δX (eq 7) δX (eq 8) δX (final) log FAV FAV
0.14 -0.855
0.093
SWL/mol‚m-3
0.000056 -4.249 1 -0.090
0.00096 -3.018 1 -0.090
-0.174 -4.423 0.000039
-0.174 -2.845 0.0014
KAW
KOW 3.3 × 5.522 2
0.021 -1.678 3 -0.269 0.069 -0.100 -1.578 0.026
KOA
105
0.046 0.113 5.635 4.3 × 105
2.4 × 7.384 3
107
1
2
-0.448
0.183
0.000
0.000
0.069 0.170 7.214 1.6 × 107
Table 18. Literature-Derived Values (LDV) and Assigned Uncertainty Estimates (u) for the Internal Phase-Transfer Energies of Hexa- and Pentachlorobenzene ∆UA/kJ‚mol-1
∆UW/kJ‚mol-1
∆UAW/kJ‚mol-1
∆UOW/kJ‚mol-1
∆UOA/kJ‚mol-1
compd
LDV
uA
LDV
uW
LDV
uAW
LDV
uOW
LDV
uOA
HCB PeCB
67.59a 61.65b
1 1
9.50c 12.10c
3 3
47.70d 40.60d
3 3
-24.40e -22.80e
3 3
-75.50f -71.25f
3 3
a Regression of log(P /Pa) vs 1/(T/K) using data from refs 24 and 28-34. b Regression of log(P /Pa) vs 1/(T/K) using data from refs 35, L L 71, and 72. c Derived from data given in ref 37. d Derived from data given in derived form from data given in ref 50. e Derived from data given in ref 54. f Derived from data given in ref 13.
Table 19. Internally Consistent Final Adjusted Values (FAV) of the Energies of Phase Transfer for Hexa- and Pentachlorobenzene and Percent Required Adjustment (adj) ∆UA/kJ‚mol-1
∆UW/kJ‚mol-1
∆UAW/kJ‚mol-1
∆UOW/kJ‚mol-1
∆UOA/kJ‚mol-1
∆UO/kJ‚mol-1
compd
FAV
adj/%
FAV
adj/%
FAV
adj/%
FAV
adj/%
FAV
adj/%
FAV
HCB PeCB
65.69 60.22
-3 -2
15.20 16.39
60 35
50.49 43.83
6 8
-24.70 -25.11
1 10
-75.20 -68.94
-0.4 -3
-9.51 -8.72
percentage adjustment for the 14 chemicals are listed in Table 16. LDVs could be derived for all properties, except for the solubility in octanol. Also, no measured KOA for β-endosulfan could be found during our literature search. One study18 reported SOS for most of the investigated chemicals, but these data are inconsistent with other measured properties. Although the measured SOS data were not used in the adjustment algorithm, they are still included in the Tables. All SOL values and the KOA of β-endosulfan in Table 16 are calculated from the other properties using thermodynamic constraints. When deriving LDVs for the solubility of the chlordanes, the measured SWS value from Warner19 had to be applied to both cis and trans isomers because of the lack of isomerspecific measurements. Liquid-phase solubility SWL values were then calculated according to eq 1 using isomer-specific TM and ∆fusS values. The LDVs for the Henry’s law constant H of the cis and trans isomers of chlordane are also identical. Although isomer-specific H values for cisand trans-chlordane had been reported by Atlas et al.,20 those data are not consistent with other property measure-
ments. Nevertheless, it is encouraging to see good consistency between the five LDVs for the two isomers, which points to accurate measurements and suggests that the real solubility and H values are likely close to the LDV values. Property Values at 25 °C. The physical-chemical properties for most OCPs are difficult to measure accurately. The variability of the literature data listed in Tables 1 to 14 gives an approximate indication of the considerable uncertainty of these values. The measured data for the water solubility of the OCPs shows especially large discrepancies (Figure 1). However, the literaturederived values for the 14 OCPs are reasonably consistent. In general, most properties needed to be adjusted by less than 30% to achieve consistency. Out of 70 property values for 14 OCPs, 8 required adjustments are higher than 50%; and the maximum adjustment to the LDVs at 25 °C is 69%. The required adjustments thus occur normally well within the range of the measured values (i.e., no FAV falls outside the range of reported literature values). This indicates that the procedure applied in the selection of the LDVs is successful in selecting already reasonably consistent property values.
Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 763
Figure 1. Relationships between the logarithm of the water solubility (log SWL/ mol‚m-3) and the reciprocal absolute temperature [1/(T/ K)] for hexachlorobenzene (HCB), pentachlorobenzene (PeCB), heptachlor (HEPT), and heptachlor epoxide (HEPX), p,p′-DDT, p,p′-DDE, p,p′-DDD, aldrin, dieldrin, and endrin based on data from Shiu et al. (open, left-pointing triangle);37 Weil et al. (1);38 Miller et al. (O);39 Hashimoto et al. (open, right-pointing triangle);40 Yalkowsky et al. (]);41 Patton (>);42 Konemann (4);43 Chiou (`);44 Li and Yalkowsky (3);45 Paschke et al. (×);46 Metcalf et al. (|);47 Hollifield (black, left-pointing triangle);48 Chiou (\);55 Opperhuizen et al. (open square with cross);73 Boyd et al. (